JPS5952384B2 - infrared tracking device - Google Patents

infrared tracking device

Info

Publication number
JPS5952384B2
JPS5952384B2 JP5063680A JP5063680A JPS5952384B2 JP S5952384 B2 JPS5952384 B2 JP S5952384B2 JP 5063680 A JP5063680 A JP 5063680A JP 5063680 A JP5063680 A JP 5063680A JP S5952384 B2 JPS5952384 B2 JP S5952384B2
Authority
JP
Japan
Prior art keywords
scanning
target
view
filter
field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP5063680A
Other languages
Japanese (ja)
Other versions
JPS56147080A (en
Inventor
徹 田治米
敏夫 竹居
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP5063680A priority Critical patent/JPS5952384B2/en
Publication of JPS56147080A publication Critical patent/JPS56147080A/en
Publication of JPS5952384B2 publication Critical patent/JPS5952384B2/en
Expired legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S3/00Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received
    • G01S3/78Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received using electromagnetic waves other than radio waves
    • G01S3/782Systems for determining direction or deviation from predetermined direction

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Mechanical Optical Scanning Systems (AREA)

Description

【発明の詳細な説明】 この発明は視野をロゼツトパターン状に走査し、目標の
捜索、検知を行なうロゼツトスキャン方式の赤外線追尾
装置に係わり、°詳しくは赤外線追尾装置の目標検知回
路の改良に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a rosette-scan type infrared tracking device that scans a field of view in a rosette pattern to search for and detect a target. It is related to.

まず第1図に従来から用いてきたロゼツトスキャン方式
の赤外線追尾装置における目標検知に関して説明する。
First, target detection in a rosette scan type infrared tracking device that has been used conventionally will be explained with reference to FIG.

第1図において、1はドーム、2は1次鏡、3は2次鏡
、4はウェッジ、5は検出器、6は増幅器、7はフィル
タ、8は自動利得制御器、9は比較器、10はピックア
ップセンサ、11は追尾信号発生器、12は回転軸であ
る。
In FIG. 1, 1 is a dome, 2 is a primary mirror, 3 is a secondary mirror, 4 is a wedge, 5 is a detector, 6 is an amplifier, 7 is a filter, 8 is an automatic gain controller, 9 is a comparator, 10 is a pickup sensor, 11 is a tracking signal generator, and 12 is a rotating shaft.

第2図は第1図に示した装置の動作を説明するための図
で、視野の走査軌跡Aを示す図である。
FIG. 2 is a diagram for explaining the operation of the apparatus shown in FIG. 1, and is a diagram showing a scanning locus A of the visual field.

このような構成において目標からの赤外放射光はドーム
1を透過し、1次鏡2.2次鏡3によって反射されたの
ちウェッジ4を透過し、検出器5に入射する。
In such a configuration, infrared radiation from the target passes through the dome 1, is reflected by the primary mirror 2 and the secondary mirror 3, passes through the wedge 4, and enters the detector 5.

いまウェッジ4の頂角及び回転軸12に対して傾けて置
かれた2次鏡3の傾角並びにそれらの相対位置間隔の間
にある条件が満たされると共に、ウェッジ4と2次鏡3
の回転軸12廻りの回転数の比がある一定の値になると
視野は第2図に示すような走査軌跡Aに沿ってロゼツト
パターン状に走査される。
Now, a condition between the apex angle of the wedge 4, the inclination angle of the secondary mirror 3 placed inclined with respect to the rotation axis 12, and the relative positional interval thereof is satisfied, and the wedge 4 and the secondary mirror 3
When the ratio of the rotational speeds around the rotation axis 12 reaches a certain value, the field of view is scanned in a rosette pattern along a scanning locus A as shown in FIG.

第2図に示すような瞬時視野Bを選べば走査視野C内は
ほぼもれなく走査され、走査視野C内に目標が存在すれ
ばロゼ゛ットスキャンの一周期の間には必らず目標から
の赤外放射光は検出器5に入射し、出力信号が得られる
If the instantaneous field of view B shown in Figure 2 is selected, the scanning field of view C will be scanned almost completely, and if there is a target within the scanning field of view C, there will always be red light from the target during one period of the rosette scan. The externally emitted light enters the detector 5, and an output signal is obtained.

この出力信号は増幅器6によって増幅され、フィルタ7
、自動利得制御器8を経た後比較器9に入力される。
This output signal is amplified by an amplifier 6 and a filter 7
, and then input to a comparator 9 after passing through an automatic gain controller 8.

この比較器9で設定された閾値より自動利得制御器8の
出力信号レベルが大きくなると走査視野C内に捕捉され
た目標の検知が行なわれる。
When the output signal level of the automatic gain controller 8 becomes larger than the threshold value set by the comparator 9, a target captured within the scanning field of view C is detected.

さらに検知した目標が走査視野C内でどのような位置に
あるかを知るために、2次鏡3とウェッジ4の回転に同
期した信号を取り出すピックアップセンサ10a、10
bの出力を用いて、第2図に示した走査軌跡AのX、
Y座標成分を追尾信号発生器11で発生させると共に比
較器9の出力が得られたときのX、 Y座標の値を追尾
信号発生器11の出力として得る。
Furthermore, in order to know the position of the detected target within the scanning field of view C, pickup sensors 10a and 10 extract signals synchronized with the rotation of the secondary mirror 3 and the wedge 4.
Using the output of b, X of the scanning trajectory A shown in FIG.
The Y coordinate component is generated by the tracking signal generator 11, and the values of the X and Y coordinates when the output of the comparator 9 is obtained are obtained as the output of the tracking signal generator 11.

ところで第2図に示した走査軌跡C上の走査速する。By the way, the scanning speed on the scanning locus C shown in FIG. 2 is increased.

一般にフィルタ7のバンド幅は走査速度から決まるドウ
エルタイムとある一定の関係を持たせることによってS
/Nの最適化がはかられる。
Generally, the bandwidth of the filter 7 is determined by having a certain relationship with the dwell time determined by the scanning speed.
/N is optimized.

したがってロゼツトスキャン方式では走査半径によって
フィルタ7の最適バンド幅が変わる。
Therefore, in the rosette scan method, the optimum bandwidth of the filter 7 changes depending on the scanning radius.

第3図は走査視野Cの端を走査半径1として規格化した
場合の最適バンド幅■(相対値)と走査半径Rの関係の
一例を示すもので上記のことがよくわかる。
FIG. 3 shows an example of the relationship between the optimum bandwidth (relative value) and the scanning radius R when the end of the scanning field of view C is normalized as the scanning radius 1, and the above is clearly understood.

従来から用いてきたロゼツトスキャン方式の赤外線追尾
装置では、フィルタフのバンド幅として視野中心、すな
わち走査半径が零での最適バンド幅に設定してきた。
In the rosette scan type infrared tracking device that has been used in the past, the bandwidth of the filter has been set to the optimum bandwidth at the center of the field of view, that is, when the scanning radius is zero.

これによってほぼ走査視野Cの約70%の視野内でのS
/Nはそれ程大きく劣化しないが、走査半径が大きいと
ころではS/Nの最適化がはかられていないという欠点
があった。
As a result, S within approximately 70% of the scanning field of view C
Although the S/N ratio does not deteriorate significantly, there is a drawback that the S/N ratio is not optimized in areas where the scanning radius is large.

そこでこの発明はこれらの点を改良するため、増幅器6
の出力に異なったバンド幅を有するフィルタを幾つか並
列に接続するか、あるいはフィルタのバンド幅を走査半
径と共に変化させることによって、走査視野C全域にわ
たってS/Nの最適化をはかり目標の検知感度の向上を
はかるもので、以下図面をもとにこの発明の一実施例に
ついて詳細に説明する。
Therefore, in order to improve these points, the present invention provides an amplifier 6.
By connecting several filters with different bandwidths in parallel to the output of the C, or by changing the filter bandwidth along with the scanning radius, the S/N ratio can be optimized over the entire scanning field of view C, and the target detection sensitivity can be achieved. An embodiment of the present invention will be described below in detail with reference to the drawings.

第4図はこの発明の一実施例を示す図であって、7a、
7b、 ・ 7nはフィルタ、8a、8b、・・・8n
は自動利得制御器、9a、9b、・・・9nは比較器、
13はOR回路である。
FIG. 4 is a diagram showing an embodiment of the present invention, 7a,
7b, 7n are filters, 8a, 8b,...8n
is an automatic gain controller, 9a, 9b, . . . 9n is a comparator,
13 is an OR circuit.

いま動作を説明するために、一例としてフィルタ7a、
7b・・・7nのバンド幅をそれぞれ第3図に示した走
査半径が1.0. 0. 8. 0. 6゜・・・、0
のときの最適バンド幅に設定し、また目標からの信号出
力が走査半径0.8のときに得られたものとする。
To explain the operation now, as an example, the filter 7a,
The scanning radius shown in FIG. 3 for the band widths of 7b...7n is 1.0. 0. 8. 0. 6°..., 0
It is assumed that the optimal bandwidth is set when , and the signal output from the target is obtained when the scanning radius is 0.8.

各フィルタ7a、7b・・・7nは増幅器6の出力に並
列に接続されているから、信号出力が充分大きいときに
は、全ての比較器9a、9b・・・9nからパルス出力
が得られる。
Since each filter 7a, 7b...7n is connected in parallel to the output of the amplifier 6, when the signal output is sufficiently large, pulse outputs can be obtained from all the comparators 9a, 9b...9n.

したがってOR回路13の出力からもパルス出力が得ら
れ1、目標が検知されたことを示す。
Therefore, a pulse output 1 is also obtained from the output of the OR circuit 13, indicating that the target has been detected.

一方信号出力が小さい場合には、走査半径が0.8のと
きの最適バンド幅に設定されたフィルタ7bの出力のS
/Nが他のフィルタ7a、7c。
On the other hand, when the signal output is small, the output S of the filter 7b is set to the optimum bandwidth when the scanning radius is 0.8.
/N are other filters 7a and 7c.

・・・の出力のS/Nより大きいため、比較器9bの出
力からのみパルス出力が得られ、OR回路の出力として
目標が検知されたことがわかる。
..., the pulse output is obtained only from the output of the comparator 9b, and it can be seen that the target is detected as the output of the OR circuit.

また目標からの信号出力が走査生様0 (ゼロ)のとき
に得られた場合には、信号出力が小さいとすると走査半
径が0 (ゼロ)のときの最適バンド幅に設定されたフ
ィルタ7nに接続されている比較器9nからのみパルス
出力が得られ目標が検知される。
In addition, if the signal output from the target is obtained when the scanning radius is 0 (zero), if the signal output is small, the filter 7n is set to the optimal bandwidth when the scanning radius is 0 (zero). A pulse output is obtained only from the connected comparator 9n, and the target is detected.

以上のように、この発明はバンド幅がそれぞれの走査半
径における最適バンド幅に設定されたフィルタ7a、
7b・・・7nを増幅器6の出力に並列に接続するこ
とによって、走査視野C内にわたって目標の検知能力が
向上するという効果を有している。
As described above, the present invention provides filters 7a whose bandwidths are set to optimal bandwidths for each scanning radius;
7b...7n in parallel with the output of the amplifier 6 has the effect of improving the ability to detect targets within the scanning field of view C.

第5図はこの発明の他の実施例を示す図で、第4図のフ
ィルタ7a、7b・・・7nの代わりにフィルタ7と制
御器14を用いたものである。
FIG. 5 is a diagram showing another embodiment of the present invention, in which a filter 7 and a controller 14 are used in place of the filters 7a, 7b, . . . , 7n of FIG.

制御器14の入力としては追尾信号発生器11から得ら
れる時々刻々変化する走査半径に比例した信号を用いる
As an input to the controller 14, a signal proportional to the scanning radius, which changes every moment, obtained from the tracking signal generator 11 is used.

制御器14はこの入力信号をもとにしてフィルタ7のバ
ンド幅を第3図に示したような各走査半径に対応した最
適バンド幅になるように制御する。
Based on this input signal, the controller 14 controls the bandwidth of the filter 7 so that it becomes the optimal bandwidth corresponding to each scanning radius as shown in FIG.

このようにして増幅器6の出力として視野内のいかなる
走査半径のところに位置する目標から信号出力が得られ
ても、フィルタ7は最適の信号処理をすることができる
In this way, the filter 7 can perform optimal signal processing no matter what signal output is obtained from the target located at any scanning radius within the field of view as the output of the amplifier 6.

以上述べたようにこの発明はバンド幅が走査半径と共に
変化するフィルタ7を増幅器6出力に接続することによ
って、走査視野C内にわたって目標の検知能力が向上す
るという効果を有する。
As described above, the present invention has the effect that the ability to detect a target over the scanning field of view C is improved by connecting the filter 7 whose bandwidth changes with the scanning radius to the output of the amplifier 6.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は目標の検知に関する従来の赤外線追尾装置の概
略構成図、第2図、第3図は第1図に示した装置を説明
するための図、第4図はこの発明の一実施例を示す概略
構成図、第5図はこの発明の他の実施例を示す概略構成
図であり、 1はドーム、2は1次鏡、3は2次鏡、4はウェッジ、
5は検出器、6は増幅器、7はフィルタ、8は自動利得
制御器、9は比較器、10はピックアップセンサ、11
は追尾信号発生器、12は回転軸、13はOR回路、1
4は制御器、Aは走査軌跡、Bは瞬時視野、Cは走査視
野である。 なお図中同一、あるいは相当部分には同一符号を付して
示しである。
FIG. 1 is a schematic configuration diagram of a conventional infrared tracking device related to target detection, FIGS. 2 and 3 are diagrams for explaining the device shown in FIG. 1, and FIG. 4 is an embodiment of the present invention. FIG. 5 is a schematic diagram showing another embodiment of the present invention, in which 1 is a dome, 2 is a primary mirror, 3 is a secondary mirror, 4 is a wedge,
5 is a detector, 6 is an amplifier, 7 is a filter, 8 is an automatic gain controller, 9 is a comparator, 10 is a pickup sensor, 11
is a tracking signal generator, 12 is a rotating shaft, 13 is an OR circuit, 1
4 is a controller, A is a scanning trajectory, B is an instantaneous field of view, and C is a scanning field of view. In the drawings, the same or corresponding parts are designated by the same reference numerals.

Claims (1)

【特許請求の範囲】 1 視野をロゼツトパターン状に走査することによって
目標を捜索検知し、視野内において捕捉した目標から得
られる検出器の出力信号をフィルタに入力させるととも
に、上記フィルタの出力信号から目標を検知するように
構成した赤外線追尾装置において、幾つかの異なったバ
ンド幅を有するフィルタを並列に上記検出器の出力端に
接続したことを特徴とする赤外線追尾装置。 2 視野をロゼツトパターン状に走査することによって
目標を捜索検知し、視野内において捕捉した目標から得
られる検出器の出力信号をフィルタに入力させるととも
に、上記フィルタの出力信号から目標を検知するように
構成した赤外線追尾装置において、バンド幅が視野の走
査半径と共に変化するフィルタを検出器の出力端に接続
したことを特徴とする赤外線追尾装置。
[Claims] 1. A target is searched and detected by scanning the field of view in a rosette pattern, and the output signal of the detector obtained from the target captured within the field of view is input to a filter, and the output signal of the filter is 1. An infrared tracking device configured to detect a target from the detector, characterized in that filters having several different bandwidths are connected in parallel to the output end of the detector. 2 Search and detect a target by scanning the field of view in a rosette pattern, input the output signal of the detector obtained from the target captured within the field of view to a filter, and detect the target from the output signal of the filter. 1. An infrared tracking device configured as described above, characterized in that a filter whose bandwidth changes with the scanning radius of the field of view is connected to the output end of the detector.
JP5063680A 1980-04-17 1980-04-17 infrared tracking device Expired JPS5952384B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5063680A JPS5952384B2 (en) 1980-04-17 1980-04-17 infrared tracking device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5063680A JPS5952384B2 (en) 1980-04-17 1980-04-17 infrared tracking device

Publications (2)

Publication Number Publication Date
JPS56147080A JPS56147080A (en) 1981-11-14
JPS5952384B2 true JPS5952384B2 (en) 1984-12-19

Family

ID=12864439

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5063680A Expired JPS5952384B2 (en) 1980-04-17 1980-04-17 infrared tracking device

Country Status (1)

Country Link
JP (1) JPS5952384B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS646677A (en) * 1987-06-26 1989-01-11 Matsushita Refrigeration Heat-insulating wall

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS646677A (en) * 1987-06-26 1989-01-11 Matsushita Refrigeration Heat-insulating wall

Also Published As

Publication number Publication date
JPS56147080A (en) 1981-11-14

Similar Documents

Publication Publication Date Title
US4759072A (en) Method and apparatus for detection of surface defects of hot metal body
US4097750A (en) Method of orienting objects using optically smeared images
JPS5952384B2 (en) infrared tracking device
JP2526546B2 (en) Alignment device
GB2282722A (en) Infra-red seeker head
JP2641552B2 (en) Object position detecting device and robot control system
JP2000121732A (en) Underwater object detection identification
JPH01277724A (en) Target detector
JP2576622B2 (en) Interference signal detection device
JPS58180918A (en) Infrared ray monitoring device
JPH0410564B2 (en)
JPS6088306A (en) Optical sensor
JPH06174828A (en) Target detecting device
US5261011A (en) Image discriminator which automatically enhances the ability of a system to discriminate between sources that can not be removed by fixed spectral cancellation
JP2620982B2 (en) Position detection method
JPH10185515A (en) Coil position detector
EP0256651A2 (en) Optical radiation sensitive apparatus
JPH0516571B2 (en)
JPH0384404A (en) Noncontact detector for ruggedness of road surface
JPS61118676A (en) Tracking receiver using coaxial rotary type arrangement detector
JPS62197749A (en) Method and apparatus for detecting defective product
JPS6282382A (en) Target detecting and tracking device
JPS63134988A (en) Person number detector
JPS60164271A (en) Infrared homing apparatus
JPS62200250A (en) Defective product detector