JPS60164179A - Control system of solar heat absorber - Google Patents

Control system of solar heat absorber

Info

Publication number
JPS60164179A
JPS60164179A JP59019388A JP1938884A JPS60164179A JP S60164179 A JPS60164179 A JP S60164179A JP 59019388 A JP59019388 A JP 59019388A JP 1938884 A JP1938884 A JP 1938884A JP S60164179 A JPS60164179 A JP S60164179A
Authority
JP
Japan
Prior art keywords
steam
heat
pressure
boiler
absorber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59019388A
Other languages
Japanese (ja)
Inventor
Naoyuki Hirazakura
平櫻 直之
Masahiro Tatsumoto
辰本 正弘
Kazuko Shimada
和子 島田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP59019388A priority Critical patent/JPS60164179A/en
Publication of JPS60164179A publication Critical patent/JPS60164179A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B1/00Methods of steam generation characterised by form of heating method
    • F22B1/006Methods of steam generation characterised by form of heating method using solar heat

Abstract

PURPOSE:To enable to stably supply the steam produced at solar heat absorbers by a method wherein the difference between the pressure in a steam separator drum and the pressure in a heat accumulator is kept constant by means of a control valve and a circulating pump for a downcomer is driven when the percentage of void in an absorber and the temperature in a boiler section exceed the predetermined values. CONSTITUTION:When heat absorbing boiler surfaces 4 absorb heat by receiving the solar heat (a) concentrated by a concentrating type solar heat collector, the natural circulation (b) of water generates, resulting in causing to rise the pressure in an absorber. At the time, when the difference between the pressure in a steam separator drum 1 and the pressure in a heat accumulator 12 reaches the predetermined value, which enables to transport steam, a control valve 7 is brought into actuation in order to supply the steam (c) through the heat accumulator 12 to load. If the detected percentage of void in an evaporating tube 6 or the detected temperature at the upper part of the boiler surface shows the excess over the predetermined value, a controlling circulating pump 8 is driven, resulting in preventing the boiler section including the heat absorbing boiler surfaces 4 and the evaporating tube 6 from overheating.

Description

【発明の詳細な説明】 器制御システムに関する。[Detailed description of the invention] related to instrument control systems.

エ斤 を〒++1+ゼー七F1昧膚Tラ、ルゼーの有効
利用対策として太陽エネルギーの利用についての開発研
究が盛んになっている。
Development and research into the use of solar energy as a means of effectively utilizing energy is becoming more active.

そして、太陽熱を利用した太陽熱温水器、冷暖房給湯シ
ステムが実用化されつらあるが、産業用の熱エネルギー
としー(蒸気、温水を使用する際に太陽熱を利用して蒸
気を発生する従来の飽和蒸気発生用太陽熱吸収器は第1
図に示すような構造のものである。
Solar water heaters and air conditioning/heating hot water systems that use solar heat are being put into practical use, but industrial thermal energy (steam, conventional saturated steam, which uses solar heat to generate steam when hot water is used) is becoming more and more practical. The solar heat absorber for generation is the first
It has a structure as shown in the figure.

第1図において、lは気水分離用気水ドラム、2は降水
管、3は降水管ヘッダ、4は熱吸収用ボイラ、5は蒸発
管ヘッダ、6は蒸発管であシ、これからなる熱吸収器に
よシ熱水が循環できるように連結されている。7は蒸気
取出し用弁てあシ、気水ドラム1の圧力を一定に保つよ
うに制御される。
In Figure 1, l is a steam drum for steam and water separation, 2 is a downcomer pipe, 3 is a downcomer header, 4 is a heat absorption boiler, 5 is an evaporator header, and 6 is an evaporator pipe, which generates heat. The absorber is connected to allow circulation of hot water. Numeral 7 is a steam take-off valve which is controlled to keep the pressure of the steam and water drum 1 constant.

上記熱+$.収器は、公知の集光式集熱器で集光された
太陽熱(alを受け、熱吸収用ボイラ4で熱を吸収し、
太陽熱で沸騰した蒸気を発生しながら蒸気管ヘッダ5を
経て蒸気管6を上昇し、上部の気水ドラム1に流入する
。気水ドラム】で蒸気と熱水に分離し、蒸気(C)は蒸
気取出し弁7を通る。取出された蒸気(C1は一般に、
図示しない圧力水タンク(蓄熱器)に導かれて、高圧熱
水として蓄熱され、発電等の必要時に減圧操作によシ蒸
気として取出される。
Above heat + $. The collector receives solar heat (al) concentrated by a known concentrating type collector, absorbs the heat with a heat absorption boiler 4,
While generating boiling steam due to solar heat, it goes up the steam pipe 6 through the steam pipe header 5 and flows into the steam-water drum 1 in the upper part. Steam and hot water are separated in a steam and water drum, and the steam (C) passes through a steam extraction valve 7. The extracted steam (C1 is generally
The water is led to a pressure water tank (heat storage) (not shown), where the heat is stored as high-pressure hot water, and when necessary, such as for power generation, it is taken out as steam by a depressurization operation.

一方、気水ドラム1で蒸気を分離した熱水tb+は降水
管2に流入し、降水管ヘッダ3を介して再び熱吸収用ボ
イラ4へ循環する。なお循環水(blはポンプによシ強
制的に循環される場合もある。
On the other hand, the hot water tb+ from which steam has been separated in the air-water drum 1 flows into the downcomer pipe 2 and circulates through the downcomer header 3 to the heat absorption boiler 4 again. Note that the circulating water (BL) may be forcibly circulated by a pump.

上記熱吸収器と圧力水タンク(蓄熱器)を晴天時に用い
た際の1日の熱吸収器内圧力又は温度、発生蒸気流量及
び蓄熱器内圧力又は温度の変化を第2図に示す。
FIG. 2 shows changes in the pressure or temperature inside the heat absorber, the flow rate of generated steam, and the pressure or temperature inside the heat storage device during one day when the heat absorber and pressure water tank (heat storage device) are used on a sunny day.

第2(a)図に示すように、早朝の集光開始とともに、
熱吸収器内圧力および温度が上昇し始め、蒸気が発生し
定格圧力に達すると、蒸気取出し弁7が開き、蒸気が取
出される。その後集光終了まで器内圧力は一定に制御さ
れながら蒸気が取出される。集光終了とともに取出し弁
7が閉じ、以後、翌朝の集光開始1で放熱し続けるので
、器内圧力、温度とも下降する。
As shown in Figure 2(a), with the start of early morning light gathering,
When the pressure and temperature inside the heat absorber begin to rise and steam is generated and reaches the rated pressure, the steam extraction valve 7 opens and steam is extracted. Thereafter, steam is extracted while the pressure inside the chamber is controlled to be constant until the end of the light collection. The take-out valve 7 closes when the light collection ends, and thereafter, heat continues to be released at the start of light collection 1 the next morning, so that both the pressure and temperature inside the vessel decrease.

これに対応する蓄熱器内圧力および温度の変化を第2(
b)図に示しであるが、熱吸収器の蒸気発生とともに蓄
熱が開始され、蓄熱器内圧力および温度は上昇する。つ
いで発電開始によシ、蓄熱器から蒸気が取出され始める
と、器内圧力の上昇はゆるやかになシ、夕方の集光量減
少時には、器内圧力は下降し始める。
The corresponding changes in the pressure and temperature inside the heat storage device are determined by the second (
b) As shown in the figure, heat storage starts as steam is generated in the heat absorber, and the pressure and temperature inside the heat storage device rise. Then, when power generation starts and steam begins to be taken out from the heat storage device, the pressure inside the device rises slowly, and when the amount of concentrated light decreases in the evening, the pressure inside the device begins to fall.

その後、集光終了により蒸気の流入は停止し、蓄熱も終
了する。ついで蓄熱器内圧力が所定の値になる寸て蒸気
が取出され、発電が継続される。発電終了後は、大気へ
の放出熱により蓄熱器内圧力および温度は幾分減少する
。蒸気を取出さないで蓄熱のみの場合は点線のように挙
動する。なお、一般に蓄熱器は保温施工しであるので、
大気への放熱は熱吸収器はと大きくはない。
Thereafter, the inflow of steam stops due to the completion of condensation, and heat storage also ends. Then, when the pressure inside the heat storage device reaches a predetermined value, steam is extracted and power generation continues. After power generation is completed, the pressure and temperature inside the heat storage device decrease somewhat due to the heat released to the atmosphere. When only heat is stored without extracting steam, the behavior is as shown by the dotted line. In addition, since heat storage units are generally heat-insulated,
Heat radiation to the atmosphere is not as large as a heat absorber.

また、熱吸収器からの発生蒸気流量の経時変化を第2(
C)図に示しである。
In addition, the second (
C) As shown in the figure.

即ち、熱吸収器が定格圧力に達し、取出し弁が開いて蒸
気が取出されると同時に一定流量に達し、以後漸次流量
が増加するがその後集光紙工まで蒸気流量は減じ、集光
終了とともに流量は零になる。
In other words, the heat absorber reaches its rated pressure, the extraction valve opens and steam is taken out, and at the same time a constant flow rate is reached.After that, the flow rate gradually increases, but after that, the steam flow rate decreases until it reaches the condensing paper, and when the condensation ends, the flow rate decreases. becomes zero.

しかし、上記のような熱吸収器定圧制御システムでは、
定格圧力到達前の昇温中(で曇って集光が中断した場合
には、それまでに集めた熱は大気への放熱として捨てな
ければならない。又、集光終了後の熱吸収器の保有熱も
同様である。
However, in the heat absorber constant pressure control system as described above,
During the temperature rise before the rated pressure is reached (if the light collection is interrupted due to clouding, the heat collected up to that point must be discarded as heat radiation to the atmosphere. Also, after the light collection is completed, the heat absorber must be retained) The same goes for heat.

本発明は、上記従来の欠点を解消するためになされたも
のであシ、熱吸収器における集熱の損失を最少限にし、
熱吸収器で生成した蒸気を安定して供給できるようにし
た太陽熱吸収器制御システムを提祖することを目的とす
る。
The present invention has been made in order to eliminate the above-mentioned conventional drawbacks, and it minimizes the heat collection loss in the heat absorber,
The purpose of this project is to develop a solar heat absorber control system that can stably supply the steam generated by the heat absorber.

本発明の熱吸収器制御システムは、熱吸収用ボイラと気
水ドラムとの間を熱水が循環するように連結するととも
に、気水ドラムで分離した蒸気を取出ずようにした集光
式太陽熱吸収器において、前記気水ドラムに連通ずるよ
うK、蒸気出口弁および蓄熱器を設けるとともに、気水
ドラムから熱吸収用ボイラに至る間に強制循環用ポンプ
を設け、蒸気出口制御弁を気水ドラムと蓄熱器の差圧が
一定になるように制御するとともに、器内ボイド率およ
びボイラ部温度が所定温度板」二の時、強制循環用ポン
プを駆動させるようにしたことを特徴とする。
The heat absorber control system of the present invention is a concentrating solar heating system that connects a heat absorption boiler and an air/water drum so that hot water circulates, and prevents the steam separated in the air/water drum from being taken out. In the absorber, a steam outlet valve and a heat storage device are provided so as to communicate with the steam drum, and a forced circulation pump is provided between the steam drum and the heat absorption boiler, and the steam outlet control valve is connected to the steam outlet valve. It is characterized in that the differential pressure between the drum and the heat storage device is controlled to be constant, and the forced circulation pump is driven when the internal void ratio and the boiler temperature are within a predetermined temperature range.

以下、本発明を、その一実施例を示した第3図および第
4図とともに詳細に説明する。
Hereinafter, the present invention will be explained in detail with reference to FIGS. 3 and 4 showing one embodiment thereof.

第3図は本発明による制御システムを実現する熱吸収器
の構成を示す。
FIG. 3 shows the configuration of a heat absorber implementing the control system according to the invention.

同図において、符号lから6まで、およびaから01で
は第1図で示したものとそれぞれ対応し、lは気水トラ
ム、2は降水管、3は降水管ヘッダ、4は熱吸収用ボイ
ラ、5は蒸発器ヘッダ、6は蒸発管であり、aは太陽熱
、I)は循環熱水、Cは蒸気を示す。a/は蒸気出口制
御弁、8は熱水の強制循環用ポンプ、9は気水ドラム1
と蓄熱器12との差圧(DP)を検出し、制御弁7に制
御信号、を与える装置、10は蒸発管6中のボイド率f
BIを検出し、ポンプ8に駆動信号を与える装置11は
熱吸収用ボイラ4の上部の温度Tを検出してポンプ8に
駆動信号を与える装置、12は圧力水タンク(蓄熱器)
である。
In the same figure, numbers l to 6 and a to 01 correspond to those shown in Fig. 1, respectively, where l is an air/water tram, 2 is a downcomer pipe, 3 is a downcomer header, and 4 is a heat absorption boiler. , 5 is an evaporator header, 6 is an evaporation tube, a indicates solar heat, I) indicates circulating hot water, and C indicates steam. a/ is a steam outlet control valve, 8 is a pump for forced circulation of hot water, and 9 is a steam/water drum 1.
A device that detects the differential pressure (DP) between and the heat storage device 12 and gives a control signal to the control valve 7,
A device 11 that detects BI and provides a drive signal to the pump 8 is a device that detects the temperature T of the upper part of the heat absorption boiler 4 and provides a drive signal to the pump 8, and 12 is a pressure water tank (heat storage).
It is.

つきに、上記実施例の熱吸収器の動作につbて説明する
At this point, the operation of the heat absorber of the above embodiment will be explained.

捷ず、集光式集熱器で集光された太陽熱(alを受けて
熱吸収用ボイラ面4が熱を吸収すると、自然水循環(1
))が生じつつ、器内昇圧が起こる。更に太陽熱で沸騰
した蒸気を発生しながら蒸気管ヘッダ5を経て蒸気管6
を上昇し、気水ドラムlに流入する。気水ドラム1で蒸
気と熱水が分離される。
When the heat absorption boiler surface 4 absorbs the solar heat (al) concentrated by the concentrating type heat collector, the natural water circulation (1
)) occurs, and internal pressure increases. Furthermore, while generating boiling steam due to solar heat, it passes through the steam pipe header 5 to the steam pipe 6.
The air rises and flows into the air-water drum l. Steam and hot water are separated in the air-water drum 1.

そして気水ドラム1と蓄熱器12の差圧(DP)が所定
の値になり、気水ドラム1から蓄熱器12への蒸気輸送
が可能になった時点て、制御装置9が制御弁7′を作動
させて蒸気FC+が蓄熱器12を経て負荷に供給される
。以後、制御弁71は気水ドラム1と蓄熱器12との差
圧が一定になるように制御される。
Then, when the differential pressure (DP) between the steam drum 1 and the heat storage device 12 reaches a predetermined value and steam can be transported from the steam drum 1 to the heat storage device 12, the control device 9 activates the control valve 7'. is operated, and steam FC+ is supplied to the load via the heat storage device 12. Thereafter, the control valve 71 is controlled so that the differential pressure between the air-water drum 1 and the heat storage device 12 is constant.

上記制御システムにおいて、熱吸収器内圧力が低い状態
でも蒸気FC+を取出す場合も生じるが、このときに太
陽熱が強いと、熱吸収用ボイラ4および蒸発管6内のボ
イド率(Blが高くなる。一方、気水ドラム1で蒸気を
分離した後の熱水(b)が降水管2に流入し、降水管−
・ラダ3を経て熱吸収用ボイラ4へと循環するが、上記
のようにボイド率iBlが高くなると熱水の自然循環を
阻害し、熱吸収用ボイラ4、蒸発管6を含むボイラ部が
過熱され破壊される危険がある。
In the above control system, steam FC+ may be extracted even when the internal pressure of the heat absorber is low, but if the solar heat is strong at this time, the void ratio (Bl) in the heat absorption boiler 4 and the evaporation tube 6 increases. On the other hand, the hot water (b) after steam separation in the air-water drum 1 flows into the downcomer pipe 2.
・It circulates through the ladder 3 to the heat absorption boiler 4, but as mentioned above, when the void ratio iBl becomes high, the natural circulation of hot water is inhibited, and the boiler section including the heat absorption boiler 4 and the evaporation tube 6 becomes overheated. There is a danger that it will be destroyed.

これを防止するために、制御装置JO111で蒸発管6
内のボイド率fBlおよび/またはボイラ面上部の温度
(T)を検出し、所定値以上になった時、強制循環用ポ
ンプ8を駆動させる。なお、蒸気管6内のボイド率(B
lおよび/またはボイラ面上部の温度(T)が定常時は
所定動力を節減するためにポンプ8を休止させ、熱水の
自然循環を行わせる。
In order to prevent this, the control device JO111
The void ratio fBl within the boiler and/or the temperature (T) of the upper part of the boiler surface is detected, and when the temperature (T) at the top of the boiler surface exceeds a predetermined value, the forced circulation pump 8 is driven. In addition, the void ratio in the steam pipe 6 (B
1 and/or when the temperature (T) of the upper part of the boiler surface is steady, the pump 8 is stopped in order to save a certain amount of power, and natural circulation of hot water is performed.

以上のように、本発明の太陽熱吸収器制御システムを採
用することによシ、予想される熱吸収器および蓄熱器の
挙動を従来の定圧制御システムによる場合と対比させて
第4図に示す。なお同図において実腺は本発明による制
御システムによる特性であシ点線は第2図に示した従来
の制御システムによる特性を示す。
As described above, the expected behavior of the heat absorber and heat storage device by employing the solar heat absorber control system of the present invention is shown in FIG. 4 in comparison with the case using the conventional constant pressure control system. In this figure, the actual lines indicate the characteristics obtained by the control system according to the present invention, and the dotted lines indicate the characteristics obtained by the conventional control system shown in FIG.

第4(a)図から明らかなように、熱吸収器の蒸気発生
時刻が早寸り、また、集光終了後も自己蒸発により蒸気
が取出せるため、蒸気停止時間も遅くなる。従って第4
(C)図に示すように、発生蒸気流量が増加する。また
、熱吸収器の温度の温度も必要以上に高くならないので
、集熱効率が向上することにより、発生蒸気流量の増加
に富力する。この結果、第4 tl))図に示すように
発電時間も延び、発電量の増加をもたらすことができる
As is clear from FIG. 4(a), the steam generation time of the heat absorber is early, and the steam can be taken out by self-evaporation even after the light collection is completed, so the steam stop time is also delayed. Therefore, the fourth
(C) As shown in the figure, the flow rate of generated steam increases. Further, since the temperature of the heat absorber does not become higher than necessary, the heat collection efficiency is improved, which contributes to increasing the flow rate of generated steam. As a result, as shown in Figure 4 (tl)), the power generation time is extended, resulting in an increase in the amount of power generation.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、従来の太陽熱吸収器を示す概略図、第2図は
従来の太陽熱吸収器における熱吸収器と蓄熱器の圧力又
は温度および発生蒸気流量の経時挙動を示す特性図、第
3図は本発明の一実施例による太陽熱吸収器制御システ
ムを示す概略図、第4図は本発明の太陽熱吸収器制御/
ステムにおける第2図と同様な特性図である。 】・・気水ドラム、2・・降水管、3・・降水管ヘッダ
、4・・熱吸収用ボイラ、5・・蒸発管、〜・−シ訂7
を抗り/、−矯1a田中「]シシュ1111イt8・・
強制循環用ポンプ、9.]、’0.11 ・・制御装置
、12・・圧力水タンク(蓄熱器)。 第3図 第4(α)図 第4(b)図
Fig. 1 is a schematic diagram showing a conventional solar heat absorber, Fig. 2 is a characteristic diagram showing the temporal behavior of the pressure or temperature of the heat absorber and heat storage device and the flow rate of generated steam in the conventional solar heat absorber, and Fig. 3 is a schematic diagram showing a solar heat absorber control system according to an embodiment of the present invention, and FIG. 4 is a schematic diagram showing a solar heat absorber control system according to an embodiment of the present invention.
FIG. 2 is a characteristic diagram similar to FIG. 2 for the stem. ]... Air/water drum, 2... Downcomer pipe, 3... Downcomer pipe header, 4... Heat absorption boiler, 5... Evaporation pipe, ~... -shi version 7
Resist /, -Kyo 1a Tanaka "] Shishu 1111 it t8...
Forced circulation pump, 9. ], '0.11...Control device, 12...Pressure water tank (heat storage). Figure 3 Figure 4 (α) Figure 4 (b)

Claims (1)

【特許請求の範囲】[Claims] 熱吸収用ボイラと気水ドラムとの間を熱水が循環するよ
うに連結するとともに、前記気水ドラムで分離した蒸気
を取出すようにした集光式太陽熱吸収器において、前記
気水ドラムに連通ずるように蒸気出口制御弁および蓄熱
器を設けるとともに、前記気水ドラムから前記熱吸収用
ボイラに至る間に強制循環用ポンプを設け、前記蒸気比
「1制御弁を前記気水ドラムと前記蓄熱器の差圧が一定
になるように制御するとともに、器内ボイド率およびボ
イラ部温度が所定温度以上の時、前記強制循環用ポンプ
を駆動させるようにしたことを特徴とする太陽熱吸収器
制御システム。
In a concentrating solar heat absorber that connects a heat absorption boiler and a steam/water drum so that hot water circulates therebetween, and extracts steam separated by the steam/water drum, the heat absorption boiler is connected to the steam/water drum. A steam outlet control valve and a heat storage device are provided to communicate with each other, and a forced circulation pump is provided between the steam drum and the heat absorption boiler, and the steam ratio 1 control valve is connected to the steam drum and the heat storage device. A solar heat absorber control system, characterized in that the pressure difference in the boiler is controlled to be constant, and the forced circulation pump is driven when the void ratio inside the boiler and the temperature of the boiler section are above a predetermined temperature. .
JP59019388A 1984-02-07 1984-02-07 Control system of solar heat absorber Pending JPS60164179A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59019388A JPS60164179A (en) 1984-02-07 1984-02-07 Control system of solar heat absorber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59019388A JPS60164179A (en) 1984-02-07 1984-02-07 Control system of solar heat absorber

Publications (1)

Publication Number Publication Date
JPS60164179A true JPS60164179A (en) 1985-08-27

Family

ID=11997899

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59019388A Pending JPS60164179A (en) 1984-02-07 1984-02-07 Control system of solar heat absorber

Country Status (1)

Country Link
JP (1) JPS60164179A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997047921A1 (en) * 1996-06-12 1997-12-18 Siemens Aktiengesellschaft Process for operating a solar power station with at least one solar steam generator, and solar power station
WO1997047879A1 (en) * 1996-06-10 1997-12-18 Siemens Aktiengesellschaft Process for operating a solar power station with at least one solar steam generator, and solar power station
EP2428999A1 (en) * 2009-04-06 2012-03-14 Abengoa Solar New Technologies, S.A. Solar receiver with natural circulation for generating saturated steam

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997047879A1 (en) * 1996-06-10 1997-12-18 Siemens Aktiengesellschaft Process for operating a solar power station with at least one solar steam generator, and solar power station
WO1997047921A1 (en) * 1996-06-12 1997-12-18 Siemens Aktiengesellschaft Process for operating a solar power station with at least one solar steam generator, and solar power station
EP2428999A1 (en) * 2009-04-06 2012-03-14 Abengoa Solar New Technologies, S.A. Solar receiver with natural circulation for generating saturated steam
EP2428999A4 (en) * 2009-04-06 2014-01-15 Abengoa Solar New Tech Sa Solar receiver with natural circulation for generating saturated steam
US9377218B2 (en) 2009-04-06 2016-06-28 Abengoa Solar New Technologies, S.A. Solar receiver with natural circulation for generating saturated steam

Similar Documents

Publication Publication Date Title
CN103511208B (en) A kind of can within the scope of population parameter the fused salt steam generating system of variable load operation
CN102483263B (en) Vapour only cycling of heat transfer fluid for the thermal storage of solar energy
US4400946A (en) Solar thermal power plant
CN101968043B (en) Solar thermal power generation system
JP2008121483A (en) Heat medium supply device, composite solar heat electricity generation device, and method of controlling them
CN107401488A (en) All-weather solar electricity-generating method and system based on whole operation with pressure
CN109026240B (en) Power generation system and method based on nuclear energy and solar energy coupling
JPS60122865A (en) Solar heat electric power generation apparatus
JPS60164179A (en) Control system of solar heat absorber
KR100985591B1 (en) natural circulation type solar receiver for solar power generation
CN105247208B (en) Solar thermal collector factory with storage heater
WO2019011309A1 (en) Heat-transfer and heat-storage separation method and system for solar photothermal utilization
CN103511207A (en) Heat accumulation and exchange integrated tower-type solar power generation system
JPS6160242B2 (en)
JPH0522828B2 (en)
TW202113285A (en) Power generation plant and method for storing excess energy in power generation plant
JP5794772B2 (en) Steam supply device and steam supply system using solar heat
JPS56168059A (en) System for power generation and collecting heat by solar beams
JPS5845600B2 (en) Steam generator for solar thermal power generation system
JPS6333057B2 (en)
JPH0230691Y2 (en)
JPS59126005A (en) Power generating system supplying heat energy simultaneously
CN114542408A (en) Tower type solar high-low temperature mixed heat absorption power generation system
JPS59185944A (en) Steam generating system by solar heat
JPS5935754A (en) Solar heat collecting system