JPS6333057B2 - - Google Patents

Info

Publication number
JPS6333057B2
JPS6333057B2 JP56080958A JP8095881A JPS6333057B2 JP S6333057 B2 JPS6333057 B2 JP S6333057B2 JP 56080958 A JP56080958 A JP 56080958A JP 8095881 A JP8095881 A JP 8095881A JP S6333057 B2 JPS6333057 B2 JP S6333057B2
Authority
JP
Japan
Prior art keywords
amount
steam
solar radiation
group
superheating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56080958A
Other languages
Japanese (ja)
Other versions
JPS57198952A (en
Inventor
Mitsugi Unomya
Yoshuki Nagasawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP56080958A priority Critical patent/JPS57198952A/en
Publication of JPS57198952A publication Critical patent/JPS57198952A/en
Publication of JPS6333057B2 publication Critical patent/JPS6333057B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/44Heat exchange systems

Description

【発明の詳細な説明】 本発明は集光式太陽熱発電システムの過熱器口
温度制御に適用する。
DETAILED DESCRIPTION OF THE INVENTION The present invention is applied to superheater mouth temperature control of a concentrating solar power generation system.

本発電システムの概要を第1図に示す。 Figure 1 shows an overview of this power generation system.

給水ポンプ14からの給水は蒸発部の集光・集
熱ユニツト8,9,10で太陽エネルギーを受け
蒸発しセパレータ15で飽和蒸気と飽和液に分離
される。飽和液はポンプ16により循環され、飽
和蒸気は過熱部の集光・集熱ユニツト11,1
2,13でさらに太陽エネルギーを受け過熱蒸気
となつて蓄熱器20へ送り込まれる。この蒸気は
タービンを廻すエネルギー源として利用される一
方、余つた蒸気は蓄熱槽蒸気流入弁21を通して
蓄熱槽22へ送られる。
The water supplied from the water supply pump 14 receives solar energy and evaporates in the condensing/heat collecting units 8, 9, and 10 of the evaporation section, and is separated into saturated steam and saturated liquid by the separator 15. The saturated liquid is circulated by the pump 16, and the saturated steam is passed through the light and heat collecting units 11, 1 in the superheating section.
At steps 2 and 13, it receives solar energy and becomes superheated steam, which is sent to the heat storage device 20. This steam is used as an energy source to rotate the turbine, while the remaining steam is sent to the heat storage tank 22 through the heat storage tank steam inflow valve 21.

本プラントに於いては一般のタービンプラント
と違いボイラの燃料に相当する日射量が自然現象
であり、ある限られた時間帯にしか確保できない
事から非常用或いは翌朝の起動準備分等を考慮し
たある一定量をこの蓄熱槽22へ備蓄している。
従つて日射量が全く無くなつた場合でも蓄熱槽2
2のもつ容量分の放熱運転が蓄熱槽蒸気放出弁2
3を介して可能である。
In this plant, unlike a general turbine plant, the amount of solar radiation equivalent to the fuel for the boiler is a natural phenomenon and can only be secured during a limited period of time, so we took into consideration the amount for emergency use or preparation for startup the next morning. A certain amount is stored in this heat storage tank 22.
Therefore, even if there is no solar radiation, the heat storage tank 2
The heat dissipation operation for the capacity of 2 is the heat storage tank steam release valve 2.
It is possible via 3.

この様な太陽熱発電プラントに於いて第2図に
示すように日射量がある一定量(例えば2/4)以
上確保できる常時には蓄熱器20への流入蒸気温
度を一定に制御する。具体的には、過熱器13の
出口温度をサーモカツプル19で検出しコントロ
ーラ18によつてスプレー弁17に流れるスプレ
ー量を変える、あるいは、日射量減少時に蒸気流
量を減少させる事に依つてこれを一定値に制御し
ている。しかし、日射量が1/4以下に下がつた場
合にはスプレーあるいは流量制御によつても温度
一定とはできず過熱器出口温度は大きく変動す
る。これは静特性上温度制御の範囲から外れた事
を意味する。第2図のハツチングBで示す領域が
タービンへ供給する蒸気条件から外れた部分でこ
れを何らかの形で補正しなければタービンへ湿分
混入し、これを損傷しかねない。この対策として
従来は第1図に示す様にタービン入口蒸気温度を
サーモカツプル30で検出しコントローラ31に
おいて設定値との偏差に依り温度調整弁24を開
閉し蓄熱槽22から供給する高温蒸気で補正して
いた。
In such a solar thermal power generation plant, as shown in FIG. 2, the temperature of the steam flowing into the heat storage device 20 is controlled to be constant whenever the amount of solar radiation is more than a certain amount (for example, 2/4). Specifically, the outlet temperature of the superheater 13 is detected by the thermocouple 19 and the amount of spray flowing to the spray valve 17 is changed by the controller 18, or by reducing the steam flow rate when the amount of solar radiation decreases. Controlled to a constant value. However, when the amount of solar radiation decreases to 1/4 or less, the temperature cannot be kept constant even by spray or flow rate control, and the superheater outlet temperature fluctuates greatly. This means that it is out of the temperature control range due to static characteristics. The region indicated by hatching B in FIG. 2 is outside the steam conditions supplied to the turbine, and unless this is corrected in some way, moisture may enter the turbine and damage it. Conventionally, as a countermeasure against this problem, as shown in FIG. 1, the turbine inlet steam temperature is detected by a thermocouple 30, and the controller 31 opens and closes the temperature control valve 24 depending on the deviation from the set value, and corrects it with high-temperature steam supplied from the heat storage tank 22. Was.

このように従来方式では第1図の蓄熱槽22に
備蓄されている蒸気を用いる為に、日射量の低下
が長時間にわたつて継続した様な場合は、22の
備蓄分を使い果し非常用の機能を損う事になり、
結局は低日射量時の運転を断念せざるを得ない。
In this way, the conventional method uses the steam stored in the heat storage tank 22 shown in Figure 1, so if the amount of solar radiation continues to decrease for a long time, the stored amount in the heat storage tank 22 is used up and an emergency occurs. This will impair the functionality of the
In the end, we had to give up on driving during low solar radiation.

本発明はこれを解決すべく低日射量に於いても
蓄熱槽22からの放熱運転に頼らず、過熱器13
の出口温度をある一定値に制御可能としたもので
ある。
In order to solve this problem, the present invention does not rely on heat dissipation operation from the heat storage tank 22 even in low solar radiation, and the superheater 13
It is possible to control the outlet temperature to a certain constant value.

本発明では日射量低下時に蒸発部の集光ユニツ
トの与える光の一部を過熱部の集熱ユニツトへ照
射し、蓄熱器20へ供給する蒸気温度の確保をは
かる。
In the present invention, when the amount of solar radiation decreases, a part of the light provided by the light collecting unit in the evaporating part is irradiated to the heat collecting unit in the superheating part to ensure the temperature of the steam supplied to the heat storage device 20.

第4図は第1図に示す集光集熱ユニツト8,
9,10,11,12,13のうち、セパレータ
15をはさむ2つのユニツト10,11を具体化
したもので太陽6からの太陽光は集光ユニツト1
0A,11Aに設けられた平面鏡3で反射され各
ユニツトに対向した集熱ユニツト10B,11B
の曲面鏡4でさらに収束しその焦点に配置した集
熱管5でエネルギー伝達する。時刻や季節に依つ
て変わる太陽の位置に応じて平面鏡3をモータ
(図示せず)で駆動し、太陽を追尾する。
FIG. 4 shows the light and heat condensing unit 8 shown in FIG.
Among the units 9, 10, 11, 12, and 13, the two units 10 and 11 sandwiching the separator 15 are embodied.
The heat collecting units 10B, 11B are reflected by the plane mirrors 3 provided at 0A, 11A and are opposed to each unit.
It is further converged by a curved mirror 4, and the energy is transmitted by a heat collecting tube 5 placed at the focal point. The plane mirror 3 is driven by a motor (not shown) to track the sun according to the position of the sun, which changes depending on the time and season.

本発明においては日射量がある一定量以上確保
できる場合は、ユニツト10の集光ユニツト10
Aで集光したa1からaoの反射光は対向する集熱ユ
ニツト10Bの曲面鏡A1へ、b1からboの反射光
は10Bの曲面鏡B1へと追尾装置に依り制御し、
ユニツト11に就いても同様a11からa1oはA11
b11からb1oはB11へと制御を行なう。第3図に示
すインタロツク条件成立すると、追尾装置によつ
て集光ユニツト10Aのa1からaoをユニツト11
BのA11に、又b1からboをB11へ照射する。集光ユ
ニツト10Aの他の反射鏡(図示せず)は蒸発部
に光を照射する。
In the present invention, when a certain amount or more of solar radiation can be secured, the light collecting unit 10 of the unit 10
The reflected light from a 1 to a o focused at A is directed to the curved mirror A 1 of the opposing heat collection unit 10B, and the reflected light from b 1 to b o is controlled by the tracking device to the curved mirror B 1 of 10B. ,
Similarly for unit 11, a 11 to a 1o are A 11 ,
b 11 to b 1o controls to B 11 . When the interlock condition shown in FIG .
A 11 of B is irradiated, and b 1 to b o is irradiated to B 11 . Another reflecting mirror (not shown) in the condensing unit 10A irradiates the evaporator with light.

これに依り日射量が低い場合でも過熱器13の
出口温度制御が可能となりある一定温度の蒸気を
蓄熱器20へ供給できる。
As a result, even when the amount of solar radiation is low, the outlet temperature of the superheater 13 can be controlled, and steam at a certain constant temperature can be supplied to the heat storage device 20.

本発明により日射量が低い場合でも従来の2倍
の日射量を確保でき、温度制御範囲に入れる事が
可能となり従来方式の問題点を解決し、低い日射
量時でも連続運転可能となる。
According to the present invention, even when the amount of solar radiation is low, it is possible to secure twice the amount of solar radiation than before, and it is possible to enter the temperature control range, solving the problems of the conventional method, and making continuous operation possible even when the amount of solar radiation is low.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図に曲面集光式太陽熱発電システムの概要
を、第2図に日射量を定格の0.75KW/m2から1/
4ずつステツプ状に下げた場合の各プロセス諸量
の挙動を、第3図に太陽追尾装置へのインターロ
ツクを、第4図に本発明の具体例を示す。 10,11……集熱集光ユニツト、10A,1
1A……集光ユニツト、10B,11B……集熱
ユニツト。
Figure 1 shows an overview of the curved concentrator solar power generation system, and Figure 2 shows the amount of solar radiation from the rated value of 0.75KW/m 2 to 1/
The behavior of each process variable when the number of steps is lowered by 4 is shown in FIG. 3, and the interlock to the solar tracking device is shown in FIG. 4, and a specific example of the present invention is shown in FIG. 10, 11...Heat collecting and concentrating unit, 10A, 1
1A... Light collecting unit, 10B, 11B... Heat collecting unit.

Claims (1)

【特許請求の範囲】[Claims] 1 集光式太陽熱発電システムであつて、水を蒸
発させる蒸発部と、該蒸発部で蒸発した蒸気を過
熱させる過熱部と、太陽光を受光して反射させ該
蒸発部に照射する第1の反射鏡群と、太陽光を受
光して反射させ該過熱部に照射する第2の反射鏡
群と、該第1の反射鏡群及び該第2の反射鏡群の
向きを変え該蒸発部あるいは該過熱部に照射する
光量を調節する反射鏡群駆動源とを備え、日射量
が所定値以下で、かつ該過熱部から出力される蒸
気流量が所定値以上のときには、該第1の反射鏡
群の一部から該過熱部に反射光を供給するように
したことを特徴とする集光式太陽熱発電温度制御
システム。
1. A concentrating solar power generation system, which includes an evaporation part that evaporates water, a superheating part that superheats the steam evaporated in the evaporation part, and a first part that receives sunlight, reflects it, and irradiates it to the evaporation part. a group of reflective mirrors, a second group of reflective mirrors that receives sunlight, reflects it, and irradiates it to the overheating section; a reflector group drive source that adjusts the amount of light irradiated to the superheating section, and when the amount of solar radiation is below a predetermined value and the flow rate of steam output from the superheating section is above a predetermined value, the first reflector 1. A concentrating solar power generation temperature control system, characterized in that reflected light is supplied from a part of the group to the overheating section.
JP56080958A 1981-05-29 1981-05-29 Temperature controlling system in light-condensing type solar power generation Granted JPS57198952A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56080958A JPS57198952A (en) 1981-05-29 1981-05-29 Temperature controlling system in light-condensing type solar power generation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56080958A JPS57198952A (en) 1981-05-29 1981-05-29 Temperature controlling system in light-condensing type solar power generation

Publications (2)

Publication Number Publication Date
JPS57198952A JPS57198952A (en) 1982-12-06
JPS6333057B2 true JPS6333057B2 (en) 1988-07-04

Family

ID=13733013

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56080958A Granted JPS57198952A (en) 1981-05-29 1981-05-29 Temperature controlling system in light-condensing type solar power generation

Country Status (1)

Country Link
JP (1) JPS57198952A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6237645A (en) * 1985-06-28 1987-02-18 ジユア ベン Evaporator and electric power station with such evaporator
JP6038448B2 (en) * 2011-12-16 2016-12-07 三菱日立パワーシステムズ株式会社 Solar thermal combined power generation system and solar thermal combined power generation method
CN102494413A (en) * 2011-12-29 2012-06-13 中国华能集团清洁能源技术研究院有限公司 Heat collecting tube combined solar high-temperature direct steam heat collection device

Also Published As

Publication number Publication date
JPS57198952A (en) 1982-12-06

Similar Documents

Publication Publication Date Title
EP2604858A2 (en) Integrated Solar Combined Cycle Power Generation System and Integrated Solar Combined Cycle Power Generation Method
US4593527A (en) Power plant
WO2007073008A2 (en) Heat medium supply facility, composite solar heat electricity generation facility, and method of controlling the facilities
US8479515B2 (en) Solar power generator
WO2013098945A1 (en) Solar thermal power generation apparatus
Krüger et al. Experiences with direct steam generation at the Kanchanaburi solar thermal power plant
WO2014148259A1 (en) Solar heat collection system
JPS6333057B2 (en)
JPH0222860B2 (en)
WO2020110473A1 (en) Boiler system, power generation plant, and boiler system operation method
US20150082792A1 (en) Solar and renewable/waste energy powered turbine with two stage heating and graphite body heat exchanger
JP5723220B2 (en) Power plant
JPS62325B2 (en)
JP2013245685A (en) Steam rankine cycle solar plant and method of operating the plant
JP6803846B2 (en) Solar heat collection system and its operation method
JP5745647B2 (en) Solar thermal combined cycle power plant
JP2012127577A (en) Solar heat collection device and method of adjusting heat collection amount for the same
WO2013038563A1 (en) Solar thermal power generation facility, solar thermal power generation method, heat medium supply device, and heat medium heating device
WO1981000596A1 (en) Method and apparatus for generating heat and electricity by solar energy
JPS5845600B2 (en) Steam generator for solar thermal power generation system
JPS60164179A (en) Control system of solar heat absorber
CN106500370B (en) A kind of the water supply amount control method and its system of photo-thermal power station heat collector
JP2019173697A (en) Combined cycle power generation plant and operation method of the same
JPS6027317Y2 (en) Solar thermal steam generator
CN112013368A (en) Method and equipment for directly generating stable superheated steam