JPS60163739A - Method of reducing insulation in at feeding type substation - Google Patents

Method of reducing insulation in at feeding type substation

Info

Publication number
JPS60163739A
JPS60163739A JP1943984A JP1943984A JPS60163739A JP S60163739 A JPS60163739 A JP S60163739A JP 1943984 A JP1943984 A JP 1943984A JP 1943984 A JP1943984 A JP 1943984A JP S60163739 A JPS60163739 A JP S60163739A
Authority
JP
Japan
Prior art keywords
transformer
winding
feeding
voltage
neutral
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1943984A
Other languages
Japanese (ja)
Other versions
JPH0336698B2 (en
Inventor
Koichi Arai
浩一 新井
Yoshifumi Mochinaga
持永 芳文
Kesao Kamahara
鎌原 今朝雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JAPANESE NATIONAL RAILWAYS<JNR>
Japan National Railways
Nippon Kokuyu Tetsudo
Original Assignee
JAPANESE NATIONAL RAILWAYS<JNR>
Japan National Railways
Nippon Kokuyu Tetsudo
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JAPANESE NATIONAL RAILWAYS<JNR>, Japan National Railways, Nippon Kokuyu Tetsudo filed Critical JAPANESE NATIONAL RAILWAYS<JNR>
Priority to JP1943984A priority Critical patent/JPS60163739A/en
Publication of JPS60163739A publication Critical patent/JPS60163739A/en
Publication of JPH0336698B2 publication Critical patent/JPH0336698B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60MPOWER SUPPLY LINES, AND DEVICES ALONG RAILS, FOR ELECTRICALLY- PROPELLED VEHICLES
    • B60M3/00Feeding power to supply lines in contact with collector on vehicles; Arrangements for consuming regenerative power

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Coils Of Transformers For General Uses (AREA)

Abstract

PURPOSE:To reduce the insulating intensity of electric installation on the feeding side in a substation by providing a neutral on a feeding side winding using a three-winding transformer and inserting a reactor between said neutral and a rail, in an AT (autotransformer) feeding type transformer for feeding. CONSTITUTION:An AT feeding type substation feeds a voltage, obtained by dividing a feeding voltage generated in its feeding transformer Tr by means of an autotransformer AT, between a trolley line T and a rail R. In this case, a three-winding transformer is used as the feeding transformer Tr, a neutral is provided on a feeding side winding, and a reactor, with which a short-circuit device (e.g., a bypass gap G) is provided in parallel, is inserted between the neutral and the rail R. Thereby, an electri-car current, which flows into the neutral of the transformer Tr is restrained, while the insulating intensity of a feeding side electric installation in the substation is reduced.

Description

【発明の詳細な説明】 本発明はATき電方式交流電気鉄道においてm気単に電
流を供給するき電用変亀所の絶縁低減に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to reducing the insulation of a feeding substation that simply supplies current in an AT feeding system AC electric railway.

第1図は従来のATき電力式におけるき電回路構成を単
相分について示したものである。
FIG. 1 shows the configuration of a single-phase feeding circuit in a conventional AT feeding system.

従来のATき置方式では変電所のき電電圧は電気車の使
用電圧の一倍であり、電気車へは単巻変圧器ムTによっ
て分圧した電圧ttFav線T〜レールR間に供給する
ようになっておシ、き電線路の常規対地電圧は電気車電
圧と等しく、絶縁強度は1!″fiL電圧の半分である
In the conventional AT station system, the feeding voltage at the substation is twice the voltage used by the electric car, and the voltage divided by the autotransformer MuT is supplied to the electric car between the ttFav line T and the rail R. So, the normal ground voltage of the feeder line is equal to the electric car voltage, and the insulation strength is 1! ``fiL voltage is half.

ところが変電所においては、き重用変圧器のき篭側は非
接地方式となっているため、き電開始前にATf)接続
されていない場合に変電所き篭側で地絡故障が死生ずる
と、地絡相の対地電位は0電位になシ健全相の電位は電
気車1!王の一倍に上昇する。
However, in substations, the cage side of the heavy duty transformer is non-grounded, so if ATf is not connected before power supply starts, a ground fault may occur on the cage side of the substation. , the ground potential of the ground fault phase becomes 0 potential, and the potential of the healthy phase is 1! Rise to the level of a king.

このため、変電所溝内き篭側は電気車電圧の一倍の絶縁
強度が必要となっている。
For this reason, the insulation strength of the cage side of the substation is required to be one times the voltage of the electric car.

これに対し本発明は、′fILFEを等しくした二次巻
線及び三次巻線を直列に接続してき篭側に中性点を設け
た、三巻線変圧器を用いるATき電方式に関するもので
ある。
In contrast, the present invention relates to an AT feeding system using a three-winding transformer, in which secondary and tertiary windings with equal 'fILFE are connected in series and a neutral point is provided on the cage side. .

すなわち、並列に短絡装置を設けたりアクトルを変圧器
の中性点とレールの間に挿入して、電気車電流が変圧器
の中性点に流入するのを抑制するとともに、ATが接続
されていない場合の地絡時を考慮した変電所のき篭側の
絶縁強度を従来の半分に低減することにより、経済的で
信頼度の高い@電システムを提供するものである。
In other words, by installing a short-circuit device in parallel or inserting an actor between the neutral point of the transformer and the rail, electric vehicle current is suppressed from flowing into the neutral point of the transformer, and the AT is connected. By reducing the insulation strength of the cage side of the substation to half of the conventional one, taking into consideration the possibility of a ground fault in the event of a ground fault, an economical and highly reliable @electric system is provided.

以下、本発明を図面に従って説明する。なおき亀回路に
おいてはりアクタンス分に比較して抵抗分は非常に小さ
いため、以下の説明では抵抗分は無視してリアクタンス
分のみとする。
The present invention will be explained below with reference to the drawings. In addition, in the turtle circuit, the resistance component is very small compared to the actance component, so in the following explanation, the resistance component will be ignored and only the reactance component will be considered.

第2図は三巻線変圧器の分離リアクタンスを示す等価回
路である。
Figure 2 is an equivalent circuit showing the separation reactance of a three-winding transformer.

一般に多数の巻線を持つ変圧器のもれリアクタンスは2
組の巻線の一方jを短絡し、他方1に電圧を加えて、他
の巻線は開放したときの電圧・電流から計測され、基準
電圧に換算した値をxljとして表示される。
Generally, the leakage reactance of a transformer with a large number of windings is 2
One of the windings j of the set is short-circuited, a voltage is applied to the other 1, and the voltage and current are measured when the other windings are opened, and the value converted to the reference voltage is displayed as xlj.

いま、第2門の巻線比/@/:/の三巻線変圧器につい
てxljを計測し各巻線の分離リアクタンスをめると、
周知のように、 となる。
Now, if we measure xlj for the three-winding transformer with the second gate's turns ratio /@/:/ and add the separation reactance of each winding, we get
As is well known, .

ところで、ATき電圧として使用する場合は、二次巻線
と三次巻線を直列に接続して中性点端子を取り出すので
、Xl、” * 、xhを第3図に示すようにき篭側に
分離されたりアクタンスXT s XN、Xpとし7て
表す等価回路とするのが理解しやすい。
By the way, when using it as an AT voltage, the secondary winding and tertiary winding are connected in series and the neutral point terminal is taken out, so It is easy to understand that it is separated into an equivalent circuit with actances XT s XN, Xp expressed as 7.

各巻線の巻線比は/:/:/であるから、となる。Since the winding ratio of each winding is /:/:/, it becomes.

次に、Al が接続されていない場合に変電所溝内き篭
側でT相又は!相が地絡したときの電圧、電流分布を、
最も簡単な単相変圧器に中性点を出した場合について考
える。
Next, if Al is not connected, the T-phase or ! The voltage and current distribution when a phase is grounded is
Let's consider the simplest single-phase transformer with a neutral point.

第グ図において、T−N端子を短絡し、■〜V端子に電
圧v0を加えると、−次巻線については左右の巻線が直
列になっているので巻線1./’には同じ電流が流れ磁
界を生ずる。左側の鉄心脚については巻線−に電流が流
れ磁界を打ち消すが、右側の鉄心脚では巻線3が開放さ
れているため磁界は打ち消されず、−次巻線に流れる電
流は極めて小電流となる〇 この結果、二次巻線の電圧はほぼθとなり、三次巻線に
は全電圧が加わって平常時のvoから2v。
In Fig. 1, when the T-N terminals are short-circuited and voltage v0 is applied to the -V terminals, the left and right windings are in series for the negative winding, so winding 1. The same current flows through /' and creates a magnetic field. For the left core leg, current flows through the winding - to cancel out the magnetic field, but in the right core leg, the magnetic field is not canceled because winding 3 is open, and the current flowing to the next winding becomes extremely small. 〇As a result, the voltage of the secondary winding becomes approximately θ, and the full voltage is applied to the tertiary winding, increasing the voltage from the normal vo to 2V.

に上昇する。すなわち、中性点の対地電位はθであるか
ら健全相の電位は電気車電圧の2倍程度に上昇すること
になり、第4図の巻線配置の変圧器では変電所き篭側の
絶縁低減はできないことが分る。
rise to In other words, since the potential to the ground at the neutral point is θ, the potential of the healthy phase will rise to about twice the electric car voltage. It turns out that it cannot be reduced.

そこで、第S図の巻線配置の別鉄心脚形の髪圧器につい
て、同様のことを考える。この場合−次巻線については
上下の巻線が並列になっており、巻線/、/’にそれぞ
れ独立した電流が流れ磁界を生ずる。上側の鉄心脚につ
いては巻線コが短絡されているので電流が流れ磁界を打
ち消し、巻4%/に大きな電流が流れる@下側の鉄心脚
では巻11jJが開放されているため磁界は打ち消され
ず、巻線l′には小さな励磁電流のみが流れる。
Therefore, we will consider the same thing regarding the hair pressure device with a separate iron core leg shape and the winding arrangement shown in Fig. S. In this case, for the second winding, the upper and lower windings are in parallel, and independent currents flow through the windings / and /' to generate a magnetic field. For the upper core leg, the windings are short-circuited, so a current flows and cancels the magnetic field, and a large current flows in the winding 4%.@For the lower core leg, the magnetic field is not canceled because winding 11jJ is open. , only a small excitation current flows through the winding l'.

この結果、三次巻線の電圧は、短絡前と同じV。As a result, the voltage of the tertiary winding is the same V as before the short circuit.

であり、健全相の電位は上昇しない。Therefore, the potential of the healthy phase does not rise.

このように、−次巻線に対し必らず打ち消し磁界を生ず
るように巻線が配置され、−相が短絡しても健全相の電
圧が上昇しない特性を持つ変圧器が三巻線変圧器として
実用されておシ、この変圧器を用いることで電位上昇の
問題は解決される。
In this way, a three-winding transformer is a transformer in which the windings are arranged so as to always produce a canceling magnetic field with respect to the negative winding, and the voltage of the healthy phase does not increase even if the negative phase is short-circuited. The problem of potential rise is solved by using this transformer.

ATき電圧として使用する三巻線変圧器の二次巻線の電
圧及び電流容量を等しくし、−次巻線に対する二次、三
次巻線の配置をほぼ等しくすれば、三巻線変圧器のりア
クタンスは、 であり、き篭側に分離されたりアクタンスは、(3)式
よシ、 X0+x、1、Xp + X@、、X、Φo−・・−・
−・−・−−−−−・−・−(t)となる。
If the voltage and current capacity of the secondary winding of the three-winding transformer used as the AT voltage are made equal, and the arrangement of the secondary and tertiary windings with respect to the -order winding is approximately equal, the three-winding transformer's The actance is , and the actance separated into the cage side is as follows from equation (3), X0+x, 1, Xp + X@, ,
−・−・−−−−・−・−(t).

ところで、三巻線変圧器にATを接続したときの電流分
布をめると、vg6図の等価回路において、 Vu ’−VAT ” XT IT −JXATIF 
+XNI、VO−Vat ” −Xll x@ +コX
AT IF 十”G )F ・vmv−a−・−(4)
L−工τ十工F、工、−工τ−工F であるから、電圧を消去し、負荷を定電流源としとなる
By the way, when looking at the current distribution when AT is connected to a three-winding transformer, in the equivalent circuit of diagram vg6, Vu '-VAT '' XT IT - JXATIF
+XNI, VO-Vat” -Xll x@ +koX
AT IF 10”G )F ・vmv-a-・-(4)
Since L - engineering τ 0 engineering F, engineering, - engineering τ - engineering F, the voltage is erased and the load becomes a constant current source.

(り)式のりアクタンスは、(S)式からXN 40で
あり、実用的に 41XAT中X丁十XFであるので、
中性点には、 I、、−+−Xム ・・・・・・・・−・・・・・・・
・・・・・・・・・・・・・ (f)程度の電流が流れ
、変圧器の巷−容量に対する利用率は極めて悪くなるこ
とが分る。
The glue actance of formula (R) is XN 40 from formula (S), which is practically 41XAT and X-10XF, so
At the neutral point, I,, −+−Xmu ・・・・・・・・・−・・・・・・・
It can be seen that a current of about (f) flows and the utilization ratio of the transformer's width to capacity becomes extremely poor.

第9図に中性点に亀流抑制用のりアクドルを挿入し1f
−、本発明の実施例を示す。
In Fig. 9, insert the turtle flow suppression glue handle at the neutral point and 1f
- indicates an example of the present invention.

第を図は゛電流抑制用リアクトルのりアクタンスを1号
とした第を図の等価回路であり、き!!側の電流分布は
(η式のx、lをX1+ + X4 と置きかえて、と
なる。
Figure 2 is an equivalent circuit of Figure 1 with the current suppression reactor actance as No. 1. ! The current distribution on the side becomes (by replacing x and l in the η equation with X1+ + X4.

この場合の変圧器のき篭側巻線の電流のアンバランス率
を と定義すれに となる。例えif鳶ttEを417kVとして、単相容
敏、t OMVA 、%リアクタンス6%のき箆用変圧
器とし、ATのりアクタンス14丁−〇、SΩについて
、胸を変化させてαの値をめてみると第9図のようにな
る0すなわち、XGrを挿入することにより変圧器き篭
側笥、流のアンバランスな小さくすることかでき、変l
f器の巷線容鍵に対する利用率を向上することができる
In this case, the unbalance rate of the current in the cage side winding of the transformer is defined as: For example, if ttE is 417 kV, a single-phase transformer with t OMVA and % reactance of 6% is used, and the AT glue actance is 14-㎜ and SΩ, change the value of α and find the value of α. If you look at it as shown in Figure 9, by inserting 0, that is,
It is possible to improve the utilization rate for the line capacity key of the F device.

変圧器の中性点に電流抑制用リアクトルを挿入すれば、
以上に説明したように変圧器き型側電流のアンバランス
を抑制できるが、第を図において@電圧しゃ断#5コ1
が開放されている場合に獣電所きm側で地絡故障が発生
すると、リアクトルの両端に平常時に比べて大きな電圧
が発生するため、リアクトルに並列に側路ギャップG’
に設けて、地鞘故一時に放電してリアクトルの両端に著
しい電圧上昇が発生しないようにする。
If you insert a current suppression reactor at the neutral point of the transformer,
As explained above, the unbalance of the current on the transformer side can be suppressed.
If a ground fault occurs on the side of the power station m when G' is open, a larger voltage will be generated at both ends of the reactor than in normal times.
to prevent a sudden discharge due to the ground sheath and a significant voltage rise across both ends of the reactor.

なお、リアクトルと並列に、Sコ1と連動した側路スイ
ッチを設けることも可能である。
Note that it is also possible to provide a bypass switch that is linked to the Scower 1 in parallel with the reactor.

以上に説明したように本発明によれば、@瑣用変圧器の
中性点に流れるm流を抑制するとともに、変電phき篭
側電気設問の杷縁強FILを従来のATき型刃式の半分
に低減できることにより、経済的で信頼度の高いき電シ
ステムヶ提供できる。
As explained above, according to the present invention, the m current flowing to the neutral point of the transformer for @4 is suppressed, and the FIL of the electric question on the side of the transformer ph is reduced compared to the conventional AT type blade type. By reducing the amount of electricity by half, it is possible to provide an economical and highly reliable power feeding system.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のATlk寛方式の回路図、第1図は三巻
線変圧器の分離リアクタンスを示す等価回路図、第3図
は?!電側に分離リアクタンスを表した三巻線変圧器の
等価回路図、第4図は重相変圧器に中性点を出した場合
の巻線配置図、第S図は別鉄心肺形三@線変比器の巻縁
配v1シ!、第6図は三巻線変圧器を用いて4f+!@
強度を低減したATき電力式の等価回路図、第9図は本
発明の中性点電流を抑制し変を所き電制の絶縁強度を低
減したATき電力式の実施例のl路図、第S図は第7図
の等価@路図、第9図は’am抑制用リアクトルのりア
クタンスと変圧器き室側巻線の電流のアンバランス率の
関係を示す図である。 Ty・・・さ屯田変圧器、A’l”、AT、及びATt
・・・単巻変圧器、/、/’、コ及び3・・・変圧器の
巻線、V O・・・電源電比、−□ ・・・AT に加
わる電圧、!、 、X、及びχ、並びにX丁、 XF及
びXH・・・き軍用変圧器の分離リアクタンス、 X(
・・・寛流抑制用リアクトルのりアクタンス、XAT 
・−単巻変圧器のりアクタンス’1.”%工い及びIN
・・・き窓用変圧器@電側の電流、IC=・負荷電流、
α・・・変圧器き篭側巻1の電流のアンバランス率、S
コト・・き重用しゃ断器、G・・・側路ギャップ、sI
I+・・・放電器、U、v・・・変圧器−次巻線の端子
、T・・・トロリ糾、1・・・フィーダ、N−・・変圧
器の中性点、R・・・レール 指定代理人 口本国有鉄道総裁室法務課長菫1図 第2図 第3図 第4図 箇5図 葉6図 2F 第7図 第8図 、X&〔Ω〕 鴇9図
Figure 1 is a circuit diagram of the conventional ATlk relaxation system, Figure 1 is an equivalent circuit diagram showing the separation reactance of a three-winding transformer, and Figure 3 is ? ! An equivalent circuit diagram of a three-winding transformer showing the separation reactance on the power side, Figure 4 is a winding arrangement diagram when a neutral point is provided in a heavy-phase transformer, and Figure S is a separate heart-lung type three @ Line ratio transformer winding arrangement v1! , Figure 6 shows 4f+! using a three-winding transformer. @
An equivalent circuit diagram of an AT power type with reduced strength, and Fig. 9 is a circuit diagram of an embodiment of an AT power type in which the neutral point current of the present invention is suppressed, changes are made, and the insulation strength of the electrical system is reduced. , FIG. S is an equivalent diagram of FIG. 7, and FIG. 9 is a diagram showing the relationship between the actance of the 'am suppressing reactor and the unbalance rate of the current in the transformer room side winding. Ty...Satonta transformer, A'l", AT, and ATt
・・・Autotransformer, /, /', ko and 3...Transformer winding, VO...power supply voltage ratio, -□...voltage applied to AT,! , , X, and χ, and the separation reactance of the military transformer, X(
... Reactor glue actance for suppressing perfusion, XAT
・-Autotransformer glue actance '1. ”% work and IN
... Window transformer @ current on power side, IC = load current,
α... Current unbalance rate of transformer cage side winding 1, S
Koto... Heavy duty breaker, G... Shuttle gap, sI
I+...discharger, U, v...transformer-next winding terminal, T...trolley wire, 1...feeder, N-...neutral point of transformer, R... Designated Rail Agent Kuchimoto National Railway President's Office Legal Affairs Division Manager Sumire 1 Figure 2 Figure 3 Figure 4 Section 5 Leaf 6 Figure 2F Figure 7 Figure 8, X & [Ω] Toki Figure 9

Claims (1)

【特許請求の範囲】[Claims] 単巻変圧器@電方式(以下ATき置方式という)におけ
るき重用変圧器において、三巻線変圧器を用いてき電側
巻線に中性点を設け、並列に短絡装置を設けたりアクド
ルを中性点とレールの間に挿入することによって、変圧
器の中性点に流入する電気車電流を抑制するとともに、
変電所き寛側電気設−の絶縁強度を低減することを特徴
とするATき電力式用変電所の絶縁低減方法。
In a heavy-duty transformer in the autotransformer @ electric system (hereinafter referred to as the AT stationary system), a three-winding transformer is used to provide a neutral point on the feeding side winding, a short circuit device in parallel, or an acdle. By inserting it between the neutral point and the rail, it suppresses the electric car current flowing into the neutral point of the transformer, and
A method for reducing insulation in an AT power type substation, characterized by reducing the insulation strength of the wide side electrical equipment in the substation.
JP1943984A 1984-02-07 1984-02-07 Method of reducing insulation in at feeding type substation Granted JPS60163739A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1943984A JPS60163739A (en) 1984-02-07 1984-02-07 Method of reducing insulation in at feeding type substation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1943984A JPS60163739A (en) 1984-02-07 1984-02-07 Method of reducing insulation in at feeding type substation

Publications (2)

Publication Number Publication Date
JPS60163739A true JPS60163739A (en) 1985-08-26
JPH0336698B2 JPH0336698B2 (en) 1991-06-03

Family

ID=11999323

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1943984A Granted JPS60163739A (en) 1984-02-07 1984-02-07 Method of reducing insulation in at feeding type substation

Country Status (1)

Country Link
JP (1) JPS60163739A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61204919A (en) * 1985-03-08 1986-09-11 Toshiba Corp Three winding scott connection transformer

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61204919A (en) * 1985-03-08 1986-09-11 Toshiba Corp Three winding scott connection transformer
JPH0556643B2 (en) * 1985-03-08 1993-08-20 Tokyo Shibaura Electric Co

Also Published As

Publication number Publication date
JPH0336698B2 (en) 1991-06-03

Similar Documents

Publication Publication Date Title
Kennedy et al. Harmonic-current-restrained relays for differential protection
DE102018006810A1 (en) Energy converter for energy technology coupling a DC electrical system with an AC or DC power source
DE102019106485B4 (en) Weissach rectifier arrangement
US3192442A (en) Electrical protective relay systems
EP0772904A1 (en) Power supply device with two output voltages
DE2653453C3 (en) Circuit arrangement for an auxiliary voltage derived from the mains voltage via rectifier elements for multi-pole residual current circuit breakers
JPS60163739A (en) Method of reducing insulation in at feeding type substation
DE102019202474A1 (en) Residual current device and method
DE102011101530A1 (en) Method for operating loading device of vehicle e.g. electric vehicle, involves decoupling loading device from power supply system by comparing determined loop impedance with predetermined impedance threshold value
Kehoe Underground alternating-current network: Distribution for central station systems
CN206099289U (en) Four -pole circuit breaker
Abdullah A Ferroresonance Study of a 240 MW Solar PV Project
US1988121A (en) Protective means for delta connected transmission lines
SU1363363A1 (en) Arrangement for protecting from damage neutral inserts of traction substations
Solak et al. Analysis of Power Transformer Magnetizing Inrush and Overexcitation Conditions in Case of Overvoltages due to Line-to-Ground Fault
RU1778857C (en) Device for limiting ferroresontant and resonant processes
SU88911A1 (en) Device for selectively protecting feeders and machines from earth faults
SU691996A1 (en) Arrangement for power supply of regional and traction networks
Kaufmann et al. Overvoltage protection of current-transformer secondary windings and associated circuits
RU1772862C (en) Device to protect instrument voltage transformer from damage at ferroresonance processes in insulated neutral network
Harmonics Bibliography of Power System Harmonics, Part I
SU1259386A1 (en) Device for protection of three-phase load against open phase circuits and insulation flash- over
JPH0356099A (en) Field test method for generator
JPH0426765B2 (en)
DE530144C (en) Transformer for the series superposition of high-voltage networks with currents of non-network frequency with a compensation winding, the field of which is opposite to the transformer winding through which the mains current flows