JPH0336698B2 - - Google Patents

Info

Publication number
JPH0336698B2
JPH0336698B2 JP1943984A JP1943984A JPH0336698B2 JP H0336698 B2 JPH0336698 B2 JP H0336698B2 JP 1943984 A JP1943984 A JP 1943984A JP 1943984 A JP1943984 A JP 1943984A JP H0336698 B2 JPH0336698 B2 JP H0336698B2
Authority
JP
Japan
Prior art keywords
winding
transformer
feeding
voltage
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1943984A
Other languages
Japanese (ja)
Other versions
JPS60163739A (en
Inventor
Koichi Arai
Yoshifumi Mochinaga
Kesao Kamahara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Railway Technical Research Institute
Original Assignee
Railway Technical Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Railway Technical Research Institute filed Critical Railway Technical Research Institute
Priority to JP1943984A priority Critical patent/JPS60163739A/en
Publication of JPS60163739A publication Critical patent/JPS60163739A/en
Publication of JPH0336698B2 publication Critical patent/JPH0336698B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60MPOWER SUPPLY LINES, AND DEVICES ALONG RAILS, FOR ELECTRICALLY- PROPELLED VEHICLES
    • B60M3/00Feeding power to supply lines in contact with collector on vehicles; Arrangements for consuming regenerative power

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Coils Of Transformers For General Uses (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Description

【発明の詳細な説明】 本発明はATき電方式交流電気鉄道において電
気車に電流を供給するき電用変電所の絶縁低減に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to reducing the insulation of a feeding substation that supplies current to electric cars in an AT feeding system AC electric railway.

第1図は従来のATき電方式におけるき電回路
構成を単相分について示したものである。
Figure 1 shows the configuration of a single-phase feeding circuit in a conventional AT feeding system.

従来のATき電方式では変電所のき電電圧は電
気車の使用電圧の2倍であり、電気車へは車巻変
圧器ATによつて分圧した電圧をトロリ線T〜レ
ールR間に供給するようになつており、き電線路
の常規対地電圧は電気単電圧と等しく、絶縁強度
はき電電圧の半分である。
In the conventional AT feeding system, the feeding voltage at the substation is twice the voltage used by the electric car, and the voltage divided by the car winding transformer AT is sent to the electric car between the contact wire T and the rail R. The normal ground voltage of the feeder line is equal to the single electric voltage, and the insulation strength is half the feeder voltage.

ところが変電所においては、き電用変圧器のき
電側は非接地方式となつているため、き電開始前
にATの接続されていない場合に変電所き電側で
地絡故障が発生すると、地絡相の対地電位は0電
位になり健全相の電位は電気車電圧の2倍に上昇
する。
However, in substations, the feeding side of the feeding transformer is non-grounded, so if AT is not connected before power feeding starts, a ground fault may occur on the substation feeding side. , the ground potential of the ground fault phase becomes 0 potential, and the potential of the healthy phase rises to twice the electric car voltage.

このため、変電所構内き電側は電気車電圧の2
倍の絶縁強度が必要となつている。
Therefore, on the substation premises feeding side, the electric car voltage is 2
Double the insulation strength is now required.

これに対し本発明は、電圧を等しくした二次巻
線及び三次巻線を直列に接続してき電側に中性点
を設けた、三巻線変圧器を用いるATき電方式に
関するものである。
In contrast, the present invention relates to an AT feeding system using a three-winding transformer in which a secondary winding and a tertiary winding with equal voltages are connected in series and a neutral point is provided on the feeding side.

すなわち、並列に短絡装置を設けたリアクトル
を変圧器の中性点とレールの間に挿入して、電気
車電流が変圧器の中性点に流入するのを抑制する
とともに、ATが接続されていない場合の地絡時
を考慮した変電所のき電側の絶縁強度を従来の半
分に低減することにより、経済的で信頼度の高い
き電システムを提供するものである。
In other words, a reactor with a short-circuit device installed in parallel is inserted between the neutral point of the transformer and the rail to suppress the electric car current from flowing into the neutral point of the transformer, and also to prevent the AT from being connected. This provides an economical and highly reliable power feeding system by reducing the insulation strength on the feeding side of the substation to half of the conventional one, taking into account the possibility of a ground fault in the event of a ground fault.

以下、本発明を図面に従つて説明する。なおき
電回路においてはリアクタンス分に比較して抵抗
分は非常に小さいため、以下の説明では抵抗分は
無視してリアクタンス分のみとする。
The present invention will be explained below with reference to the drawings. Note that in the feeder circuit, the resistance component is very small compared to the reactance component, so in the following explanation, the resistance component will be ignored and only the reactance component will be considered.

第2図は三巻線変圧器の分離リアクタンスを示
す等価回路である。
Figure 2 is an equivalent circuit showing the separation reactance of a three-winding transformer.

一般に多数の巻線を持つ変圧器のもれリアクタ
ンスは2組の巻線の一方jを短絡し、他方iに電
圧を加えて、他の巻線は開放したときの電圧・電
流から計測され、基準電圧に換算した値をXij
して表示される。
Generally, the leakage reactance of a transformer with a large number of windings is measured from the voltage and current when one of the two windings, j, is short-circuited, the other winding is applied with voltage, and the other winding is open. The value converted to the reference voltage is displayed as X ij .

いま、第2図の巻線比1:1:1の三巻線変圧
器についてXijを計測し各巻線の分離リアクタン
スを求めると、周知のように、 となる。
Now, if we measure X ij for the three-winding transformer with a winding ratio of 1:1:1 in Figure 2 and find the separation reactance of each winding, as is well known, becomes.

ところで、ATき電用として使用する場合は、
二次巻線と三次巻線を直列に接続して中性点端子
を取り出すので、X1,X2,X3を第3図に示すよ
うにき電側に分離されたリアクタンスXT,XN
XFとして表す等価回路とするのが理解しやすい。
各巻線の巻線比は1:1:1であるから、 XT+XN=X1+X2 XF+X11=X1+X3 XT+XF=4X1+X2+X3 ……(2) が成り立つ。よつて、 となる。
By the way, when using it for AT feeding,
Since the secondary winding and tertiary winding are connected in series and the neutral point terminal is taken out, X 1 , N ,
It is easier to understand if it is expressed as an equivalent circuit as X F.
Since the winding ratio of each winding is 1: 1 :1, X T +X N =X 1 +X 2 X F +X 11 =X 1 + X 3 holds true. Then, becomes.

次に、ATが接続されていない場合に変電所構
内き電側でT相又はF相が地絡したときの電圧、
電流分布を、最も簡単な単相変圧器に中性点を出
した場合について考える。
Next, when AT is not connected, the voltage when the T phase or F phase has a ground fault on the feeding side of the substation premises,
Consider the current distribution in the simplest single-phase transformer with a neutral point.

第4図において、T−N端子を短絡し、U〜V
端子に電圧V0を加えると、一次巻線については
左右の巻線が直列になつているので巻線1,1′
には同じ電流が流れ磁界を生ずる。左側の鉄心脚
については巻線2に電流が流れ磁界を打ち消す
が、右側の鉄心脚では巻線3が開放されているた
め磁界は打ち消されず、一次巻線に流れる電流は
極めて小電流となる。
In Figure 4, the T-N terminals are short-circuited and the U-V
When voltage V 0 is applied to the terminal, the left and right windings are in series with respect to the primary winding, so windings 1 and 1'
The same current flows through and produces a magnetic field. In the left core leg, current flows through the winding 2 and cancels the magnetic field, but in the right core leg, the winding 3 is open, so the magnetic field is not canceled out, and the current flowing in the primary winding becomes an extremely small current.

この結果、二次巻線の電圧はほぼ0となり、三
次巻線には全電圧が加わつて平常時のV0から2V0
に上昇する。すなわち、中性点の対地電位は0で
あるから健全相の電位は電気車電圧の2倍程度に
上昇することになり、第4図の巻線配置の変圧器
では変電所き電側の絶縁低減はできないことが分
る。
As a result, the voltage in the secondary winding becomes almost 0, and the full voltage is applied to the tertiary winding, reducing the normal voltage from V 0 to 2V 0.
rise to In other words, since the potential to the ground at the neutral point is 0, the potential of the healthy phase will rise to about twice the electric car voltage. It turns out that it cannot be reduced.

そこで、第5図の巻線配置の別鉄心脚形の変圧
器について、同様のことを考える。この場合一次
巻線についは上下の巻線が並列になつており、巻
線1,1′にそれぞれ独立した電流が流れ磁界を
生ずる。上側の鉄心脚については巻線2が短絡さ
れているので電流が流れ磁界を打ち消し、巻線1
に大きな電流が流れる。下側の鉄心脚では巻線3
が開放されているため磁界は打ち消されず、巻線
1′には小さな励磁電流のみが流れる。
Therefore, the same consideration will be given to the transformer with the separate core leg shape and the winding arrangement shown in FIG. In this case, the upper and lower primary windings are connected in parallel, and independent currents flow through the windings 1 and 1' to generate a magnetic field. As for the upper core leg, winding 2 is short-circuited, so current flows and cancels the magnetic field, causing winding 1
A large current flows through the Winding 3 on the lower core leg
Since the winding 1' is open, the magnetic field is not canceled and only a small excitation current flows through the winding 1'.

この結果、三次巻線の電圧は、短絡前と同じ
V0であり、健全相の電位は上昇しない。
As a result, the voltage in the tertiary winding is the same as before the short circuit.
V 0 , and the potential of the healthy phase does not rise.

このように、一次巻線に対し必らず打ち消し磁
界を生ずるように巻線が配置され、一相が短絡し
ても健全相の電圧が上昇しない特性を持つ変圧器
が三巻線変圧器として実用されており、この変圧
器を用いることで電位上昇の問題は解決される。
In this way, a three-winding transformer is a transformer in which the windings are arranged so that a magnetic field always cancels out against the primary winding, and the voltage of the healthy phase does not increase even if one phase is short-circuited. This transformer is in practical use and solves the problem of potential rise.

ATき電用として使用する三巻線変圧器の二次
巻線の電圧及び電流容量を等しくし、一次巻線に
対する二次、三次巻線の配置をほぼ等しくすれ
ば、三巻線変圧器のリアクタンスは、 X12≒X13 X23≒X12+X13 ……(4) であり、き電側に分離されたリアクタンスは、(3)
式より、 XT≒X12、XF≒X13、XN≒0 ……(5) となる。
If the voltage and current capacity of the secondary winding of a three-winding transformer used for AT feeding are made equal, and the arrangement of the secondary and tertiary windings relative to the primary winding is approximately equal, the three-winding transformer can be The reactance is X 12 ≒X 13 X 23 ≒X 12 +
From the formula, X T ≒X 12 , X F ≒X 13 , X N ≒0 (5).

ところで、三巻線変圧器にATを接続したとき
の電流分布を求めると、第6図の等価回路におい
て、 V0−VAT=XTIT−2XATIF+XNIN V0−VAT=−XNIN+2XATIF+XFIF ……(6) IL=IT+IF、IN=IT−IF であるから、電圧を消去し、負荷を定電流源とし
て考えると、 となる。
By the way, when determining the current distribution when AT is connected to a three-winding transformer, in the equivalent circuit shown in Figure 6, V 0 −V AT =X T I T −2X AT I F +X N I N V 0 − V AT = -X N I N +2X AT I F +X F I F ...(6) Since I L = I T + I F and I N = I T - I F , erase the voltage and set the load to a constant current. Considering the source, becomes.

(7)式のリアクタンスは、(5)式からXN≒0であ
り、実用的に4XAT≒XT≒XFであるので、中性点
には、 I11≒1/3IL ……(8) 程度の電流が流れ、変圧器の巻線容量に対する利
用率は極めて悪くなることが分る。
The reactance of equation (7) is X N ≒ 0 from equation (5), and practically 4X AT ≒ X T ≒ X F , so at the neutral point, I 11 ≒ 1/3I L ... It can be seen that a current of about (8) flows, and the utilization rate of the transformer's winding capacity becomes extremely poor.

第7図に中性点に電流抑制用のリアクトルを挿
入した本発明の実施例を示す。
FIG. 7 shows an embodiment of the present invention in which a reactor for current suppression is inserted at the neutral point.

第8図は電流抑制用リアクリルのリアクタンス
をXGとした第7図の等価回路であり、き電側の
電流分布は(7)式のXNをX11+XGと置きかえて、 となる。
Figure 8 is an equivalent circuit of Figure 7, where the reactance of the current-suppressing reactor is X G , and the current distribution on the feeding side is calculated by replacing X N in equation (7) with X 11 +X G. becomes.

この場合の変圧器のき電側巻線の電流のアンバ
ランス率を α=IT−IF/IT+IF ……(10) と定義すれば α=4XAT−XT+XF/4(XAT+XN+XG)+XT+XF
…(11) となる。例えばき電電圧を60KVとして、単相容
量50MVA、%リアクタンス6%のき電用変圧器
とし、ATのリアクタンスXAT=0、5Ωについ
て、XGを変化させてαの値を求めてみると第9
図のようになる。
In this case, if we define the unbalance rate of current in the feeding side winding of the transformer as α=I T −I F /I T +I F ……(10), then α=4X AT −X T +X F /4 (X AT +X N +X G ) +X T +X F ...
…(11) becomes. For example, if the feeding voltage is 60KV, the single-phase capacity is 50MVA, and the feeder transformer has a % reactance of 6%, and the reactance of AT is X AT = 0, 5Ω, find the value of α by varying X G. 9th
It will look like the figure.

すなわち、XGを挿入することにより変圧器き
電側電流のアンバランスを小さくすることがで
き、変圧器の巻線容量に対する利用率を向上する
ことができる。
That is, by inserting X G , the unbalance of the current on the feeding side of the transformer can be reduced, and the utilization rate of the winding capacity of the transformer can be improved.

変圧器の中性点に電流抑制用リアクトルを挿入
すれば、以上に説明したように変圧器き電側電流
アンバランスを制御できるが、第7図においてき
電用しや断器52Fが開放されている場合に変電
所き電側で地絡故障が発生すると、リアクトトル
の両端に平常時に比べて大きな電圧が発生するた
め、リアクトルに並列に側路ギヤツプGを設け
て、地絡故障に放電してルアクトルの両端に著し
い電圧上昇が発生しないようにする。
If a current suppression reactor is inserted into the neutral point of the transformer, the current imbalance on the feeding side of the transformer can be controlled as explained above, but in Fig. 7, the feeding side disconnector 52F is opened. If a ground fault occurs on the feeding side of the substation, a larger voltage will be generated at both ends of the reactor than normal, so a shunt gap G is installed in parallel with the reactor to prevent discharge at the ground fault. to prevent a significant voltage rise from occurring across the actuator.

なお、リアクトルと並列に、52Fと連動した
側路スイツチを設けることも可能である。
In addition, it is also possible to provide a side path switch in conjunction with 52F in parallel with the reactor.

以上に説明したように本発明によれば、き電用
変圧器の中性点に流れる電流を抑制するととも
に、変電所き電側電気設備の絶縁強度を従来の
ATき電方式の半分に低減できることにより、経
済的で信頼度の高いき電システムを提供できる。
As explained above, according to the present invention, the current flowing to the neutral point of the feeding transformer is suppressed, and the insulation strength of the electrical equipment on the feeding side of the substation is increased compared to the conventional one.
By being able to reduce the power consumption to half that of the AT feeding system, it is possible to provide an economical and highly reliable power feeding system.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来のATき電方式の回路図、第2図
は三巻線変圧器の分離リアクタンスを示す等価回
路図、第3図はき電側に分離リアクタンスを表し
た三巻線変圧器の等価回路図、第4図は単相変圧
器に中性点を出した場合の巻線配置図、第5図は
別鉄心脚形三巻線変圧器の巻線配置図、第6図は
三巻線変圧器を用いて絶縁強度を低減したATき
電方式の等価回路図、第7図は本発明の中性点電
流を抑制し変電所き電側の絶縁強度を低減した
ATき電方式の実施例の回路図、第8図は第7図
の等価回路図、第9図は電流抑制用リアクトルの
リアクタンスと変圧器き電側巻線の電流のアンバ
ランス率の関係を示す図である。 Tr……き電用変圧器、AT、AT1及びAT2……
単巻変圧器、1,1′,2及び3……変圧器の巻
線、V0……電源電圧、VAT……ATに加わる電圧、
X1、X2及びX3並びにXT,XF及びXN……き電用
変圧器の分離リアクタンス、XG……電流抑制用
リアクトルのリアクタンス、XAT……単巻変圧器
のリアクタンス、IT、IF及びIN……き電用変圧器
き電側の電流、IL……負荷電流、α……変圧器き
電側巻線の電流のアンバランス率、52F……き
電用しや断器、G……側路ギヤツプ、SD……放
電器、U,V……変圧器一次巻線の端子、T……
トロリ線、F……フイーダ、N……変圧器の中性
点、R……レール。
Figure 1 is a circuit diagram of the conventional AT feeding system, Figure 2 is an equivalent circuit diagram showing the separation reactance of a three-winding transformer, and Figure 3 is a three-winding transformer showing the separation reactance on the feeding side. Fig. 4 is a winding arrangement diagram for a single-phase transformer with a neutral point, Fig. 5 is a winding arrangement diagram for a separate core leg three-winding transformer, and Fig. 6 is a winding arrangement diagram for a single-phase transformer with a neutral point. Figure 7 is an equivalent circuit diagram of an AT feeding system with reduced insulation strength using a three-winding transformer, which suppresses the neutral point current of the present invention and reduces insulation strength on the substation feeding side.
A circuit diagram of an example of the AT feeding system, Fig. 8 is an equivalent circuit diagram of Fig. 7, and Fig. 9 shows the relationship between the reactance of the current suppression reactor and the current imbalance rate of the transformer feeding side winding. FIG. T r ... Feeding transformer, AT, AT 1 and AT 2 ...
Autotransformer, 1, 1' , 2 and 3...Transformer windings, V0...Power supply voltage, V AT ... Voltage applied to AT,
X 1 , X 2 and X 3 and X T , X F and X N ... Separation reactance of the feeding transformer, X G ... Reactance of the current suppression reactor, X AT ... Reactance of the autotransformer, I T , I F and I N ... Current on the feeding side of the feeding transformer, I L ... Load current, α ... Unbalance rate of current in the feeding side winding of the transformer, 52F... Feeding current Disconnector, G...Side gap, SD...Discharger, U, V...Transformer primary winding terminal, T...
Contact wire, F...feeder, N...neutral point of transformer, R...rail.

Claims (1)

【特許請求の範囲】[Claims] 1 単巻変圧器き電方式(以下ATき電方式とい
う)におけるき電用変圧器において、三巻線変圧
器を用いてき電側巻線に中性点を設け、並列に短
絡装置を設けたリアクトルを中性点とレールの間
に挿入することによつて、変圧器の中性点に流入
する電気車電流を抑制するとともに、変電所き電
側電気設備の絶縁強度を低減することを特徴とす
るATき電方式用変電所の絶縁低減方法。
1. In a feeding transformer in the autotransformer feeding system (hereinafter referred to as AT feeding system), a three-winding transformer is used, a neutral point is provided on the feeding side winding, and a short circuit device is installed in parallel. By inserting a reactor between the neutral point and the rail, the electric car current flowing into the neutral point of the transformer is suppressed, and the insulation strength of the electrical equipment on the substation feeding side is reduced. Insulation reduction method for AT feeding system substations.
JP1943984A 1984-02-07 1984-02-07 Method of reducing insulation in at feeding type substation Granted JPS60163739A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1943984A JPS60163739A (en) 1984-02-07 1984-02-07 Method of reducing insulation in at feeding type substation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1943984A JPS60163739A (en) 1984-02-07 1984-02-07 Method of reducing insulation in at feeding type substation

Publications (2)

Publication Number Publication Date
JPS60163739A JPS60163739A (en) 1985-08-26
JPH0336698B2 true JPH0336698B2 (en) 1991-06-03

Family

ID=11999323

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1943984A Granted JPS60163739A (en) 1984-02-07 1984-02-07 Method of reducing insulation in at feeding type substation

Country Status (1)

Country Link
JP (1) JPS60163739A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61204919A (en) * 1985-03-08 1986-09-11 Toshiba Corp Three winding scott connection transformer

Also Published As

Publication number Publication date
JPS60163739A (en) 1985-08-26

Similar Documents

Publication Publication Date Title
US7092262B2 (en) System and method for pre-charging the DC bus of a utility connected power converter
KR20080053301A (en) System and method for limiting ac inrush current
JPH0336698B2 (en)
SE510192C2 (en) Procedure and switching arrangements to reduce problems with three-tier currents that may occur in alternator and motor operation of AC machines connected to three-phase distribution or transmission networks
Zielichowski et al. Influence of difference system parameters on operating conditions of third harmonic ground-fault protection system of unit-connected generator
Mousa New grounding procedures for work on de-energized lines eliminate the need for ground switches
JPS6184008A (en) Three-phase transformer
US1988121A (en) Protective means for delta connected transmission lines
SU1736776A1 (en) Power supply for electric railways
JPH0426765B2 (en)
Bronzeado et al. Sympathetic interaction between transformers-A potential source of disturbances in electric power system
RU2063344C1 (en) Power supply device for ac traction circuit
JPS6010609A (en) Potential transformer
EP0901706B1 (en) A method and a device for reducing third harmonic phenomena in a rotating electric alternating current machine
SU691996A1 (en) Arrangement for power supply of regional and traction networks
RU1778857C (en) Device for limiting ferroresontant and resonant processes
US1475968A (en) Best available
RU1772862C (en) Device to protect instrument voltage transformer from damage at ferroresonance processes in insulated neutral network
SU1134983A1 (en) Device for protecting generator against single-phase short circuits
US1932973A (en) Means for suppressing ground currents in polyphase high voltage networks
Griffin Development and application of fault-withstand standards for power transformers
JPS6258215B2 (en)
Edgcumbe The protection of alternating-current systems without the use of special conductors
JPS584639A (en) Multiple earth circuit
Woodhouse et al. Discussion on “Current-limiting reactances on large power systems”