JPS61204919A - Three winding scott connection transformer - Google Patents

Three winding scott connection transformer

Info

Publication number
JPS61204919A
JPS61204919A JP60044536A JP4453685A JPS61204919A JP S61204919 A JPS61204919 A JP S61204919A JP 60044536 A JP60044536 A JP 60044536A JP 4453685 A JP4453685 A JP 4453685A JP S61204919 A JPS61204919 A JP S61204919A
Authority
JP
Japan
Prior art keywords
winding
primary
core leg
transformer
windings
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60044536A
Other languages
Japanese (ja)
Other versions
JPH0556643B2 (en
Inventor
Masaru Ono
小野 勝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP60044536A priority Critical patent/JPS61204919A/en
Publication of JPS61204919A publication Critical patent/JPS61204919A/en
Publication of JPH0556643B2 publication Critical patent/JPH0556643B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F30/00Fixed transformers not covered by group H01F19/00
    • H01F30/06Fixed transformers not covered by group H01F19/00 characterised by the structure
    • H01F30/12Two-phase, three-phase or polyphase transformers
    • H01F30/14Two-phase, three-phase or polyphase transformers for changing the number of phases

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Coils Of Transformers For General Uses (AREA)

Abstract

PURPOSE:To enable miniaturization and the reduction of a manufacturing price by containing iron cores and windings corresponding to those of two pairs in a tank, by connecting two primary windings in parallel and by connecting to a primary line with three bushings. CONSTITUTION:The primary winding 17 and the secondary winding 16 for a main transformer are wound around the first iron core leg 12, the primary winding 19 and the tertiary winding 18 for the main transformer are wound around the second iron core leg 13, the primary winding 21 and the secondary winding 20 for a teaseat transformer are wound around the third iron core leg 14 and the primary winding 23 and the tertiary winding 22 for the teaseat transformer are wound around the fourth iron core leg 15. The primary windings 17, 21 wound around the first iron core leg 12 and the third iron core leg 14 and the primary windings 19, 23 wound around the second iron core leg 13 and the fourth iron core leg 15 are separately Scott-connected and only the terminals U, V, W to be connected to the lines of two pairs of primary winding groups are connected in parallel. This satisfies leakage impedance characteristics, removes the trouble in operation, can reduce the insulation grade of the secondary and the tertiary windings and the circuits to a half, enables miniaturizaiton and light weight and can reduce the manufacturing price.

Description

【発明の詳細な説明】 [発明の技術分野] 本発明は、き電量変圧器として使用されるスコツト結線
変圧器1ユ関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a Scotto connection transformer used as a power feeding transformer.

・、[発明の技術的背景とその問題点]  :゛ 高速電気車C;電力を供給するための、き電用変圧器に
H第8図に示すような変形ウッドブリッジ結線と呼ばれ
る3相2相変換用変圧器1と昇圧用変圧器2とで構成さ
れ念ものが使用されている。
・、[Technical background of the invention and its problems]: High-speed electric vehicle It is constructed of a phase conversion transformer 1 and a step-up transformer 2, and is used as a backup.

(例えば「鉄道技術研究所速報J 1984年3月、N
o−A−84−39,国鉄発行、P2.3)3相2相変
換用変圧器1は1次巻線がY結線であり電圧glで受電
し、2次巻線は■相を並列i続この2次巻線の1組の出
力端子ae間の電圧なE2とすれば、もう1組の出力端
子b′4′間の電圧げE2ZSとなり、端子aC間と端
子b’ d’間の電圧の位相差は90度になっている。
(For example, “Railway Technology Research Institute Bulletin J, March 1984, N
o-A-84-39, published by Japan National Railways, P2.3) The primary winding of the three-phase two-phase conversion transformer 1 is Y-connected and receives power at voltage GL, and the secondary winding is If the voltage between one set of output terminals ae of this secondary winding is E2, the voltage between the other set of output terminals b'4' becomes E2ZS, and the voltage between terminals aC and terminals b' and d' is The voltage phase difference is 90 degrees.

昇圧用変圧器2rゴ入力端子h’ d’間の電圧Ez/
/J丁を昇圧し出力端子bd間に電圧E9を発生する単
巻変圧器である。
Voltage between step-up transformer 2r input terminals h' and d' Ez/
This is an autotransformer that boosts the voltage E9 between the output terminal bd and the output terminal bd.

この変形ウッドブリッジ結線変圧器方式で値、1次側中
性点0が直接接地で詐るので、超高圧線路から直接受電
でき、1次巻線の絶縁が大幅に低減できる利点がある。
This modified Woodbridge connected transformer method has the advantage that the primary neutral point 0 is grounded directly, so power can be received directly from the ultra-high voltage line, and the insulation of the primary winding can be significantly reduced.

しかしながら、受tTるの6超高圧線路からだけでなく
、受電電圧E1が154KV以下になる場合もありこの
場合は必らすしも1次側の中性点を引出し、接地する必
要はない。
However, there are cases where the received voltage E1 is not only 154 KV or less, but also from the 6 ultra-high voltage lines of the receiving terminal, and in this case, it is not necessary to draw out the neutral point on the primary side and ground it.

そして、3相2相変換用変圧器1のほかに昇圧用変圧器
2が必要となるため、大形化し、製造価格が高くなり、
かつ広い設置場所と多額の工事費が必要となる欠点があ
る。
In addition, a step-up transformer 2 is required in addition to the three-phase to two-phase conversion transformer 1, which increases the size and manufacturing cost.
Another drawback is that it requires a large installation space and a large amount of construction cost.

次(:、2次側の絶縁階級の低減C二ついて説明″t′
る。
Next (:, Reduction of insulation class on the secondary side C and explanation "t'
Ru.

第9図は変形ウッドブリッジ結線変圧器の片部と等価で
ある単相二巻線形のき軍用変圧器3の1次側(−電源4
を接続し、2次側にしゃ断器5苓・介して部巻変圧器6
を接続し、電気車7(−給電、丁お従来の単巻変圧器き
電力式(A、 T方式)を示している。この方式ではき
軍用変圧器3の2次側(″i非接地方式となっているた
め、単巻変圧器6が接続されていない状態、すなわちし
、や断器5が開の貼C二、2次側で地絡が発生すること
を考慮して、電気車電圧ETの2倍である2次宜圧)〕
2(ユ相当する絶縁階級としている。
Figure 9 shows the primary side of a single-phase, two-winding military transformer 3 (-power supply 4
is connected to the secondary side through the circuit breaker 5 and the transformer 6.
The figure shows a conventional autotransformer power system (A, T system). In this system, the secondary side of military transformer 3 ("i Since this is a system, when the autotransformer 6 is not connected, that is, when the disconnector 5 is open, a ground fault may occur on the secondary side. (secondary pressure, which is twice the voltage ET)]
2 (It is set as an insulation class equivalent to Yu.

第10図は最近開発された新AT方式を示し1、のであ
り、・そのき軍用変圧器8に電気工電圧ET・ζ二等し
い電圧B 272である2次%線と3次巻線をイAする
単相三巻線形である。
Figure 10 shows a recently developed new AT system.1.Then, a military transformer 8 is equipped with a secondary % wire and a tertiary winding having electrician voltage ET and ζ2 equal voltage B272. It is a single-phase three-winding wire.

すなわち、1次巻線9C二に電圧E1の電源4が接続さ
れ、2次巻線10と3次巻線11は直列(:接続され、
その接続点Nり接地され、両端の端子T、Fに、しゃ断
器5を介して単@変圧器6を接続し、。
That is, the power source 4 of voltage E1 is connected to the primary winding 9C2, and the secondary winding 10 and the tertiary winding 11 are connected in series (: connected).
The connection point N is grounded, and a single transformer 6 is connected to the terminals T and F at both ends via a breaker 5.

電気車7に給電する回路図である。3 is a circuit diagram for feeding power to an electric vehicle 7. FIG.

実際の使用では、これらの回路を両座分用量し、それら
の出力電圧の位相差を90度f二なるよう1ユ構成し、
両座の負荷が同一であれば1次側の3相電源からの電流
は3相平衡が得られるよ5fニジたものである。
In actual use, these circuits are divided into two circuits and configured so that the phase difference between their output voltages is 90 degrees f2.
If the loads on both seats are the same, the current from the three-phase power supply on the primary side is increased by 5f to obtain three-phase balance.

この新AT方式では、たとえ、しゃ断器5が開の時にも
接続点Nは接地されているので2次側と3次側の絶縁階
級は電気車電圧ET−1”なわち2次、3次の電圧1!
1272を二相当する値でよく、従来方式の半分(:す
ることができる。
In this new AT system, even when the breaker 5 is open, the connection point N is grounded, so the insulation class on the secondary and tertiary sides is the electric vehicle voltage ET-1'', that is, secondary and tertiary. Voltage 1!
A value equivalent to 2 1272 is sufficient, which is half of the conventional method.

しかし7、接続点Nで一端が接続されていても、2次巻
線10と3次巻線11ニ樵立しているので両巻線(−通
電する負荷電流には不平衡を生じるし2、地絡事故時(
ユは異常電圧が発生する恐れがあるので、き軍用変圧器
8の巻線間のもれインピーダンス≦二σ適正な配分が必
要である。次にそれを説明する。
However, even if one end is connected at the connection point N, since the secondary winding 10 and the tertiary winding 11 are connected, both windings (-) will cause unbalance in the load current flowing through them. , at the time of a ground fault (
Since there is a risk that an abnormal voltage may be generated in the military transformer 8, it is necessary to properly distribute the leakage impedance between the windings of the military transformer 8 so that the leakage impedance ≦2σ. I will explain it next.

もれインピーダンスは1,12組の巻線の一方jを短絡
し、他方iに電圧を加えその他の巻線は開放としたとき
の電圧、電流から計測され、基準そI、て各巻線は分離
し、iもれインピーダンスZ1゜Z2. ZBは(1)
式となる。
Leakage impedance is measured from the voltage and current when one of the windings 1 and 12 is short-circuited, voltage is applied to the other winding, and the other windings are open. and i leakage impedance Z1゜Z2. ZB is (1)
The formula becomes

このもれインピーダンスZll Z2. zaの関係に
おいて、Z2.とzaにほぼ同一値f二する必要がある
し、Zlの値についても、その給体値を小さくすること
が必要である。すなわち、zlの値が正の方向Iユあ1
りに太きいと、この新AT方式の特性として3次巻線に
比べ2次巻線の力により多く流れる電流不平衡の度合が
大きくなり、逆≦−Zlの(lKが負の方向(−あまり
に大きいと2次側が短絡した場合・3次側の電圧上昇が
犬きくなり、3次側が短絡した場合には2次側の電圧上
昇が大きくなり好ましくない。
This leakage impedance Zll Z2. In relation to za, Z2. It is necessary to set almost the same value f2 to and za, and it is also necessary to reduce the supply value of Zl. In other words, if the value of zl is positive,
If it is thicker, the characteristic of this new AT method is that the degree of current unbalance that flows more due to the force of the secondary winding than that of the tertiary winding increases, and the reverse ≦-Zl (lK is in the negative direction (- If it is too large, if the secondary side is short-circuited, the voltage rise on the tertiary side will be too large, and if the tertiary side is short-circuited, the voltage rise on the secondary side will be large, which is not preferable.

このようl二、運転上の制約からき軍用変圧器8のもれ
インピーダンス特性ハ(2)式の関係を満足させること
が大きな要因である。
Due to such operational constraints, it is a major factor that the leakage impedance characteristics of the military transformer 8 satisfy the relationship of equation (2).

[発明の目的] 本発明の目的6以上説明したような点に鑑みて受電電圧
Elが154KV以下の場合(−適用すれば、小形で製
造価格が低減できる三巻線スコツト結線変圧器を得るこ
とである。
[Objective of the Invention] Objective 6 of the Invention In view of the points explained above, when the receiving voltage El is 154 KV or less (- to obtain a three-winding Scott-connected transformer that is compact and can reduce manufacturing cost if applied) It is.

[発明の概要コ 本発明(ユよるき軍用変圧器は従来から使用されている
スコツト結線変圧器の2組(ユ相当する鉄心と巻線を1
つのタンクに収納し、2組の1次巻線線をタンク内で並
列(:接続し、UVWの3本のブッシング(ユよって1
次側線路に接続するようCニジ、そして2次と3次の絶
縁階級を従来の半分C二できしかももれインピーダンス
特性の前記(2)式の関係を満足できるようにしたもの
である。
[Summary of the Invention] The military transformer of the present invention is constructed by combining two sets of conventionally used Scotto connection transformers (one core and one winding).
The two sets of primary windings are connected in parallel inside the tank, and the three UVW bushings (one
The insulation class of the secondary and tertiary insulation is half of the conventional C2, but it is possible to satisfy the relationship of equation (2) of the leakage impedance characteristic.

[発明の実施例コ 以下本発明を第1図に示す実施例について説明する。第
1の鉄心脚12には主座用2次巻線16とそれシ一対応
する主座用1次巻線17を巻装し、第2の鉄心脚131
″−は主座用3次巻線18とそれに対応する主座用1次
巻線19を巻装する。同第1、第2の鉄心脚12と13
ハ同一寸法であり、2次巻線16と3次巻線18および
1次巻線17と19は各々同一寸法、同一巻回数として
おく。
[Embodiment of the Invention] The present invention will be described below with reference to an embodiment shown in FIG. The first core leg 12 is wound with a main seat secondary winding 16 and a corresponding main seat primary winding 17 .
"-" is wound with the main seat tertiary winding 18 and the corresponding main seat primary winding 19.The first and second iron core legs 12 and 13
C. The secondary winding 16, the tertiary winding 18, and the primary windings 17 and 19 have the same dimensions and the same number of turns.

第3の鉄心脚14に HT廃用2次巻線20とそれに対
応するT連用1次巻線21を巻装し、第4の鉄心脚15
にはT座屈3次巻線22とそれに対応するT車用1次巻
線羽を巻装する。同第3、第4の鉄心脚14と15は同
一寸法であり、2次巻線20と3次巻線22および1次
巻線21と23H各々同一寸法、同−巻回数としておく
The HT discarded secondary winding 20 and the corresponding T continuous primary winding 21 are wound around the third core leg 14, and the fourth core leg 15
A T-buckled tertiary winding 22 and a corresponding primary winding blade for a T-car are wound around the winding. The third and fourth core legs 14 and 15 have the same dimensions, and the secondary winding 20, the tertiary winding 22, and the primary windings 21 and 23H have the same dimensions and the same number of turns.

主座用の2次巻線16と3次巻線18ハ上下振分は巻き
で交差接続で循環回路ができる構成としておく。
The secondary winding 16 and the tertiary winding 18 for the main seat are arranged so that a circulating circuit can be formed by winding and cross-connecting the upper and lower parts.

主座用の1次巻線17.19tl;を上下端を線路端子
U。
The upper and lower ends of the primary winding 17.19 tl for the main seat are line terminals U.

Wとし、その中央を接続点M1 m Mlにとする。W and its center is the connection point M1 m Ml.

T座用の2次巻線20と3次巻線22ハ普通の巻き方で
あり、1次巻線21.23は上下振分は巻きで、上下端
を線路端子Vとし、その中央を接続点Ml。
The secondary winding 20 and tertiary winding 22 for the T-seat are wound in the usual way, and the primary winding 21.23 is divided into upper and lower windings, and the upper and lower ends are the line terminals V, and the middle is connected. Point Ml.

Mlとする。Let it be Ml.

そして、主座用とT座用の接続点Ml、 Mlをそれぞ
れ接続する。
Then, connect the connection points Ml and Ml for the main seat and T seat, respectively.

T連用1次巻線21.23に発生ず−る電圧は主座用1
次巻線17.19に、印加される電圧Elの872倍と
なるようシーし、2次巻線16.20および3次巻線1
8゜221−各々発生する電圧の大きさをF′Ia/ 
2となるようC;する。
The voltage generated in the T primary winding 21 and 23 is the main winding 1.
The voltage applied to the secondary winding 17.19 is set to 872 times the applied voltage El, and the secondary winding 16.20 and the tertiary winding 1
8゜221-The magnitude of each generated voltage is F'Ia/
C; so that it becomes 2.

以上のような構成(ユし、1次側端子U、V、Wに3相
電源を印加すれば普通のスコツト結線変圧器と同様5二
作用し、主座用′の2次巻線16と3次巻線18に、は
同一位相の電圧が、T座用の2次巻線20と3次巻線2
2には主座用の電圧と90度の位相差をもつ電圧が、そ
れぞれ得られる。
The above configuration (if a 3-phase power supply is applied to the primary side terminals U, V, and W), it functions similarly to an ordinary Scotto connection transformer, and the secondary winding 16 of the main seat The voltage of the same phase is applied to the tertiary winding 18, and the voltage of the same phase is applied to the secondary winding 20 for the T position and the tertiary winding 2.
2, voltages having a phase difference of 90 degrees from the voltage for the main seat are obtained.

そして各々の2次巻線と3次巻線に同−負荷を同時5;
接続すると1次側から流れ込む3相電流σ平衡すること
も、普通のスコツト結線変圧器と同様である。
and apply the same load to each secondary winding and tertiary winding at the same time.
When connected, the three-phase current σ flowing from the primary side is balanced, similar to an ordinary Scotto connection transformer.

2次巻線と3次巻線の絶縁階級については、使用時その
一端Nが必らず接地されているので従来の半分でよいこ
とは明確である。
It is clear that the insulation class of the secondary winding and the tertiary winding can be half of the conventional one since one end N of the winding is always grounded during use.

性を第2図から第5図までを使って説明する。これらの
関係は第1図5二示す構成をより、わかり易く、位相差
をもわかるようC1表示したものであり、鉄心脚は省略
しである。
The characteristics will be explained using Figures 2 to 5. These relationships are shown in C1 to make it easier to understand the configuration shown in FIG.

第2図から第5図までは、この変圧器の巻線間のもれイ
ンピーダンス測定を行なう場合の回路図でもあり、単相
電源24と短絡リード25≦二ついて、各場合を表示し
、流れる電流を矢印で示している。
Figures 2 to 5 are circuit diagrams for measuring leakage impedance between the windings of this transformer. The current is indicated by an arrow.

第2図は主座用の2次巻線と1次巻線の間のもれインピ
ーダンスZatの測定時であり、2次巻線16と1次巻
線17に電流が流れる。
FIG. 2 shows the measurement of the leakage impedance Zat between the secondary winding and the primary winding for the main seat, and current flows through the secondary winding 16 and the primary winding 17.

次(:主座用の3次巻線と1次巻線の間のもれインピー
ダンスZ81の測定時は第2図で3次巻線18C−電源
24を移すだけであり、2次巻線18と1次巻線191
;電流が流れる。この2回の測定は同一寸法。
Next (: When measuring the leakage impedance Z81 between the tertiary winding and the primary winding for the main seat, simply move the tertiary winding 18C-power supply 24 in Figure 2, and the secondary winding 18 and primary winding 191
; Current flows. These two measurements are the same size.

同一巻回数の巻線での組合せであるので(3)式が得ら
れる。
Since this is a combination of windings with the same number of turns, equation (3) is obtained.

Z21 = Zsl−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−(31第3図に主座用の
2次巻線と3次巻線の間のも拍スソプーA+ソッ7.,
1e小モ11中賎チム11  士定田ハ全巻線に電流が
流れ、Z21とZ81を測定した条件を直列接続とした
ことC二相当し、(4)式が得られる。
Z21 = Zsl−−−−−−−−−−−−−−−
------------
1e Small model 11 Middle model 11 Current flows through all the windings, and the conditions under which Z21 and Z81 were measured were connected in series, which corresponds to C2, and formula (4) is obtained.

Z28 = Z21 + Zst  −−−−−−−−
−−−−−−−−−−−−−−(4)(3) 、 (4
1式の関係を(1)式に代入するとZn = O,Zi
!= ze = Z21の関係が得られ(2)式を満足
することがわかる。
Z28 = Z21 + Zst −−−−−−−−
−−−−−−−−−−−−−(4)(3), (4
Substituting the relationship in equation (1) into equation (1), Zn = O, Zi
! It can be seen that the relationship = ze = Z21 is obtained and formula (2) is satisfied.

第4図はT座用の2次巻線と1次巻線の間のもれインピ
ーダンスZ’21の測定時であり、2次巻線20と1次
巻線21および主座用の1次巻線17と2次巻線16(
−電流が流れる。1次巻線21の電流は端子■で分流し
短絡リード25を通って1次巻線17に流れ、接続点M
1で合流するように流れる。そして1次巻線17i:発
生したアンペアターンを打消すようIユ2次巻jI11
6 CH循環電流が流れる。
Figure 4 shows the measurement of the leakage impedance Z'21 between the secondary winding and the primary winding for the T seat, and the leakage impedance Z'21 is measured between the secondary winding 20 and the primary winding 21 and the primary winding for the main seat. Winding 17 and secondary winding 16 (
- Current flows. The current in the primary winding 21 is shunted at the terminal ■, flows through the short circuit lead 25 to the primary winding 17, and connects to the connection point M.
Flowing as if merging at 1. And the primary winding 17i: IU secondary winding jI11 to cancel the generated ampere turn.
6 CH circulating current flows.

この第4図におけるもれインピーダンスZ’lllが前
述したZllと同一値になるよう(:設計される。
The leakage impedance Z'll in FIG. 4 is designed to have the same value as the aforementioned Zll.

次にTT座用3次巻線と1次巻線の間のもれインピーダ
ンスZ’81の測定時には、jg4図で3次巻線221
ユ電源24を移すだけであり、3次巻線22と1次巻線
23および主座用の1次巻線19と3次巻線181−電
流が流れる。
Next, when measuring the leakage impedance Z'81 between the tertiary winding for the TT seat and the primary winding, the tertiary winding 221 is
The current flows through the tertiary winding 22, the primary winding 23, and the primary winding 19 and the tertiary winding 181 for the main seat.

この2回の測定(ヴ、同一寸法、同一巻回数の巻線での
組合せであるので(5)式が得られる。
Since these two measurements are a combination of windings with the same dimensions and the same number of turns, equation (5) is obtained.

Z’zx = Z’81   −−−−−−−〜−−−
−−−−−−−−−−−−− (5)第5図1−jT座
用の2次巻線と3次巻線の間のもれインピーダンスZ’
2Bの測定時であり、2次巻線20に電源24を接続し
、3次巻線22が短絡リード25により短絡されている
。この場合に通t−rる巻線は主座とT座用の全部であ
り、前述のもれインピーダンスz′21とZ’31を測
定した条件を直列接続としたことに相当するので、(6
)式が得られる。
Z'zx = Z'81 −−−−−−−〜−−−
−−−−−−−−−−−−− (5) Figure 5 1-j Leakage impedance Z' between secondary winding and tertiary winding for T seat
2B is being measured, the power source 24 is connected to the secondary winding 20, and the tertiary winding 22 is short-circuited by the short-circuit lead 25. In this case, the windings that pass through t-r are all for the main seat and the T seat, and this corresponds to the condition where the leakage impedances z'21 and Z'31 were measured in series, so ( 6
) formula is obtained.

Z’*s = Z’21 + Z’si   −−−−
−−−−−−−−−−−−−−−−(6)(5) 、 
(6)式の関係を(1)式l:、代入するとZx:=0
.Zii= Z3 = Z’21の関係が得られ(2)
式を満足することがわかる。
Z'*s = Z'21 + Z'si ---
−−−−−−−−−−−−−−−−(6)(5),
Substituting the relationship in equation (6) into equation (1) l:, we get Zx:=0
.. The relationship Zii = Z3 = Z'21 is obtained (2)
It can be seen that the formula is satisfied.

鉄心構成は一般(:は鉄心脚12と13を、鉄心脚14
と15を各々一体とする2鉄心方式であるが、各脚を別
々C二、あるいは4脚を一体とする方式であってもわま
わない。設置場所までの輸送や設置場所の条件などで最
適となる方法を採用すればよい。
The core configuration is general (: core legs 12 and 13, core leg 14
Although this is a two-iron core system in which C and 15 are each integrated, it is also possible to use separate C2 legs for each leg or a system in which four legs are integrated. What is necessary is to adopt the method that is most suitable for transportation to the installation site, conditions of the installation site, etc.

尚、1次側の中性点接地l:よる1次側の低減絶縁9段
絶縁は本発明では不可能であるが、1次側の絶縁階級が
140号以下への適用を考えれば中性点を引出さなくて
も、絶縁低減という観点からはさほど問題(−ならない
Although it is impossible to achieve 9 stages of reduced insulation on the primary side by grounding the neutral point on the primary side, it is impossible to achieve 9 stages of insulation on the primary side by grounding the neutral point on the primary side. Even if you don't draw out the points, it doesn't pose much of a problem from the perspective of reducing insulation.

以上の説明かられかるようζ:本発明(−よればもれイ
ンピーダンス特性を満足すると共に次の特長がある。
As can be seen from the above description, the present invention (-) satisfies the leakage impedance characteristics and has the following features.

(1)1タンク方式なので小形・@量化ができる。(1) One tank system allows for compact size and quantity.

(2)2次と3次の絶縁階級を従来の半分にできる。そ
して2次と3次の回路1−使用される。しゃ断器、断路
器および避雷器などについても同様に低い絶縁階級の機
器でよいことになる。
(2) The secondary and tertiary insulation classes can be halved compared to conventional ones. And second and third order circuits 1- are used. Similarly, circuit breakers, disconnectors, lightning arresters, etc. can also be used as devices with low insulation class.

(3)高電圧である1次巻線を外側配置とし7でいるの
で、1次巻線のタップ引出しが容易であり絶縁構造上有
利となり、1次巻線を内側配置するサンドインチ巻線方
式より、寸法の縮少化が可能である。
(3) Sand inch winding method in which the primary winding with high voltage is placed on the outside, making it easy to tap out the primary winding, which is advantageous in terms of insulation structure, and placing the primary winding on the inside. Therefore, the dimensions can be reduced.

(4)鉄心脚12と13の各巻線、鉄心脚14と15の
各その種類が少なく、工作が容易である。
(4) There are few types of windings of the core legs 12 and 13 and of each of the core legs 14 and 15, making the work easy.

第6図は主座用巻線の変形例を示したものであり、1次
巻線26を交差接続として、T座州1次巻線からの流入
する電流を矢印f二示すようC;通″r構成としている
。1次巻線26ハ複雑(ユなるが2次巻線16や3次巻
線]8C二循環電流を発生しないですむ利点がある。
FIG. 6 shows a modified example of the main seat winding, in which the primary winding 26 is cross-connected, and the current flowing from the T seat primary winding is connected as shown by the arrow f2. The primary winding 26 has the advantage of not generating a complicated (secondary winding 16 and tertiary winding) 8C circulating current.

次に2次側と3次側の負荷のかかり方l:おいて、3次
側より2次側の方により大きな負荷がかかる場合がある
。例えば2次側1n130%の、3次側(ニア0%の各
負荷が短時間であるがかかる場合がある。
Next, how the load is applied to the secondary side and the tertiary side: In some cases, a larger load is applied to the secondary side than the tertiary side. For example, a load of 1n130% on the secondary side and a load of 0% on the tertiary side (near 0%) may be applied for a short time.

m1図の結線の場合であれば、2次巻線16,21Jに
130チ電流が流れると1次巻線]7には130チX流
が流れる。3次巻線18 、22 +’ニー 70%電
流が流れると1次巻線19C二は70チ電流が流れる。
In the case of the connection shown in the diagram m1, when a 130-chi current flows through the secondary windings 16 and 21J, a 130-chi current flows through the primary winding]7. When a 70% current flows through the tertiary windings 18 and 22+', a 70% current flows through the primary winding 19C2.

このような負荷のアンバランスC一対しても変圧器とし
て耐える必徽がある。
It is necessary for the transformer to withstand such load imbalance.

この目的を達成するための手段を第7図)二示す。The means for achieving this objective are shown in Figure 7).

第7図においては第1図に示す結線(=おいてT座いる
。このような結線ζ二すると2次巻線164: 130
チ電流が、3次巻線22には70%電流が流れるので1
次巻線171ユは約118 %電流が流れる。3次巻線
181ニー70チ電流が、2次巻線20に130%電流
が流れると1次巻線19(ユは約89%電流が流れる。
In FIG. 7, the connection shown in FIG.
Since 70% current flows through the tertiary winding 22, the current is 1.
Approximately 118% current flows through the next winding 171U. When 70% current flows through the tertiary winding 181 and 130% current flows through the secondary winding 20, approximately 89% current flows through the primary winding 19 (Y).

すなわち第1図では1次巻線17(ユ大きな電流が、1
次巻線19には小さな電流が各々流れるので、1次巻線
17の温度が高くなる。これに対し第7図では1次巻線
17の電流は大きくはなるが、13(1にはならないし
、1次巻線19C;は100%より小さい電流となるの
で、1次巻線17の温度は第1図の場合より低くなる。
In other words, in FIG. 1, a large current flows through the primary winding 17 (1
Since a small current flows through each of the secondary windings 19, the temperature of the primary winding 17 increases. On the other hand, in FIG. 7, the current in the primary winding 17 becomes large, but it does not become 1, and the current in the primary winding 19C is less than 100%. The temperature will be lower than in FIG.

このようにアンバランス負荷が、このスコツト結線変圧
器l二かかつても1次巻線17の温度上昇は少なくなり
、温度の高いことζ二よる絶縁物の劣化が小さくできる
。逆にいえば、温度が高くならないので、その分だけ細
い素線が使用できるので、材料費の低減が可能となる。
In this way, when an unbalanced load is applied to this Scott-connected transformer, the temperature rise in the primary winding 17 is reduced, and the deterioration of the insulator due to the high temperature can be reduced. Conversely, since the temperature does not increase, thinner wires can be used, and material costs can be reduced.

この上うC二巻線の構成はその要旨を変更しない範囲で
適宜変形し実施し得ることは勿論である。
It goes without saying that the configuration of the two C windings can be modified and implemented as appropriate without changing the gist thereof.

又容量が大きくあるいは輸送条件が小さく、輸送が困難
となる場合には主座用変圧器とT座用変圧器を別々のタ
ンクに収納し、油中ダクトで接続し、一体とする方法を
採用してもよい。
In addition, if the capacity is large or the transportation conditions are small and transportation is difficult, a method is adopted in which the main transformer and T-seat transformer are stored in separate tanks and connected with an oil submerged duct. You may.

[発明の効果] 以上のよう(ユ本発明によれば主座変圧器用の1次巻線
と2次巻線を第1の鉄心脚C;巻装し、主座変圧器用の
1次巻線と3次巻線を第2の鉄心脚に巻装し、T座変圧
器用1次巻線と2次巻線を第3の鉄心脚に巻装し、T座
変圧器の1次巻線と3次巻線を第4の鉄心脚(−巻装し
たものにおいて、第1の鉄心脚と第3の鉄心脚に巻装し
た1次巻線および第2の鉄心脚と第4の鉄心脚(ユ巻装
し念1次巻線を別々(ニスコツト結線し、その2組の1
次巻線群の線路セ接続される端子のみを並列(ユ接続す
るよりC二したのでもれインピーダンス−特性を満足し
運転上の不具合をなくし、2次および3次の巻線および
回路の絶縁階級が半減でき、しかも小形・軽量化が可能
で製造価格が低減できる三巻線スコツト結線変圧器を提
供できる。
[Effects of the Invention] As described above (according to the present invention), the primary winding and the secondary winding for the main transformer are wound around the first core leg C; and the tertiary winding are wound around the second core leg, and the primary and secondary windings for the T-seat transformer are wound around the third core leg. In the case where the tertiary winding is wound around the fourth core leg (-, the primary winding is wound around the first core leg and the third core leg, and the second core leg and the fourth core leg (-) are wound. The primary windings are connected separately (the two sets are connected separately, and one of the two sets is
Only the terminals that are connected to the line of the next winding group are connected in parallel (rather than connecting with U), which satisfies the leakage impedance characteristics, eliminates operational problems, and insulates the secondary and tertiary windings and circuits. It is possible to provide a three-winding Scotto connection transformer that can reduce the number of classes by half, can be made smaller and lighter, and can reduce manufacturing costs.

【図面の簡単な説明】 第1図は本発明による三巻線スコツト結線変圧器の一実
施例を示す結線図、第2図から第5図までは本発明ζ二
よる巻線の接続と各巻線間のもれインピーダンス測定を
示す結線図、第6図は本発明1ユよる他の実施例の一部
を示す結線図、第7図は本発明の従属発明を示す結線図
、第8図は従来の変形ウッドブリッジ結線のき電変圧器
の結線図、第9図は従来の変形ウッドブリッジ結線4:
おけるAT方式の回路構成説明図、第10図は新しい三
巻線き電相変圧器(ユよるAT方式の回路構成説明図で
ある。 1・・・3相2相変換用変圧器 2・・・昇圧用変圧器  3.8・・・き電相変圧器5
・・・しゃ断器    6・・・単巻変圧器7・・・電
気車    12.13.14.15−・・鉄心脚9 
、1?、 19.21.23・・・1次巻線10、16
.20・・・2次巻線 11 、18.22・・・3次
巻線什褌人 冶l叩本 印I ;丘 審 汝 (4%禍
、1次)第1図 第5図 第を図 第8図
[Brief Description of the Drawings] Fig. 1 is a wiring diagram showing an embodiment of a three-winding Scott-connected transformer according to the present invention, and Figs. 2 to 5 show the connection of the windings and each winding according to A wiring diagram showing measurement of leakage impedance between lines, FIG. 6 is a wiring diagram showing a part of another embodiment according to the first aspect of the present invention, FIG. 7 is a wiring diagram showing a dependent invention of the present invention, and FIG. 8 is a wiring diagram of a feeder transformer with a conventional modified Woodbridge connection, and Figure 9 shows a conventional modified Woodbridge connection 4:
Figure 10 is an explanatory diagram of the circuit configuration of the AT system in the new three-winding feeder phase transformer (Yu). 1. Three-phase two-phase conversion transformer 2.・Step-up transformer 3.8...Feeding phase transformer 5
... Breaker 6 ... Autotransformer 7 ... Electric car 12.13.14.15 - ... Iron core leg 9
, 1? , 19.21.23...Primary winding 10, 16
.. 20...Secondary winding 11, 18.22...Third winding 11, 18.22...Third winding 1. Figure 8

Claims (2)

【特許請求の範囲】[Claims] (1)主座変圧器用の1次巻線と2次巻線を第1の鉄心
脚に巻装し、主座変圧器用の1次巻線と3次巻線を第2
の鉄心脚に巻装し、T座変圧器用1次巻線と2次巻線を
第3の鉄心脚に巻装し、T座変圧器の1次巻線と3次巻
線を第4の鉄心脚に巻装したものにおいて、第1の鉄心
脚と第3の鉄心脚に巻装した1次巻線および第2の鉄心
脚と第4の鉄心脚に巻装した1次巻線を別々にスコット
結線し、その2組の1次巻線群の線路に接続される端子
のみを並列に接続したことを特徴とする三巻線スコット
結線変圧器。
(1) The primary and secondary windings for the main transformer are wound around the first core leg, and the primary and tertiary windings for the main transformer are wound around the second core leg.
The primary and secondary windings for the T-seat transformer are wound on the third core leg, and the primary and tertiary windings of the T-seat transformer are wound on the fourth core leg. In the case where the core legs are wound, the primary windings wound around the first core leg and the third core leg, and the primary windings wound around the second core leg and the fourth core leg are separated. A three-winding Scott-connected transformer characterized in that the three-winding Scott-connected transformer is characterized in that only the terminals connected to the lines of the two primary winding groups are connected in parallel.
(2)主座変圧器用の1次巻線と2次巻線を第1の鉄心
脚に巻装し、主座変圧器用の1次巻線と3次巻線を第2
の鉄心脚に巻装し、T座変圧器用1次巻線と3次巻線を
第3の鉄心脚に巻装し、T座変圧器の1次巻線と2次巻
線を第4の鉄心脚に巻装したものにおいて、第1の鉄心
脚と第3の鉄心脚に巻装した1次巻線および第2の鉄心
脚と第4の鉄心脚に巻装した1次巻線を別々にスコット
結線し、その2組の1次巻線群の線路に接続される端子
のみを並列に接続したことを特徴とする三巻線スコット
結線変圧器。
(2) The primary and secondary windings for the main transformer are wound around the first core leg, and the primary and tertiary windings for the main transformer are wound around the second core leg.
The primary and tertiary windings for the T-seat transformer are wound on the third core leg, and the primary and secondary windings of the T-seat transformer are wound on the fourth core leg. In the case where the core legs are wound, the primary windings wound around the first core leg and the third core leg, and the primary windings wound around the second core leg and the fourth core leg are separated. A three-winding Scott-connected transformer characterized in that the three-winding Scott-connected transformer is characterized in that only the terminals connected to the lines of the two primary winding groups are connected in parallel.
JP60044536A 1985-03-08 1985-03-08 Three winding scott connection transformer Granted JPS61204919A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60044536A JPS61204919A (en) 1985-03-08 1985-03-08 Three winding scott connection transformer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60044536A JPS61204919A (en) 1985-03-08 1985-03-08 Three winding scott connection transformer

Publications (2)

Publication Number Publication Date
JPS61204919A true JPS61204919A (en) 1986-09-11
JPH0556643B2 JPH0556643B2 (en) 1993-08-20

Family

ID=12694226

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60044536A Granted JPS61204919A (en) 1985-03-08 1985-03-08 Three winding scott connection transformer

Country Status (1)

Country Link
JP (1) JPS61204919A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010193683A (en) * 2009-02-20 2010-09-02 Tokuden Co Ltd Three-phase/single-phase conversion voltage adjusting transformer
CN104575999A (en) * 2015-01-13 2015-04-29 正泰电气股份有限公司 Traction transformer for cophase power supply

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60163739A (en) * 1984-02-07 1985-08-26 Japanese National Railways<Jnr> Method of reducing insulation in at feeding type substation

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60163739A (en) * 1984-02-07 1985-08-26 Japanese National Railways<Jnr> Method of reducing insulation in at feeding type substation

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010193683A (en) * 2009-02-20 2010-09-02 Tokuden Co Ltd Three-phase/single-phase conversion voltage adjusting transformer
CN104575999A (en) * 2015-01-13 2015-04-29 正泰电气股份有限公司 Traction transformer for cophase power supply

Also Published As

Publication number Publication date
JPH0556643B2 (en) 1993-08-20

Similar Documents

Publication Publication Date Title
US2488628A (en) Multiphase power transformer
JPS61204919A (en) Three winding scott connection transformer
US3290510A (en) Electrical apparatus
US3440516A (en) Transformer and capacitor apparatus for three-phase electrical systems
CN208890380U (en) A kind of unit compensated transmission system
Peters et al. Transformers for interconnecting high-voltage transmission systems: For feeding synchronous condensers from a tertiary winding
US2357098A (en) Transformer
US2004954A (en) Potential device
EA025827B1 (en) Three-phase balance-to-unbalance autotransformer (embodiments)
Fortescue A study of some three-phase systems
US2667617A (en) Polyphase transformer system with grounded neutral
JPS61204918A (en) Scott connection transformer
US1900494A (en) Power transmission system
Gross Sensitive Ground Relaying of AC Generators [includes discussion]
JPS6284505A (en) Three-winding scott connecting transformer
JPH11186070A (en) Single-phase autotransformer
Alexander et al. EHV application of autotransformers
US2277860A (en) Ground fault neutralizer
US1724437A (en) System of electric transmission
JPS63194315A (en) Three-phase three-winding transformer
JPS598053B2 (en) single phase three winding transformer
JPS62291907A (en) 3-phase/2-phase conversion transformer
Sorensen et al. Inherent voltage relations in Y and delta connections
JPH0426765B2 (en)
SU1030909A1 (en) Power supply system