JPS63194315A - Three-phase three-winding transformer - Google Patents

Three-phase three-winding transformer

Info

Publication number
JPS63194315A
JPS63194315A JP62026224A JP2622487A JPS63194315A JP S63194315 A JPS63194315 A JP S63194315A JP 62026224 A JP62026224 A JP 62026224A JP 2622487 A JP2622487 A JP 2622487A JP S63194315 A JPS63194315 A JP S63194315A
Authority
JP
Japan
Prior art keywords
winding
transformer
neutral point
primary winding
primary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62026224A
Other languages
Japanese (ja)
Inventor
Masaru Ono
小野 勝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP62026224A priority Critical patent/JPS63194315A/en
Publication of JPS63194315A publication Critical patent/JPS63194315A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/30Reactive power compensation

Landscapes

  • Regulation Of General Use Transformers (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

PURPOSE:To contrive realizing a three-phase three-winding transformer for SVC by providing the windings of the transformer in the order of a secondary winding, a tertiary winding and a primary winding from the side of the main leg of an iron core. CONSTITUTION:In a three-phase three-winding transformer 11 for SVC, a primary winding 7 and a secondary winding 3 which are star connections and a delta connection stabilizing winding 12 are wound around an iron core and a reactor 13 is connected between the terminals a1, a2 of the stabilizing winding 12. The line terminals U, V, W of the primary winding 7 are connected to an electric power system 1, a neutral point terminal O is directly grounded, the secondary winding 3 is connected to TCR5, TCR6 and a neutral point Q and a neutral point N are also connected. Since the primary winding is the star connection and the neutral point can directly be grounded in this way, the direct connection to an extra-high voltage system is possible, the primary winding can be made graded insulation and reduced insulation, the structure of the primary winding is convenient for an insulating structure since a high voltage line terminal can be drawn from the center of the winding and a low voltage neutral point terminal can be drawn from the upper and the lower ends of the winding easily and the transformer can be made compact for these reasons.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は電力系統の安定度向上のための静止形無効電力
補償装b’ffi (svcと略称す)用の三相三巻線
変圧器に関するものである。
[Detailed Description of the Invention] [Object of the Invention] (Industrial Application Field) The present invention is a three-phase static reactive power compensator b'ffi (abbreviated as SVC) for improving the stability of power systems. It concerns a three-winding transformer.

(従来の技術) 近年電力需要の増大に伴い、送電電圧も高くなり、電力
系統の大きさも増大してきている。そこで送電電力量の
′変化、送電回路網構成の変化、故障による線路の開閉
、負荷の開閉などによって発生する系統の動揺も大きく
なるので、その動揺をおさえ、系統安定の改善、増進を
はかるためSvCが使用されている。
(Prior Art) In recent years, as the demand for electric power has increased, power transmission voltage has also increased, and the size of electric power systems has also increased. Therefore, fluctuations in the grid caused by changes in the amount of transmitted electricity, changes in the configuration of the power transmission network, switching on and off of lines due to failures, switching on and off of loads, etc. become large, so in order to suppress such fluctuations and improve and increase system stability. SvC is used.

従来のSvCでは5゛、7次の高調波を除去するために
、1次星形結線、2次三角結線の変圧器と。
In conventional SvC, in order to remove the 5th and 7th harmonics, a transformer with a primary star connection and a secondary triangular connection is used.

1次2次とも星形結線の変圧器の2台を使用する、三相
12パルス方式が主流であるが、例えばIEEETra
nsaetions on Pouer Appara
tus and Systems。
The mainstream is a three-phase 12-pulse system that uses two star-connected transformers for both the primary and secondary, but for example, IEEE Tra
nsaetions on Pouer Appara
tus and Systems.

Vol、 PAS−102,Na12. Dece+*
ber 1983.第3728頁乃至第3735頁の記
載によれば第5図に示すように1台の変圧器のみを用い
る三相12パルス方式を提案している。この方式の採用
により価格面のみならず、変圧器の損失も低減できると
いう大きな利点がある。
Vol, PAS-102, Na12. Dece+*
ber 1983. According to the description on pages 3728 to 3735, a three-phase 12-pulse system using only one transformer as shown in FIG. 5 is proposed. Adopting this method has the great advantage of reducing not only the cost but also the loss of the transformer.

第5図は、その主回路構成を示したものであり、電力系
M1に、三角結線の1次巻線2と星形結線の2次巻線3
を鉄心(図示していない)に巻装したSvC用変圧°器
4を接続し、変圧器4の2次側には、三角結線のサイリ
スタ制御リアクトル(TCRと略称す)5と星形結線の
TCR6が接続される。
FIG. 5 shows the main circuit configuration. The power system M1 includes a triangular connected primary winding 2 and a star connected secondary winding 3.
An SvC transformer 4, which is wound around an iron core (not shown), is connected to the secondary side of the transformer 4, and a triangular-connected thyristor control reactor (TCR) 5 and a star-connected thyristor control reactor (TCR) 5 are connected to the secondary side of the transformer 4. TCR6 is connected.

変圧器4の2次側中性点σと星形結線TCR6の中性点
Nも接続されている。
The secondary neutral point σ of the transformer 4 and the neutral point N of the star-shaped connection TCR6 are also connected.

SvCで重要である高調波電流の流れ方について説明す
る。3次、9次の調波分については、三角結線TCR5
の発生電流分の3次(I3A)、9次(1,A)は第5
図に示すように、三角結線ABC内を循環し、星形結線
τCR6の発生電流分の3次Cl5yL9次(I、いは
第5図に示すように零相電流となり、TCR6の中性点
N、2次側中性点ひ、2次巻線3.TCR6と循環し、
変圧器作用により2次巻線3の電流は1次巻82に循環
し打消され、電力系統1には流出しない。5次、7次の
調波分については、丁CR5とTCR6の接続点A、B
、Cにおいて、三角結@TCR5の発生電流分と星形結
線TCR6の発生電流分とが丁度打消される条件となり
、変圧器巻線2,3には流れなく電力系統1にも流出し
ない。
The flow of harmonic current, which is important in SvC, will be explained. For 3rd and 9th harmonics, triangular connection TCR5
The 3rd (I3A) and 9th (1, A) of the generated current are the 5th
As shown in the figure, it circulates within the triangular connection ABC, and the third-order Cl5yL9th-order (I) for the current generated in the star-shaped connection τCR6 becomes a zero-sequence current as shown in FIG. , secondary side neutral point H, secondary winding 3.TCR6 and circulate,
Due to the transformer action, the current in the secondary winding 3 circulates to the primary winding 82 and is canceled, and does not flow into the power system 1. For the 5th and 7th harmonics, connect points A and B between CR5 and TCR6.
, C, the condition is such that the current generated by the triangular connection @TCR5 and the current generated by the star connection TCR6 exactly cancel each other out, so that the current does not flow into the transformer windings 2 and 3 and does not flow into the power system 1.

従って、電力系統1に流出する高調波電流は、2台の変
圧器を用いた従来方式と同様であり、三角結線TCR5
と星形結線TCR6によって発生する11次(Lzt、
−I、1Y)と13次(工、3a* 113y)の高調
波電流だけとなる。
Therefore, the harmonic current flowing into the power system 1 is the same as in the conventional system using two transformers, and the triangular connection TCR5
and the 11th order (Lzt,
-I, 1Y) and 13th harmonic current (I, 3a*113y).

変圧器の1次巻線を星形結線とした場合については第6
図になることは容易に想像できる。
Regarding the case where the primary winding of the transformer is connected in a star shape, see Chapter 6.
It is easy to imagine what will become of the figure.

第6図は1次巻線7を星形結線とし、三角結線の3次巻
線8を追加した三相三巻線変圧器9としたものであり、
星形結線TCR6により発生する3次、9次の調波分で
ある電流I3 Y t II ’/は3次巻線8内を循
環し、他の作用は第5図と同様である。
FIG. 6 shows a three-phase, three-winding transformer 9 in which the primary winding 7 is star-connected and a triangular-connected tertiary winding 8 is added.
The current I3 Y t II '/ which is the 3rd and 9th harmonic components generated by the star-connected TCR 6 circulates in the tertiary winding 8, and other operations are the same as in FIG.

(発明が解決しようとする問題点) 第6図に示すように1次巻線7の中性点Oはアレスタ1
0を接続するかあるいは中性点Oを外部に引出さない方
法にする必要がある。
(Problem to be solved by the invention) As shown in FIG. 6, the neutral point O of the primary winding 7 is located at the arrester 1.
It is necessary to connect the neutral point O or use a method that does not draw out the neutral point O to the outside.

その理由は、中性点0が対地に対してそのインピーダン
スが非常に大きくなり1次巻RIA7と電力系統1の零
相インピーダンスを大きくし、星形結線TCR6により
発生する3次、9次の調波分である電流Lym Lvが
電力系統1に流出しないようにするためである。
The reason for this is that the impedance of the neutral point 0 with respect to the ground becomes extremely large, increasing the zero-sequence impedance of the primary winding RIA7 and the power system 1, and causing the 3rd and 9th harmonics generated by the star-shaped connection TCR6. This is to prevent the current Lym Lv, which is a wave component, from flowing out to the power system 1.

もし、中性点Oを直接接地したとすれば1次巻線7と電
力系統1の零相インピーダンスが小さくなり、電流IY
w IsYの一部分は電力系統1に流出することになる
。多量の高調波電流I3 Y v Is Yが電力系統
1に流出することになれば、その電力系統1に接続され
ている発電機や負荷などに高調波電流による障害が発生
し、系統運用上問題になり、このようなシステムは一般
的には採用されな動電。
If the neutral point O is directly grounded, the zero-sequence impedance of the primary winding 7 and the power system 1 will be small, and the current IY
A portion of w IsY will flow into the power system 1. If a large amount of harmonic current I3 Y v Is Y were to flow into the power system 1, the harmonic current would cause problems in generators and loads connected to the power system 1, causing problems in system operation. Therefore, such systems are generally not electrokinetic.

一方、電力系統の電圧は、絶縁階級170号以上が多く
、その系統に使用される変圧器の1次巻線はその中性点
0を直接接地する場合が多い。もし、1次中性点Oを直
接接地しないと1次巻線の絶縁が低減できないので、そ
の変圧器の寸法重量が大きくなり、価格も高くなってし
まうので一般的には直接接地とする。
On the other hand, the voltage of power systems is often insulation class 170 or higher, and the neutral point 0 of the primary winding of a transformer used in the system is often directly grounded. If the primary neutral point O is not directly grounded, the insulation of the primary winding cannot be reduced, resulting in the transformer being larger in size, weight, and price, so direct grounding is generally used.

また、第5図に示すような1次巻線が三角結線である場
合も1次巻線の絶縁上から不利となり電力系統に直接接
続される変圧器には通常使用されない。
Further, even if the primary winding is triangularly connected as shown in FIG. 5, this is disadvantageous in terms of insulation of the primary winding, and is not normally used in transformers that are directly connected to the power system.

本発明は上述の点を考慮し、1次中性点Oを直接接地し
ても、星形結線TCR6により発生する3次、9次の調
波分である電流I3 Y e II Yが電力系統1に
流出する量を非常に少なくシ、実質上問題とならない、
SvC用の三相三巻線変圧器を得ることを目的とする。
The present invention takes the above-mentioned points into account, and even if the primary neutral point O is directly grounded, the current I3 Y e II 1. The amount flowing out is very small and does not pose a problem in practice.
The purpose is to obtain a three-phase three-winding transformer for SvC.

〔発明の構成〕[Structure of the invention]

(問題点を解決するための手段) 第6図における変圧器9の巻線配置は通常では鉄心主脚
側より、3次巻線、2次巻線g1次巻線の順に配置され
るが1本発明では鉄心主脚側より2次巻線、3次巻線、
1次巻線の順に配置する。
(Means for solving the problem) The winding arrangement of the transformer 9 in Fig. 6 is normally arranged in the order of the tertiary winding, the secondary winding g, the primary winding from the iron core main leg side, but 1 In the present invention, the secondary winding, the tertiary winding,
Place them in the order of the primary winding.

(作 用) 上述のように巻線配置を変更することにより、その巻線
群間の零相インピーダンス分配かがねり、3次巻線分の
零相リアクタンスは負の値となる。
(Function) By changing the winding arrangement as described above, the zero-sequence impedance distribution between the winding groups is changed, and the zero-sequence reactance of the tertiary winding becomes a negative value.

この負のリアクタンス値を3次巻線に直列にリアクトル
を接続し打消せば、3次巻線への零相リアクタンスは零
にすることができる。3次巻線への零相リアクタンスが
零になれば、3次巻線への零相インピーダンスも小さく
なり、たとえ1次中性点0が接地されて1次巻線と電力
系統への零相インピーダンス回路が構成されても3次、
9次の調波分である電流L ’l p I!l Yは3
次巻線内を循環し。
If this negative reactance value is canceled by connecting a reactor in series with the tertiary winding, the zero-sequence reactance to the tertiary winding can be made zero. When the zero-sequence reactance to the tertiary winding becomes zero, the zero-sequence impedance to the tertiary winding also becomes small, and even if the primary neutral point 0 is grounded, the zero-sequence to the primary winding and the power system Even if the impedance circuit is configured, the tertiary
The current L'l p I! is the ninth harmonic component. l Y is 3
Circulate within the next winding.

1次巻線には流れなくなり、電力系統にも流出しないこ
とになる。
It will no longer flow into the primary winding and will not flow into the power system.

(実施例) 以下、本発明を図面に示す実施例について説明する6 第1図において、本発明によるSYC用三和三巻線変圧
器11は星形結線である1次巻線7と2次巻線3および
三角結線である安定巻線12が鉄心に巻線され、安定巻
線12の端子81982間にリアクトル13を接続する
構成である。
(Embodiment) An embodiment of the present invention shown in the drawings will be described below.6 In Fig. 1, a Sanwa three-winding transformer 11 for SYC according to the present invention has a star-connected primary winding 7 and a secondary The winding 3 and the stable winding 12 having a triangular connection are wound around an iron core, and the reactor 13 is connected between the terminals 81982 of the stable winding 12.

そして、1次巻線7の線路端子U、V、Wは電力系統1
に接続され、中性点端子0は直接接地し。
The line terminals U, V, and W of the primary winding 7 are connected to the power system 1.
The neutral point terminal 0 is directly grounded.

2次巻線3はTCR5、TCR6に接続され、中性点α
と中性点Nも接続される。
The secondary winding 3 is connected to TCR5 and TCR6, and the neutral point α
and the neutral point N are also connected.

第2図は、本発明の変圧器11の巻線配置を示すもので
あり、鉄心主脚14の上に、2次巻線3.安定巻線12
および1次巻線7の各巻線を順次巻装し。
FIG. 2 shows the winding arrangement of the transformer 11 of the present invention, with the secondary winding 3. Stable winding 12
and each winding of the primary winding 7 is wound in sequence.

それらの巻線の寸法を表示しである。The dimensions of those windings are shown below.

第2図に示す内鉄形同心配置巻線における各2巻線間の
零相リアクタンスは次式で概算f1μが求められる。
The zero-sequence reactance between each two windings in the core type concentric winding shown in FIG. 2 can be approximately calculated by the following equation.

1次巻線7と2次巻[3の間 %IXo 、p−s= K X Qp−s [%]・・
・・・・01次巻、t!7と安定巻線12の間 %IXa tP−T= K X QP−T [%]  
    −・−■2次巻線3と安定巻線12の間 %IXo ts−r= K X Qs−t  [%]・
・・・・・  Cつ但しに=4.961P/(3e2H
)         −・・G4)f:定格周波数[H
zコ、I);定格容lit [MVA]e;1巻回ボル
ト[V/回コ。
Between the primary winding 7 and the secondary winding [3] % IXo, p-s = K X Qp-s [%]...
...01st volume, t! 7 and stable winding 12 %IXa tP-T= K X QP-T [%]
-・-■ Between the secondary winding 3 and the stable winding 12 %IXo ts-r= K X Qs-t [%]・
・・・・・・ C Tsudashi = 4.961P/(3e2H
) −...G4) f: Rated frequency [H
z, I); Rated capacity lit [MVA] e; 1 turn volt [V/turn.

H;第2図に示す巻線の軸方向の軸方向高さ[IIWI
Iコー〇、・B、   D6・B、   D、・8゜Q
p−s −−+ −+□    ・・・・・・■QP−
T ” ””五十瞠塩十瞠五  呻・(6)゜3イ:駈
五やに五ヤら当  10100.0B1−Bs、D、〜
D6;第6;に示す巻線の半径方向寸法[m1次に変圧
器11の2次巻線3から見た零相インピーダンスの等価
回路は第3図となり、各分岐の零相インピーダンス2゜
Py Zase ZIITの内の各零相リアクタンス%
IXaPe%IXo B e%IXaTは次式で求めら
れる。
H; axial height of the winding shown in Fig. 2 [IIWI
I Cor〇,・B, D6・B, D,・8゜Q
p-s −−+ −+□ ・・・・・・■QP−
T ” ””50 1000.0 B1-Bs, D, ~
D6: The radial dimension of the winding shown in 6th [m1] Next, the equivalent circuit of the zero-sequence impedance seen from the secondary winding 3 of the transformer 11 is shown in Figure 3, and the zero-sequence impedance of each branch is 2゜Py Each zero phase reactance% of Zase ZIIT
IXaPe%IXoBe%IXaT is determined by the following formula.

%IXop=’ (%IX+wP−3+%IX。、P−
7−%IX。、3−T)−・・・<8)%IX、s= 
’ (%IXneP−8+%lX5sP−T+%Ixo
、8−7)・・・・・・(9)%IXoT=↓(%工x
orP−3+%IX。、P−7+%IX。、5−t) 
−・・(10)(10)式に■弐〜■式を代入し、さら
に0式〜■式を代入し、整理すると となり、%IXOTは負の値となる。
%IXop=' (%IX+wP-3+%IX.,P-
7-% IX. ,3-T)-...<8)%IX,s=
'(%IXneP-8+%lX5sP-T+%Ixo
, 8-7)...(9)%IXoT=↓(%
orP-3+%IX. , P-7+%IX. , 5-t)
- (10) By substituting equations (1) to (10), and further substituting equations (0) to (2), the result is that %IXOT becomes a negative value.

これらの零相リアクタンスに各抵抗分を含めたものが零
相インピーダンス2゜P+ zos+ ZaTとなり、
Z o Lは電力系統1の零相インピーダンス、 ZR
はリアクトル13のインピーダンスとする。
The zero-sequence reactance including each resistance becomes the zero-sequence impedance 2゜P+zos+ZaT,
Z o L is the zero-sequence impedance of power system 1, ZR
is the impedance of the reactor 13.

この第3図における電流分流は次式で求められる。The current shunt in FIG. 3 is determined by the following equation.

(11)式で%IXo Tが負の値なので、リアクトル
13のリアクタンス値(%IXR)を KxD、−肛と
すれば(ZllT+ZR)の値は抵抗分だけとなり、小
さくなるので(12)式で表わされるIPは小さくする
ことができる。
Since %IXoT is a negative value in equation (11), if the reactance value (%IXR) of reactor 13 is set to KxD, - the value of (ZllT+ZR) is only the resistance, which becomes small, so equation (12) The IP represented can be small.

ここで問題にしているのは、星形結線TCR6により発
生する3次、9次の調波分である電流I>YtIsYの
流れ方であるので、リアクタンス分は周波数に比例し、
電流ICYに対しては3倍に、電流LYに対しては9倍
となり、抵抗分は周波数によってはほとんど増加しない
ので(12)式によって表わされるIPはますます零に
近づくことになる。ipが零になることは、2次巻vA
3より流入してきた電流I、Y w 1.’lが1次巻
1m7の方に流れないことを意味する。
The problem here is how the current I>YtIsY, which is the 3rd and 9th harmonic components generated by the star-connected TCR6, flows, so the reactance component is proportional to the frequency,
The current ICY is tripled, and the current LY is 9x, and since the resistance component hardly increases depending on the frequency, IP expressed by equation (12) approaches zero more and more. The fact that ip becomes zero means that the second volume vA
3, the currents I, Y w 1. 'l does not flow towards the primary winding 1m7.

一方(13)式で1丁が■sに等しくなることは、2次
巻#!3に流れる電流r、 Y s I9 Yを安定巻
線12に流れる電流で打消すことになり、電流Ii Y
 s I9 ’fの全部は安定巻線12とリアクトル1
3を循環することを意味する。
On the other hand, in equation (13), 1 gun is equal to ■s, which means that the secondary volume #! 3, the current r flowing through the stable winding 12 cancels the current r, Y s I9 Y, and the current Ii Y
All of s I9 'f is stable winding 12 and reactor 1
It means to cycle through 3.

1つの設計例として定格容量(P) 300 MVA変
圧器を考え、その巻線配置を第2図とすれば各巻線間の
零相リアクタンスは(1)弐〜(■式によりであったと
すれば(8)弐〜(10)式よりを得る。リアクトル1
3の容量は%IX、 tの値−C)、2%すなわち30
0MVA (7) 0.2%に相当する0、6MVAと
すればよいので、その容量は非常に小さくてすむ。
As a design example, consider a transformer with a rated capacity (P) of 300 MVA, and if its winding arrangement is shown in Figure 2, the zero-sequence reactance between each winding is (1)2~(■). (8) Obtain from equations 2 to (10).Reactor 1
The capacity of 3 is %IX, value of t - C), 2% or 30
0MVA (7) Since it is sufficient to set it to 0.6MVA corresponding to 0.2%, its capacity can be extremely small.

尚、安定巻線12の役目は通常の変圧器と同じように励
磁電流に含まれる3倍調波電流を還流させ、1次巻線側
からみた零相インピーダンスを低くする働きもある。
Note that the role of the stabilizing winding 12 is to circulate the third harmonic current included in the excitation current in the same way as a normal transformer, and also to lower the zero-sequence impedance seen from the primary winding side.

以上説明したように、1次巻線は星形結線であり、その
中性点を直接接地できるので、超高圧系統に直接接続が
可能であり、1次巻線は段絶縁と低減絶縁にでき、その
1次巻線の構成は、電圧の高い線路端子を巻線中央部よ
り引出し、電圧の低い中性点端子を巻線上・下端部より
引出すことが容易にできるので絶縁構造上都合がよく、
その分だけ変圧器をコンパクトにすることができる。
As explained above, the primary winding has a star-shaped connection, and its neutral point can be directly grounded, so it can be directly connected to an ultra-high voltage system, and the primary winding can be stage-insulated or reduced-insulated. The configuration of the primary winding is convenient in terms of insulation structure, as the high-voltage line terminal can be easily pulled out from the center of the winding, and the low-voltage neutral point terminal can be easily pulled out from the upper and lower ends of the winding. ,
The transformer can be made more compact accordingly.

安定巻線が1次巻線と2辺巻線の間に配置されるので、
電圧の高い1次巻線から2次巻線l\の静電的移行電圧
が小さくなる。2次巻線に接続されるTCRのサイリス
タは半導体であるため、その耐絶縁特性が、変圧器巻線
に比べ非常に悪いため。
Since the stable winding is placed between the primary winding and the second winding,
The electrostatic transition voltage from the high voltage primary winding to the secondary winding l\ becomes smaller. Since the TCR thyristor connected to the secondary winding is a semiconductor, its insulation properties are much worse than that of the transformer winding.

移行電圧が小さいことはサイリスタの使用個数の低減に
も役立つことになる。
A small transition voltage also helps reduce the number of thyristors used.

第1図ではリアクトル13を単相器1台で構成する場合
について説明したが、第4図に示すようにリアクトル1
5を3個とし3次巻線16と各々直列に接続し、それを
三角結線に゛する方法もあり、その作用は第1図の場合
と同様である。
In Fig. 1, the case where the reactor 13 is configured with one single-phase generator was explained, but as shown in Fig. 4, the reactor 13
There is also a method in which three 5 are connected in series with the tertiary winding 16, and they are connected in a triangular connection, and the effect is the same as in the case of FIG.

しかし、第4図に示す方法では二相が対称となるので端
子a、b、cを外部に引出し3次側端子とし、3次負荷
としての力率改善用あるいは高調波吸収用のコンデンサ
または所内用負荷を接続してもよい。
However, in the method shown in Figure 4, since the two phases are symmetrical, terminals a, b, and c are pulled out to the outside and used as tertiary side terminals, and a capacitor for power factor improvement or harmonic absorption as a tertiary load is used. You may also connect a load for use.

尚この場合のリアクトル15の1個の容量は第1図の単
相器の容量の3分の1であり、その構成は単相器3台あ
るいは三和器1台とすることは自由であり、都合の良い
方を採用すればよい。
In this case, the capacity of one reactor 15 is one-third of the capacity of the single-phase converter shown in Fig. 1, and the configuration can be freely configured to include three single-phase converters or one Sanwa converter. , just choose the one that is convenient for you.

(発明の効果〕 従来方式なら半分の定格容量を有し、その結線が星形−
三角のものと星形−星形のものを2台使用するが、本発
明においてはそれらの2倍の定格容量にはなるが1台で
すむことになる。2台が1台になることによって生じる
利点は1台にする方が、その変圧器の総重量が約75%
になることである。総重量が低減することは、その材料
費とその加工費が低減でき、発生する損失も低減できさ
らにその変圧器を設置する据付面積も少なくて済むこと
になる。
(Effect of the invention) It has half the rated capacity of the conventional method, and the connection is star-shaped.
Two units, one triangular and one star-shaped, are used, but in the present invention, only one unit is required, although the rated capacity is twice that of those units. The advantage of combining two transformers into one is that the total weight of the transformer is approximately 75% lower than that of one transformer.
It is to become. Reducing the total weight means that the material cost and processing cost can be reduced, the losses that occur can be reduced, and the installation area for installing the transformer can also be reduced.

従って1次巻線の中性点を直接接地して使用でき、製造
価格が安く、損失も少なくできるSvC用三相三巻線変
圧器を提供できる。
Therefore, it is possible to provide a three-phase, three-winding transformer for SvC, which can be used by directly grounding the neutral point of the primary winding, is inexpensive to manufacture, and has low loss.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明によるSvC用三相三巻線変圧器を使用
する主回路構成を示す結線図、第2図は第1図に示した
変圧器における巻線配置を示す説明図、第3図は三巻線
変圧器の零相インピーダンスを示す等価回路図、第4図
は本発明の他の実施例の3次巻線とリアクトルの接続を
示す結線図、第5図は従来方法を示す主回路構成図、第
6図は従来方法から容易に想像できる三巻線とした場合
の主回路構成図である6 1・・・電力系統 2.7・・・1次巻線 3・・・2次巻線 4・・・SvC用三和二巻線変圧器 5・・・三角結線のTCR 6・・・星形結線のTCR 8.12・・・安定巻線 9,11・・・SvC用三和二巻線変圧器10・・・ア
レスタ 13、15・・・リアクトル 14・・・鉄心主脚 16・・・3次巻線 代理人 弁理士  則 近 憲 佑 同  三俣弘文 第3図 第4図 第6図
FIG. 1 is a wiring diagram showing the main circuit configuration using the three-phase three-winding transformer for SvC according to the present invention, FIG. 2 is an explanatory diagram showing the winding arrangement in the transformer shown in FIG. 1, and FIG. The figure is an equivalent circuit diagram showing the zero-sequence impedance of a three-winding transformer, Figure 4 is a wiring diagram showing the connection of the tertiary winding and reactor in another embodiment of the present invention, and Figure 5 is a conventional method. Main circuit configuration diagram, Fig. 6 is a main circuit configuration diagram when three windings are used, which can be easily imagined from the conventional method.6 1...Power system 2.7...Primary winding 3... Secondary winding 4... Sanwa two-winding transformer for SvC 5... Triangular connection TCR 6... Star connection TCR 8.12... Stable winding 9, 11... SvC Sanwa two-winding transformer 10...Arresters 13, 15...Reactor 14...Iron core main leg 16...Third winding Agent Patent attorney Noriyuki Chika Yudo Hirofumi Mitsumata Figure 3 Figure 4 Figure 6

Claims (1)

【特許請求の範囲】[Claims]  すくなくとも3つの鉄心主脚に、それぞれ内側より中
性点つき星形結線の2次巻線、三角結線の3次巻線およ
び中性点つき星形結線の1次巻線の各巻線を順次巻装し
、前記3次巻線の三角結線内に1台以上のリアクトルを
3次巻線と直列に接続したことを特徴とする三相三巻線
変圧器。
On at least three main legs of the core, each winding is sequentially wound from the inside: a secondary winding with a star connection with a neutral point, a tertiary winding with a triangular connection, and a primary winding with a star connection with a neutral point. A three-phase three-winding transformer, characterized in that one or more reactors are connected in series with the tertiary winding within the triangular connection of the tertiary winding.
JP62026224A 1987-02-09 1987-02-09 Three-phase three-winding transformer Pending JPS63194315A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62026224A JPS63194315A (en) 1987-02-09 1987-02-09 Three-phase three-winding transformer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62026224A JPS63194315A (en) 1987-02-09 1987-02-09 Three-phase three-winding transformer

Publications (1)

Publication Number Publication Date
JPS63194315A true JPS63194315A (en) 1988-08-11

Family

ID=12187408

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62026224A Pending JPS63194315A (en) 1987-02-09 1987-02-09 Three-phase three-winding transformer

Country Status (1)

Country Link
JP (1) JPS63194315A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5093614A (en) * 1990-10-29 1992-03-03 International Business Machines Corporation Three phase delta reference transformer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5093614A (en) * 1990-10-29 1992-03-03 International Business Machines Corporation Three phase delta reference transformer

Similar Documents

Publication Publication Date Title
Jindal et al. Interline unified power quality conditioner
Arrillaga High voltage direct current transmission
US5434455A (en) Harmonic cancellation system
GB2397445A (en) Power transmission circuits
Isik et al. Optimized circulating current control method based on proportional resonant and proportional integral controllers for modular multi-level converter applications
US11056883B1 (en) System and method for implementing a zero-sequence current filter for a three-phase power system
Hesami et al. Wind generators ferroresonance overvoltage protection methods: A review
US11418034B1 (en) Zero-sequence current balancer with a real power injector for a three-phase power system
US4058761A (en) Saturated reactors
JPS63194315A (en) Three-phase three-winding transformer
Barnes Harmonics in power systems
US2224755A (en) Electrical transformation apparatus
US3440516A (en) Transformer and capacitor apparatus for three-phase electrical systems
JPS63196022A (en) 3-phase 3-winding transformer
US9973001B2 (en) Zero sequence, fifth harmonic filter for five-phase power distribution system
Hamer Application of the duplex reactor-an unusual and forgotten technique to reduce short circuit duty
WO2024069750A1 (en) Electric power conversion system
KR100435106B1 (en) The harmonic reduction apparatus which use the resonance of the ZERO-PHARSE-SEQUENCE IMPEDANCE
CN113056854B (en) STATCOM device of non-phase reactor
Urbanský et al. Duplex Reactor-Forgotten Element to Reduce Short-Circuit Currents
Vithayathil et al. DC systems with transformerless converters
JPS6346713A (en) Transformer for two phase/three phase conversion
Kuvshinov et al. Protection of Electrical Network of Radial Topology from Geomagnetically Induced Currents
JPH0556643B2 (en)
Lowe Special applications of power reactors in HV power systems