JPS6016301A - Superimposed vibratory cutting method - Google Patents
Superimposed vibratory cutting methodInfo
- Publication number
- JPS6016301A JPS6016301A JP12341183A JP12341183A JPS6016301A JP S6016301 A JPS6016301 A JP S6016301A JP 12341183 A JP12341183 A JP 12341183A JP 12341183 A JP12341183 A JP 12341183A JP S6016301 A JPS6016301 A JP S6016301A
- Authority
- JP
- Japan
- Prior art keywords
- cutting
- vibration
- workpiece
- tool
- vibrations
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23Q—DETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
- B23Q5/00—Driving or feeding mechanisms; Control arrangements therefor
- B23Q5/02—Driving main working members
- B23Q5/027—Driving main working members reciprocating members
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23B—TURNING; BORING
- B23B29/00—Holders for non-rotary cutting tools; Boring bars or boring heads; Accessories for tool holders
- B23B29/04—Tool holders for a single cutting tool
- B23B29/12—Special arrangements on tool holders
- B23B29/125—Vibratory toolholders
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Turning (AREA)
Abstract
Description
【発明の詳細な説明】
(技術分野)
本発明は、工作物又は工具を切削方向に振動させて切削
加工を行なう振動切削方法に関するものである。DETAILED DESCRIPTION OF THE INVENTION (Technical Field) The present invention relates to a vibration cutting method in which cutting is performed by vibrating a workpiece or a tool in the cutting direction.
(従来技術)
低い切削速度での切削抵抗を慣用切削よりも軽減し、表
面粗さを平滑する振動切削方法は従来間知であり、切削
速度が遅いときは切削面積を大きくして、能率の向上に
努めるのが一般である。したがって、その切削抵抗は大
きくなる。(Prior art) A vibration cutting method that reduces cutting resistance at low cutting speeds compared to conventional cutting and smoothes surface roughness is conventionally known. It is common to strive for improvement. Therefore, the cutting resistance becomes large.
そこで大きな振動エネルギーで振動切削装置を駆動する
心間が生ずる。振動駆動装置としては磁わい振動子ある
いは電わい振動子による振動駆動方法よりも機械弐眠気
弐寸だけ、電気−′油圧式あるいは機械−油圧式による
方が出力を大きくさせうる。しだがってその振動数は2
00Hz以下の低い振動数となる。実験しまだ実用して
みて、現在の技術でJ辰動切削・、蟻溝を満足する最′
高振動数は約1001−1 z程度のように考える。This creates a gap that drives the vibration cutting device with large vibration energy. As for the vibration driving device, an electro-hydraulic type or a mechanical-hydraulic type can produce a larger output than a vibration driving method using a magnetic oscillator or an electric oscillator. Therefore its frequency is 2
It becomes a low frequency of 00Hz or less. After experimenting and putting it into practice, we found that the current technology is the best that satisfies J-axis cutting and dovetail grooves.
The high frequency is considered to be about 1001-1 z.
振動切削における工具の振動1サイクルでの切削長さl
Tは4で表わされる。このlTは切削抵抗、表面粗さな
どを左右する重要な因−牧である。この関係式から明白
なように、1001−128度の低い振動数の時LTは
2 Of(1−1zという超音波域の高い振動数の時の
lTに比べて長くなる。100Hz振動ツノ削と20
K14z振動切削とを比較すると二次元切削においてそ
の主分力はほぼ同じ値を示している場合でも、20KH
2振動切削の背分力は100Hz振動切削の約/2〜/
6程度となる。Cutting length l in one cycle of tool vibration in vibration cutting
T is represented by 4. This IT is an important factor that influences cutting resistance, surface roughness, etc. As is clear from this relational expression, LT at a low frequency of 1001-128 degrees is longer than LT at a high frequency of 2 Of(1-1z) in the ultrasonic range. 20
Comparing with K14z vibration cutting, even if the principal force in two-dimensional cutting shows almost the same value, 20KH
The thrust force of 2-vibration cutting is about 2 to 1/2 of that of 100Hz vibration cutting.
It will be about 6.
第1図において、バイトの振動数を高めて超音波域の振
動数f、振幅σとするとW、(W となって、そのとき
の背分力Pt+切削時間tC+バイトの周期Tとすると
第5図のように工作物の変位波形は直線状となる。例え
ば、pt = 2Kyf。In Fig. 1, if the vibration frequency of the cutting tool is increased and the frequency f in the ultrasonic range and the amplitude σ are W, (W, then the back force Pt + cutting time tC + period T of the cutting tool is 5th As shown in the figure, the displacement waveform of the workpiece is linear.For example, pt = 2Kyf.
f = 221<Hz 、 ′z=ン; 、 k−4,
55×102に9f/ ” +w、 = 2 πX 4
00 rad/s 、L’−0,10とするとX= 0
.66μmとなる。f = 221<Hz, 'z=n; , k-4,
55×102 to 9f/” +w, = 2 πX 4
00 rad/s, L'-0,10, X= 0
.. It becomes 66 μm.
このように、バイト振動数を高めてパルス切削波形を作
用させると工作物の動的挙動は皆無となって、図示のよ
うに静的な変位とすることができる。超音波域の高い振
動数を利用したZOl(Hz振動切削にはこの特徴があ
るが、磁わい。In this way, when the cutting tool frequency is increased and a pulse cutting waveform is applied, there is no dynamic behavior of the workpiece, and static displacement can be achieved as shown in the figure. ZOl (Hz vibration cutting that utilizes high vibration frequencies in the ultrasonic range has this feature, but magnetic distortion.
電わい振動子のエネルギーは小さく切削抵抗が大きい場
合には、バイトの撮動姿態が変化し、極端な場合にはバ
イト刃先の振幅がゼロとなる。When the energy of the electric flexure oscillator is small and the cutting resistance is large, the imaging mode of the cutting tool changes, and in extreme cases, the amplitude of the cutting tool tip becomes zero.
すなわち、パルス切削力波形の切削時間t、が長くなり
、振動切削特有のパルス切削力波形が次第に慣用切削力
波形に近つき、振動切削効果が消滅してしまう。That is, the cutting time t of the pulse cutting force waveform becomes longer, the pulse cutting force waveform peculiar to vibration cutting gradually approaches the conventional cutting force waveform, and the vibration cutting effect disappears.
出力を大きくし得る100Hzi動切削の工作物の変形
波形は曲線8のようになる。この曲線8を第5図のよう
に直線状に変化させ得れば低速切削で切削面、漬を大き
くして重切削しても精密切削を可能とする。その具体的
方法としては、P、の絶体値そのものを軽減してp、に
よる工作物の挙動を不感性化すること以外に(はない。The deformation waveform of a workpiece in 100Hz dynamic cutting, which can increase the output, is as shown by curve 8. If this curve 8 can be changed linearly as shown in FIG. 5, precision cutting will be possible even during heavy cutting by enlarging the cutting surface and dip during slow cutting. The only concrete way to do this is to reduce the absolute value of P itself and make the behavior of the workpiece due to p insensitive.
ptの軽減はLTを激減させることによって実現する。Reduction of pt is achieved by drastically reducing LT.
しかるに、LT−、−でその長さが決められている。今
日までの振動切削・機構では、バイトを一つの振動数で
振動させていただめに、LTはこのようにして決ってる
だめ、切削条件が決れば不変の値として取扱ってきた。However, the length is determined by LT-, -. In vibration cutting mechanisms to date, the cutting tool has been vibrated at a single frequency, and the LT has been determined in this way, so once the cutting conditions have been determined, it has been treated as an unchanging value.
このLTを小さくすれば切削効果が向上することはわか
っていたが、従来は、低速切削のときに大きくなるLT
は止むを得ない現象としていた。It was known that the cutting effect could be improved by reducing this LT, but in the past, the LT increased when cutting at low speeds.
It was considered an unavoidable phenomenon.
(目的)
本発明は切削時間tcの間に切削する切削長さLTを2
0 KHz振動切削して7!Tに細分割して、その切削
抵抗を激減させ工作物の動的挙動を皆無としている。す
なわち第6図のように、ノくイトを矢印で示す切削方向
に20KHz 以上の超音波域の高い振動数で超音波振
動Cf、 a)させると同時に油圧機構などによって1
00 Hz程度の低い振動数(F、A)で振動させて、
切削速度Vを100Hz振動切削の振動数Fおよび振幅
Aの振動最大速度と関係づけて、v〈2πAFとして振
動切削することによ“り大出力を供給しうる低振動数の
振動駆動装置によってバイトの振動姿態を乱すことなく
太きくLT=−をまず切削し、これを小刻みに1T−1
で細分割して、大きな切削抵抗のために刃先振動姿態が
乱れようとするのを低娠動数据動駆動装置によってエネ
ルギーを補強し々から超音波域のバイト刃先の撮動姿態
を定常化して切削し、切削抵抗を従来の1001−1.
z振動切削の場合の更に一桁下げ、慣用切削の約1イ。(Purpose) The present invention aims to reduce the cutting length LT to 2 during the cutting time tc.
0 KHz vibration cutting 7! By subdividing into T, the cutting resistance is drastically reduced and the dynamic behavior of the workpiece is completely eliminated. In other words, as shown in Fig. 6, the cutting tool is subjected to ultrasonic vibration Cf, a) at a high frequency in the ultrasonic range of 20 KHz or more in the cutting direction indicated by the arrow.
Vibrate at a low frequency (F, A) of about 00 Hz,
By relating the cutting speed V to the frequency F of 100 Hz vibration cutting and the maximum vibration speed of amplitude A, the cutting tool is cut by a vibration drive device with a low vibration frequency that can supply a large output by performing vibration cutting as v〈2πAF. First, cut a thick LT=- without disturbing the vibration state of the
The vibration state of the cutting edge tends to be disturbed due to large cutting resistance, so the energy is reinforced by a low frequency stationary drive device, and the imaging state of the cutting edge in the ultrasonic range is stabilized. The cutting force was adjusted to the conventional 1001-1.
It is one digit lower for Z-vibration cutting, and about 1 digit for conventional cutting.
。程度に激減させ表面粗さを平滑にし、加工精度を向上
させ、加工後の形状寸法の狂いを減少させ、ばりの発生
をより少くして精密加工を行なわせることを目的として
いる。. The purpose is to drastically reduce the surface roughness to a certain extent, smooth the surface roughness, improve machining accuracy, reduce deviations in shape and dimensions after machining, and enable precision machining with fewer burrs.
(実施例)
第1図は旋削加工における工具−工作物振動系を示すも
のである。この第1図によってノくイト1を工作物2の
接線方向である、切削方向に300Hz以下の例えば1
001−Izz程度低い振動数F。(Example) FIG. 1 shows a tool-workpiece vibration system in turning processing. As shown in FIG.
A frequency F as low as 001-Izz.
振幅Aおよび201(I(z程度の高い振動Qf、据幅
αもって4の方向に振動させ、切削速度v3に対してυ
〈2παf あるいはυ〈2πAFの切削条件を与える
。そのときの背分力p、5は第2図のようにパルス切削
力波形となる。図のt。はバイト1サイクル中の切削時
間で、Tはバイトの振動1周期である。100Hz振動
切削では工作物の水平方向の角固有振動+数w、Lに対
して、w、、”)w(−2πF)となっているのが好適
である。い捷υ= 0.9m/min 、’ F =
1001(z 、 A = 0.2[wn、切込み−0
,20mm 、切削幅−1,()in、すくい角−00
゜w=2πF=’l、×lQQ rad/s、 W、=
2yrx 360γαd /s 、 k −= 4.6
×102Kff/++++n 、ν= 0.055
。A high vibration Qf with amplitude A and 201(I(z) is vibrated in the direction of 4 with a fixed width α, and υ
Give cutting conditions of 〈2παf or υ〈2πAF. The thrust force p,5 at that time becomes a pulsed cutting force waveform as shown in FIG. t in the figure. is the cutting time during one cycle of the cutting tool, and T is one cycle of vibration of the cutting tool. For 100Hz vibration cutting, it is preferable that the horizontal angular natural vibration of the workpiece + the number w, L is w, ”)w (-2πF). min,'F=
1001 (z, A = 0.2[wn, depth of cut -0
, 20mm, cutting width -1, ()in, rake angle -00
゜w=2πF='l,×lQQ rad/s, W,=
2yrx 360γαd/s, k −= 4.6
×102Kff/++++n, ν=0.055
.
湿式二次元切削(3sBM、、における背分力Pによる
工作物の水平方向の動的挙動は第3図のようになる。工
作物はtc切削時間に第3図の太線で示す曲線8のよう
な挙動をする。The dynamic behavior of the workpiece in the horizontal direction due to the thrust force P during wet two-dimensional cutting (3sBM) is as shown in Figure 3. behavior.
精密切削では工作物はこのような曲線8の変位波形では
なく、第5図のように横軸の時間軸に対して直線を示し
、しかも変位XキOとなるような変位波形が理想である
。In precision cutting, the ideal displacement waveform for the workpiece is not the displacement waveform of curve 8 like this, but a straight line with respect to the horizontal time axis as shown in Figure 5, and a displacement of X kO. .
第9図は、本発明方法を実施するだめの円筒加工用装置
を示す。旋盤往復台12上に装置本体13を固定する。FIG. 9 shows a further cylindrical machining apparatus for carrying out the method of the invention. The apparatus main body 13 is fixed on the lathe carriage 12.
装置本体には電動機14を取付けすべり子15を偏心し
て取付けられる」:うにした高速回転軸を600Orp
mで回転させる。The electric motor 14 is mounted on the main body of the device and the slider 15 is mounted eccentrically.
Rotate with m.
このすべり子を中心軸16のまわりに揺動する揺動腕1
7に図示の位置ではめまわせ、すべり子の偏心量に等し
い振幅をもって揺動腕17が中心軸16のまわりに振動
できるようにする。A swinging arm 1 that swings this slider around a central axis 16
7 in the illustrated position so that the swinging arm 17 can vibrate around the central axis 16 with an amplitude equal to the eccentricity of the slider.
この揺動腕17にはバイトホルダ24を締付ボルトを利
用して固定し、縦磁わい振動子18と振幅拡大用ホーン
19およびバイトよりなるす径縮音波振動系バイトをそ
の振動節を利用して取付ける。磁わい振動子18を超音
波振動させるとバイト刃・先は矢印21の切削方向に振
動数f。A cutting tool holder 24 is fixed to the swinging arm 17 using a tightening bolt, and a diameter reduction sonic vibration system tool consisting of a longitudinal magnetic strain vibrator 18, an amplitude expansion horn 19, and a cutting tool utilizes its vibration nodes. and install it. When the magnetic distortion oscillator 18 is ultrasonically vibrated, the cutting tool blade/tip vibrates at a frequency f in the cutting direction of the arrow 21.
片振幅10μm以上の振幅aで超音波倣動する。Ultrasonic movement is performed with an amplitude a of 10 μm or more in half amplitude.
電動機14を回転させて振動腕17を振動さぜると、ハ
イド刃先は矢印22の切削方向に振動数F9片振幅0.
2闘程度の振幅Aで低周波振動する。このようにして重
畳振動切削用バイト20ができ、本発明が実施できるよ
うになる。When the electric motor 14 is rotated and the vibrating arm 17 is vibrated, the Hyde cutting edge moves in the cutting direction of the arrow 22 with a frequency of F9 and a single amplitude of 0.
It vibrates at a low frequency with an amplitude A of about 2K. In this way, the superimposed vibration cutting tool 20 is produced, and the present invention can be put into practice.
そして工作物244を切削速度Vで矢印28の方向に回
転させる。切削速度υをυ〈2πAP となるように選
ぶ。このような装置と切削条件によって図示のようなハ
イドに矢印26の方向の廣送りを与えて切削することに
よって本発明による二次元切削や縦送りを匈えて円筒の
旋削加工をrTうことかできる。The workpiece 244 is then rotated at a cutting speed V in the direction of arrow 28. The cutting speed υ is selected so that υ〈2πAP. By applying wide feed in the direction of the arrow 26 to the hide as shown in the figure and cutting with such a device and cutting conditions, it is possible to perform two-dimensional cutting and vertical feed according to the present invention to perform cylindrical turning. .
本発明によると切ぐず形状は、切ぐず9,10゜11・
・・のようにLTに比例した長さ全もったグロックに分
割され、そのブロック内をさらにlTに比例した長さを
もって+I+田分割された形状に規則的に生成され、排
出される。According to the present invention, the chip shape is 9,10°11.
The block is divided into Glocks with a length proportional to LT, and the block is further divided into +I+ fields with a length proportional to LT, and then discharged.
(・効果)
本発明方法によると切削抵抗P′は第7図のように激減
する。例えばステンレス鋼SUS 304 。(Effects) According to the method of the present invention, the cutting resistance P' is drastically reduced as shown in FIG. For example, stainless steel SUS 304.
幅1mm、切削速切削−〇、8m/min、切込み0.
2mm。Width 1mm, cutting speed -〇, 8m/min, depth of cut 0.
2mm.
J、”” 1001(z 、 A= 0−15 nun
、 f = 201(Hz 、 a =15μm 、す
くい角−〇°湿式二次元切削して100Hz振動切削の
みの場合の平均背分力p = 1.8Kgが本発明の重
畳振動切削によって殆んどゼロに近い0.4にりとなる
。さらに特筆すべき効果として多年念願していた主分力
pも1001(z 振動切を
削のみの場合での61(9が実に0.6Krという値に
微減した。J, "" 1001 (z, A= 0-15 nun
, f = 201 (Hz, a = 15 μm, rake angle -〇° wet two-dimensional cutting and only 100 Hz vibration cutting, the average thrust force p = 1.8 kg is almost zero by the superimposed vibration cutting of the present invention. The result is 0.4 Kr, which is close to 0.4 Kr.Another noteworthy effect is that the principal force p, which has been desired for many years, has slightly decreased from 1001 (z) to 61 (9 in the case of vibration cutting only) to 0.6 Kr. did.
しだがって工作物の変位は静的変位となり第8図のよう
に時間軸に対して直線状を示す。その変位量x′は20
Kl−12振動切削と同等あるいはそれ以下となる。Therefore, the displacement of the workpiece becomes a static displacement and shows a straight line with respect to the time axis as shown in FIG. The amount of displacement x' is 20
It is equivalent to or lower than Kl-12 vibration cutting.
平均背分力=0.2Kyを本発明の実施によって主分力
=0.4Ky、背分カー01に7とすることかできた。By implementing the present invention, the average thrust force = 0.2 Ky could be reduced to principal force = 0.4 Ky, and the thrust force = 7 for the thrust car 01.
まだ端面へのばりの発生を皆無とし、表面粗さも0.8
μm l(maxとすることができた。There is still no burr on the end face, and the surface roughness is 0.8.
μm l (max).
次に他の加工方法および工具に本発明を実施する場合の
実施方法を図示してその効果を説明する。第10図は平
面加工に応用する場合でバイトを切削方向にf−a、F
−Aで振動させ、切削速度Vをυ〈2πAl”として、
平削りする。Next, the effects of the present invention will be explained by illustrating other machining methods and methods of applying the present invention to other tools. Figure 10 shows the case where the cutting tool is moved in the cutting direction f-a, F.
−A, cutting speed V is υ〈2πAl”,
Plane.
100 H,z振動座動装置としては、機械式、電気−
油圧、機械−油圧、空気、電気式が利用できる。As a 100 H,z vibration seat motion device, there are mechanical and electric types.
Hydraulic, mechanical-hydraulic, pneumatic, and electric types are available.
20 K1−1 z振動、駆動装置としては、縦眼動あ
るいはねしり振動磁わい、電わい振動子による縦振動系
ハイド、曲は振動系バイト、ねじり振動系ハイドが利用
できる。この方法と装置によって弾性の大きい工作物例
えばコム、炭素繊維強化プラスチックなとの漬密平面加
下かできるようになった。20 K1-1 As the z-vibration drive device, vertical eye movement or torsional vibration magnetoflexion, longitudinal vibration system Hyde using an electric oscillation vibrator, vibration-based bite, and torsional vibration-system Hyde can be used for music. With this method and device, it has become possible to immerse and flatten highly elastic workpieces such as combs and carbon fiber reinforced plastics.
第11図は、金のと刃に応用する場合で金のこ刃27を
切削古河にf−a、 F−A で振動させ、切削速度υ
をυ〈2πAFとして、−足荷重7ノを力えて切断加工
する。このときの加圧には、工作物をF、Aで振動させ
、のこ刃をf−aで振動させる場合もある。そして、同
一の実施効果かえられる。まだ、工作物をf−aで振動
させ、のこ刃をflct 、 F−Aで振動させて重畳
切1新する場合がある。この方法と装置によってセラミ
ックスの硝密切断が可能となる。Fig. 11 shows a case in which the hacksaw blade 27 is vibrated at a cutting speed of f-a, F-A, and the cutting speed υ is applied to a saw blade.
With υ〈2πAF, -cutting is performed by applying a foot load of 7 mm. To apply pressure at this time, the workpiece may be vibrated at F and A, and the saw blade may be vibrated at fa. And the same implementation effect can be obtained. There are still cases where the workpiece is vibrated at f-a and the saw blade is vibrated at flct and f-a to make a new superimposed cut. This method and device enable crystal-tight cutting of ceramics.
この方法と装置とによって本発明の実施によって、金の
と刃による切断時間が短縮され、切断面が平/1′fと
なり、ぼりゃ欠けが発生しない切断効果が得られる。By carrying out the present invention with this method and device, the time required for cutting with a metal knife is shortened, the cut surface becomes flat/1'f, and a cutting effect that does not cause chipping can be obtained.
第1z図74 、ブローチ28に応用する場合である。FIG. 1z 74 shows a case where the broach 28 is applied.
従来までにも201(i(z振動切削を単独に応用する
研究や1001−Iz振動切削によるブローチ削りの研
究を行ってきたが、20に11z振動切削の場合には、
振動エネルギー不足のだめ効果が少くなり、■00H2
振動切削の場合には、その表面粗さが平滑にならないな
ど満足すべき効果が得られていなかった。本発明のブロ
ーチ削りへの実施によって主分力Pが殆んどセロ近くに
なる切削加工に際しての決足的効果と表面粗さを平t1
″Iにする効果とが同時に発揮され、理想的なブローチ
削りが可能となった。Up until now, we have conducted research on applying 201(i(z) vibration cutting alone and on broach cutting using 1001-Iz vibration cutting, but in the case of 20 and 11z vibration cutting,
The effect of lack of vibration energy is reduced, ■00H2
In the case of vibration cutting, satisfactory effects were not obtained, such as the surface roughness being not smooth. By applying the present invention to broach cutting, the principal force P becomes almost zero, which is the decisive effect in cutting processing, and the surface roughness is flattened to t1.
The effect of "I" was exhibited at the same time, making ideal broach cutting possible.
第18図はヤスIJ 29に応用する場合である。FIG. 18 shows the case where it is applied to Yasu IJ 29.
ヤスリは表面ブローチでもある。ヤスリによる手作業は
極めて多い。そして硬い材料の深い穴の内面を仕上るよ
うな場合などには苦労している。ヤスリ作業ては切削抵
抗を少くシ、短時間に仕上げたい。本発明の実施によっ
てこの今迄の問題点がrW決され一掃される。ヤスリを
f−aおよびF−Aでヤスリの長手方向に重畳振動させ
、加工速fij−vをV<ZπA li”として本発明
が実施される。加圧力Pは少くなり、作業1時間が短縮
され労力も少くなってヤスリ仕上作業を容易にする。こ
のヤスリに代って、先端に切刃を設けにキサゲに本発明
を実施すれば重畳撮動切削によるキザゲ作業ができ、キ
サゲ作業を能率化し、その加工精度を向上させ、その労
力を軽減させる効果かえられる。The file is also a surface brooch. There is an extremely large amount of manual work with files. And it is difficult to finish the inner surface of a deep hole in a hard material. When filing, you want to reduce cutting resistance and finish in a short time. By implementing the present invention, this problem up to now can be resolved and eliminated. The present invention is carried out by vibrating the file superimposedly in the longitudinal direction of the file at f-a and F-A, and setting the machining speed fij-v to V<ZπA li''.The pressing force P is reduced, and the work time is shortened by 1 hour. This reduces labor and makes the filing work easier.Instead of this file, if the present invention is applied to a scraper with a cutting edge at the tip, the scraping work can be done by superimposed video cutting, making the scraping work more efficient. It has the effect of improving machining accuracy and reducing labor.
第14図はね1じ切りバイト30に応用する場合である
。このねじ切りにおける切削面積は許通の円筒加工にお
ける切削面積よりも広い。したからで切削抵抗が大きく
なる。従来、ねじ切りを行うときは切削面精度に力点を
おいて2゜Kl−IZ振動切削を行ってきた。したがっ
て、切削面積を細分割して極力少くして、バイト刃先に
作用する切削抵抗を小さくして、バイト刃先の振動姿態
を乱さ々いよつな切削条件で振動切削していた。焼入鋼
などへのねじ切りにはかなり長い加工時間を必要として
いた。本発明の実施によってその加工時間が短縮され、
精度の高いねじの量産加工が可能となる。FIG. 14 shows a case where the present invention is applied to a thread cutting tool 30. The cutting area in this thread cutting is wider than the cutting area in the cylindrical machining of Hsutsu. As a result, cutting resistance increases. Conventionally, when thread cutting, 2° Kl-IZ vibration cutting has been performed with emphasis on the precision of the cutting surface. Therefore, the cutting area is divided into smaller sections to minimize the cutting resistance acting on the cutting edge, thereby disturbing the vibrational state of the cutting edge and performing vibration cutting under various cutting conditions. Cutting threads into hardened steel and other materials required quite a long processing time. Implementation of the present invention reduces the processing time,
It becomes possible to mass-produce highly accurate screws.
この外に、一般リーマやセンタリーマ加工の除には、リ
ーマをねじり振動子で円周方向に超音波ねじり振動させ
ると同時に機械式、空気。In addition to this, for general reaming and center reaming, the reamer is vibrated by ultrasonic torsion in the circumferential direction using a torsional vibrator, and at the same time mechanical or pneumatic methods are used.
油圧式、電気式、電気−油圧式方法によって円周方向の
振動と回転運動を与えて本発明が実施され、重畳振動リ
ーミンダ効果が得られて穴の超精躬加工が行える。The present invention is carried out by applying circumferential vibration and rotational motion by hydraulic, electric, and electro-hydraulic methods, and a superimposed vibration reaming effect is obtained to perform ultra-precision machining of holes.
リーマに代ってドリルに適用すれば重畳振動ドIJ I
Jソング果が得られて、穴の精密穴あけが行える。If applied to a drill instead of a reamer, superimposed vibration IJI
J-song results can be obtained and precision drilling of holes can be performed.
また、フライス盤によるフライス削りではフライスある
いはエンドミルをねじり振動子で円周方向に超音波ねじ
り振動させると同111iに機械式、空気、油圧式、′
屯ス(式、電気−油圧式方法によって円周方向の振動と
回転運動をbえて本発明が実施され、重畳倣動フライス
削りあるいは重畳エンド□ミル加工効果が得られて起債
と平面加工が行える。In addition, in milling with a milling machine, if the milling cutter or end mill is vibrated by ultrasonic torsion in the circumferential direction with a torsional vibrator, mechanical, pneumatic, hydraulic, etc.
The present invention is carried out by using an electro-hydraulic method to generate circumferential vibration and rotational motion, and the effect of superimposed follow-up milling or superimposed end milling can be obtained to perform bonding and flat processing. .
第15図は拐抜いて塑性加工した工作物端面にでるばり
や打抜き方間と直角方向にバイトを送って、ポンチによ
る打抜きのitでは加工不可能な断面形状に薄板材を量
産加工する場合のバイトに応用する場合である。Figure 15 shows how to mass produce a thin plate material into a cross-sectional shape that cannot be processed by punching by sending a cutting tool in a direction perpendicular to the burr and punching direction that appears on the end surface of a workpiece that has been punched and plastically processed. This is a case where it is applied to part-time jobs.
このときのバイト刃先形状は図示のように総量バイト刃
先形状を示し、その切削面A貴82は広いのが一般であ
る。しだがって切削抵抗が犬きくなる。寸だ、はりの発
生を皆無とする必“及があるので、ばりと密接な関係の
ある切削抵抗を殆んどゼロとして切削する必要がある。The cutting edge shape at this time is the total cutting edge shape as shown in the figure, and the cutting surface A 82 thereof is generally wide. Therefore, the cutting resistance increases. Since it is necessary to completely eliminate the occurrence of burrs, it is necessary to cut with almost zero cutting resistance, which is closely related to burrs.
本発明の実施によってこれらの問題点が一挙に1Q’(
決される。By implementing the present invention, these problems can be solved all at once by 1Q' (
It will be decided.
SUS 304. 、板厚0.3mmをυ−30011
1111/lrr、i 71.。SUS304. , plate thickness 0.3mm is υ-30011
1111/lrr, i 71. .
切削面積0.5 am2. F = 1001(z 、
A = 0.15 mm。Cutting area 0.5 am2. F = 1001(z,
A = 0.15 mm.
f = 201(1−(z 、 a −,15am (
D 切削条ff”f打抜イた穴側面を、本発明の実施に
よって重畳振動切削して図示のような曲面に打抜きして
、量産加工した工作物をばりの発生を蜜無として精密加
工することに成功した。f = 201(1-(z, a-,15am (
D. By carrying out the present invention, the side surface of the punched hole is punched into a curved surface as shown in the figure by superimposed vibration cutting, and the mass-produced workpiece is precisely machined without any burrs. It was very successful.
第16図は切断加工用刃物33に応用する場合である。FIG. 16 shows a case where the present invention is applied to a cutting blade 33.
この場合も切断方向に100)1z程度の振動数Fおよ
O・振幅A% 20 Kl−Iz以上の振動数fおよび
振幅aで刃物88を振動させ、切断速度VをI/<2π
AF として重畳振動切断する。本発明の実施によって
、板厚の厚い切断に対しても、断面の大部分をせん断変
形によって切断することができ、断面の平滑な切断面に
加工することに成功した。In this case as well, the blade 88 is vibrated in the cutting direction at a frequency F and amplitude a of about 100) 1z and an amplitude A% of 20 Kl-Iz or more, and the cutting speed V is set to I/<2π.
Superimposed vibration cutting is performed as AF. By implementing the present invention, even when cutting a thick plate, most of the cross section can be cut by shear deformation, and the cut surface can be processed to have a smooth cross section.
第17図はポンチとダイスによる打抜きに際してポンチ
に本発明を実施して打抜きする場合である。従来、ポン
チに20Kl−Iz以上の超音波振動を附加して振動打
抜きを試みてきたが、その振動エネルギーが不足してポ
ンチの超音波振動が停止し易くその加工布は粗く超音波
振動を附加した効果は十分とは云い與ILかった。今日
まで出力の大きい超音波振動子の創、粟を切望していだ
が、未だその期待に応えつる振動子は完成していない。FIG. 17 shows a case in which the present invention is applied to a punch when punching is performed using a punch and a die. Conventionally, vibration punching has been attempted by applying ultrasonic vibrations of 20 Kl-Iz or more to a punch, but the ultrasonic vibrations of the punch tend to stop due to lack of vibration energy, and the work cloth is rough and the ultrasonic vibrations are not applied. Although the effect was not enough, I was disappointed. To this day, we have been eagerly awaiting the creation of an ultrasonic transducer with high output, but no vine transducer has yet been completed that meets those expectations.
そして、このポンチへの振動利用ができないま捷になっ
ていたが、本発明によって従来の振動子と低周波振動駆
動装置とを組合せた新しいエネルギーの利用方法によっ
て数トンにも及ぶ打抜き加工にも適用できる道が切り開
かれた。However, with the present invention, a new energy usage method that combines a conventional vibrator and a low-frequency vibration drive device has been used to punch punches weighing several tons. A path to application has been opened.
すなわち、ポンチ83を打抜き方向に磁わいあるいは電
わい振動子を利用して超音波振動数fおよび振幅aで振
動させ、これを電気−油圧方式によって1oaf−Iz
程度の低い振動&!IFおよび振幅Aで振動させて打抜
くことによって本発明が実施される。そして、加工中の
ポンチの振動姿態は乱れることなく振動して、上述した
振動切削・1機構によって小刻みにせん断変形を、繰返
して加工断面全面を一様なせん断変形によって打抜き加
工することができる。That is, the punch 83 is vibrated in the punching direction at an ultrasonic frequency f and an amplitude a using a magnetic or electric flexure vibrator, and this is vibrated at 1oaf-Iz by an electro-hydraulic system.
Moderate vibration &! The invention is implemented by vibrating and punching at IF and amplitude A. Then, the vibration mode of the punch during processing vibrates without being disturbed, and by repeating small shear deformation by the above-mentioned vibration cutting mechanism, the entire processed cross section can be punched by uniform shear deformation.
第1図は旋削加工におけるバイト−工作物振動系をモデ
ル化して示し、バイトの振動方向全説明する図、第2図
は1001(z振動切削F、Aにおけるバイトの振動1
サイクル中の比較的に作用時間1cの長いパルス状背分
力波形を示す図、第3図は第2図のパルス状背分力波形
が工作物に作用したときの工作物の背分力方向の曲線状
動的挙動波形を示す図、第4図’fi 201(I−1
z振股切削f−aにおけるバイトの振動1サイクル中の
作用時間tcの・畠めて短いパルス状背分力波形を示す
図、第5図は第4図のパルス状背分力波形が工作物に作
用したときの工作物の背分力方向の直線状変位波形を示
す図、第6図は本発明方法によって得られる切りくずせ
ん断面を示j−斜睨図、第7図は本発明方法によって得
られる激・威するパルス状背分力を示す図、第8図は第
7図のパルス状背分力波形が工作物に作用したときの激
減する背分力方向の直線状変位波形を示す図、第9図は
本発明方法を実施する装置の一実施例正面図、第10図
は本発明方法による乎削り方法を示す図、第11図は本
発明方法による金のと刃による切断方法を示す図、第1
21¥1は本発明方法Vこよるブローチによるブローチ
加工方法を示す図、第13図は本発明方法によるヤスリ
によるヤスリ仕北作業方法を示す図、第14図は本発明
方法によるねし切りハイドによるねし切り方法を示す図
、第15図は本発明方法による総量ハイドによる・ポン
チによる打抜き方向に直角方向に曲面を成形加工する方
法を示す間第16図(は本究明方法によるポンチによる
切断加工方法全示す図、第171:!!Jは本究明方法
によるポンチによる打抜き加工方法を示す図である。
41・・バイト、2・・・工作物、3・・・切削速度、
4・・・・振動方向、21・・・超音波振動方向、22
・・・低1、LJ波振動方向、27・・・重畳振動切削
金のこ刃、28・・・重−沿振動切削ブローチ、29・
・・重゛殴振動しノ削ヤスリ、80・・・重量振動切削
はし切りバイト、81・・・重畳振動切削総型バイト、
82・・・重畳振動切削打抜き用パンチ。
第6図
11
第7図
第8図
第15図Figure 1 shows a modeled tool-workpiece vibration system in turning processing, and explains all vibration directions of the tool, and Figure 2 shows 1001 (z vibration cutting F,
A diagram showing a pulsed thrust force waveform with a relatively long action time 1c during a cycle. Figure 3 shows the direction of the thrust force on the workpiece when the pulsed thrust force waveform in Figure 2 acts on the workpiece. Figure 4 shows the curved dynamic behavior waveform of 'fi 201 (I-1
Figure 5 shows a pulsed thrust force waveform with a very short action time tc during one cycle of vibration of the cutting tool in z-swing cutting f-a. A diagram showing a linear displacement waveform in the direction of back force of a workpiece when it acts on an object, FIG. 6 is a diagonal view of a chip shear cross section obtained by the method of the present invention, and FIG. Figure 8 is a diagram showing the intense and threatening pulsed thrust force obtained by this method. Figure 8 shows the linear displacement waveform in the direction of the thrust force, which decreases dramatically when the pulsed thrust force waveform in Figure 7 acts on the workpiece. FIG. 9 is a front view of an embodiment of an apparatus for carrying out the method of the present invention, FIG. 10 is a diagram showing a method for cutting according to the method of the present invention, and FIG. Diagram showing the cutting method, 1st
21 yen 1 is a diagram showing a broaching method using a broach according to method V of the present invention, FIG. 13 is a diagram showing a filing method using a file according to the method of the present invention, and FIG. Fig. 15 shows a method of forming a curved surface in a direction perpendicular to the punching direction using a total amount of hide and a punch according to the method of the present invention. Diagram 171: !!J is a diagram showing the entire machining method. 41...Bite, 2...Workpiece, 3...Cutting speed,
4... Vibration direction, 21... Ultrasonic vibration direction, 22
...Low 1, LJ wave vibration direction, 27...Superimposed vibration cutting saw blade, 28...Heavy-vibration cutting broach, 29.
・・Heavy beating vibration cutting file, 80 ・・Heavy vibration cutting cutting tool, 81 ・・Superimposed vibration cutting general type tool,
82...Punch for superimposed vibration cutting and punching. Figure 6 11 Figure 7 Figure 8 Figure 15
Claims (1)
と超音波振動数1.振幅aの超音波撮動を重畳させて切
削方向に振動させ、切削速度Vを低周速振動の振動最大
速度よりも低いυ〈2πAFとして切削する重畳振動切
削方法。A workpiece or tool is subjected to low-frequency imaging at low frequency F and amplitude A and ultrasonic frequency 1. A superimposed vibration cutting method in which ultrasonic imaging with amplitude a is superimposed to vibrate in the cutting direction, and cutting is performed at a cutting speed V of υ<2πAF, which is lower than the maximum vibration speed of low circumferential speed vibration.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12341183A JPS6016301A (en) | 1983-07-08 | 1983-07-08 | Superimposed vibratory cutting method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12341183A JPS6016301A (en) | 1983-07-08 | 1983-07-08 | Superimposed vibratory cutting method |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6016301A true JPS6016301A (en) | 1985-01-28 |
JPS6246281B2 JPS6246281B2 (en) | 1987-10-01 |
Family
ID=14859888
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP12341183A Granted JPS6016301A (en) | 1983-07-08 | 1983-07-08 | Superimposed vibratory cutting method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6016301A (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4667546A (en) * | 1985-04-09 | 1987-05-26 | Wilhelm Hegenscheidt Gesellschaft Mbh | Method for achieving chip separation while machining work pieces |
JPS62140701A (en) * | 1985-12-16 | 1987-06-24 | Junichiro Kumabe | Superposed vibration cutting method |
JPH09155601A (en) * | 1995-12-14 | 1997-06-17 | Tomy Kikai Kogyo Kk | Cutting method and cutting machine |
JP2001315213A (en) * | 2000-05-12 | 2001-11-13 | Teijin Seiki Co Ltd | Method and apparatus for optical solid molding |
EP1925384A1 (en) * | 2006-11-27 | 2008-05-28 | Fanuc Ltd | Machining apparatus |
JP2014237181A (en) * | 2013-06-06 | 2014-12-18 | 株式会社ジェイテクト | Vibration cutting device and vibration cutting method |
JP5826444B1 (en) * | 2014-10-28 | 2015-12-02 | 三菱電機株式会社 | Numerical controller |
JP5851670B1 (en) * | 2014-10-28 | 2016-02-03 | 三菱電機株式会社 | Numerical controller |
CN106180756A (en) * | 2016-08-15 | 2016-12-07 | 安徽东风机电科技股份有限公司 | The rough turn technique of one-level body part |
-
1983
- 1983-07-08 JP JP12341183A patent/JPS6016301A/en active Granted
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4667546A (en) * | 1985-04-09 | 1987-05-26 | Wilhelm Hegenscheidt Gesellschaft Mbh | Method for achieving chip separation while machining work pieces |
US4693146A (en) * | 1985-04-09 | 1987-09-15 | Wilhelm Hegenscheidt Gesellschaft Mbh | Method and apparatus for achieving chip separation while machining work pieces |
JPS62140701A (en) * | 1985-12-16 | 1987-06-24 | Junichiro Kumabe | Superposed vibration cutting method |
JPH09155601A (en) * | 1995-12-14 | 1997-06-17 | Tomy Kikai Kogyo Kk | Cutting method and cutting machine |
JP2001315213A (en) * | 2000-05-12 | 2001-11-13 | Teijin Seiki Co Ltd | Method and apparatus for optical solid molding |
EP1925384A1 (en) * | 2006-11-27 | 2008-05-28 | Fanuc Ltd | Machining apparatus |
JP2014237181A (en) * | 2013-06-06 | 2014-12-18 | 株式会社ジェイテクト | Vibration cutting device and vibration cutting method |
JP5851670B1 (en) * | 2014-10-28 | 2016-02-03 | 三菱電機株式会社 | Numerical controller |
JP5826444B1 (en) * | 2014-10-28 | 2015-12-02 | 三菱電機株式会社 | Numerical controller |
WO2016067372A1 (en) * | 2014-10-28 | 2016-05-06 | 三菱電機株式会社 | Numerical control device |
WO2016067371A1 (en) * | 2014-10-28 | 2016-05-06 | 三菱電機株式会社 | Numerical control device |
CN107073611A (en) * | 2014-10-28 | 2017-08-18 | 三菱电机株式会社 | Numerical control device |
CN107073612A (en) * | 2014-10-28 | 2017-08-18 | 三菱电机株式会社 | Numerical control device |
US10625355B2 (en) | 2014-10-28 | 2020-04-21 | Mitsubishi Electric Corporation | Numerical control device |
DE112014007112B4 (en) | 2014-10-28 | 2021-12-30 | Mitsubishi Electric Corporation | Numerically controlled device |
CN106180756A (en) * | 2016-08-15 | 2016-12-07 | 安徽东风机电科技股份有限公司 | The rough turn technique of one-level body part |
Also Published As
Publication number | Publication date |
---|---|
JPS6246281B2 (en) | 1987-10-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Jin et al. | Development of a practical ultrasonic vibration cutting tool system | |
Chen et al. | State-of-the-art review on vibration-assisted milling: principle, system design, and application | |
Bhattacharyya et al. | Modern machining technology: Advanced, hybrid, micro machining and super finishing technology | |
CN105619187B (en) | A kind of two dimensional ultrasonic vibration polishing processing device and method | |
JP5200005B2 (en) | Tool holder assembly for vibration-based machining and vibration-based machining method | |
Zhou et al. | Development of an innovative device for ultrasonic elliptical vibration cutting | |
Kumabe et al. | Ultrasonic superposition vibration cutting of ceramics | |
Suzuki et al. | Ultraprecision micromachining of brittle materials by applying ultrasonic elliptical vibration cutting | |
JPS6016301A (en) | Superimposed vibratory cutting method | |
Tang et al. | Development of a novel ultrasonic drill using longitudinal-bending hybrid mode | |
Gao et al. | Analysis of cutting stability in vibration assisted machining using ananalytical predictive force model | |
Ni et al. | A novel free-form transducer for the ultra-precision diamond cutting of die steel | |
Nag et al. | Effect of water flow rate on operating frequency and power during acoustic chamber tuning | |
Zhang et al. | Turning of microgrooves both with and without aid of ultrasonic elliptical vibration | |
Balamuth | Ultrasonic assistance to conventional metal removal | |
JPS58143901A (en) | Turning and cutting method by fine and high speed oscillation | |
JPH0649241B2 (en) | Superposed vibration cutting method | |
JP7127810B2 (en) | Hole drilling machine with processing tools | |
Sadeghamalnik et al. | Development of design and manufacturing support tool for optimization of ultrasonic machining (USM) and Rotary USM | |
JPS62292306A (en) | Precision vibration boring method | |
Wu et al. | An investigation of practical application of variable spindle speed machining to noncircular turning process | |
JPS58196934A (en) | Precision oscillation cutting method for ceramics | |
CN105522184A (en) | Burr-free machining process for edges of needle valves | |
JPH01109007A (en) | Vibration-cut drilling machine for precise boring of ceramics | |
JPS61214963A (en) | Method for precise cutting of vibrating plane of ceramics |