JPS6016292B2 - Method of leveling a strip using a roller leveler - Google Patents

Method of leveling a strip using a roller leveler

Info

Publication number
JPS6016292B2
JPS6016292B2 JP225077A JP225077A JPS6016292B2 JP S6016292 B2 JPS6016292 B2 JP S6016292B2 JP 225077 A JP225077 A JP 225077A JP 225077 A JP225077 A JP 225077A JP S6016292 B2 JPS6016292 B2 JP S6016292B2
Authority
JP
Japan
Prior art keywords
strip
exit side
roller leveler
determined
input
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP225077A
Other languages
Japanese (ja)
Other versions
JPS5387962A (en
Inventor
哲之助 米本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP225077A priority Critical patent/JPS6016292B2/en
Publication of JPS5387962A publication Critical patent/JPS5387962A/en
Publication of JPS6016292B2 publication Critical patent/JPS6016292B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Straightening Metal Sheet-Like Bodies (AREA)

Description

【発明の詳細な説明】 本発明は、帯板の形状不良を矯正するローフーレベラ−
による帯板のしべリング方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides a low-foo leveler for correcting defective shapes of strips.
The present invention relates to a method for shingling a strip plate.

一般にしべラーは、例えば熱延コィくしの捲ぐせ、シヤ
ーによる反り、熱間圧延時の形状不良等をフラットな形
状に修正する装置である。
In general, a leveler is a device that corrects, for example, curling of a hot rolling steel comb, warping due to shearing, defective shapes during hot rolling, etc. into a flat shape.

第1図はローラーレベラー12を示したもので、形状の
不均一な帯板1は、バックアップロール4に補強された
上ワークロ−ル3、下ワ−クロール2で設定されたロー
ルギャップを通過することにより、各ワークロールにて
繰り返し曲げ変形を受ける。この変形過程を示したもの
が第2図である。第2図の機軸はワークロール番号で、
縦軸は後述する加工度である。ローラーレベラ−内の変
形は、入口及び出口のロール押入量(上、下ワークロー
ルのロールギャップ)で一義的に決まり、入口側で大き
く変形し、その後振幅のてし・減過程に入り、出口で帯
板の長さ方向の反り(Lぞり)を無くする様に設定され
る。上記ロール押込量を設定する圧下装置を説明すると
、上ワークロール3とバックアップロール4を組込んだ
トップガーダー7はしべラースタンド11に固定された
油圧シリンダ6で吊り上げられている。
FIG. 1 shows a roller leveler 12, in which a strip 1 with an uneven shape passes through a roll gap set by an upper work roll 3 and a lower work roll 2 reinforced by a backup roll 4. As a result, each work roll undergoes repeated bending deformation. FIG. 2 shows this deformation process. The axis in Figure 2 is the work roll number,
The vertical axis is the degree of machining, which will be described later. The deformation inside the roller leveler is uniquely determined by the amount of roll intrusion at the entrance and exit (the roll gap between the upper and lower work rolls), and the deformation is large on the entrance side, after which the amplitude begins to increase and decrease, and then at the exit. It is set so as to eliminate warping (L warp) in the length direction of the strip. To explain the rolling down device for setting the roll pushing amount, a top girder 7 incorporating an upper work roll 3 and a backup roll 4 is lifted up by a hydraulic cylinder 6 fixed to a shingler stand 11.

上、下ワークロール3,4間のロールギャップを設定す
るため上記シリンダ6に対して、スタンド11に固定さ
れた圧下スクリュー8,8で、上記トップガーダー7を
停止するようにしている。スタンド11上にある電動機
10,10を回転させ、ギャ9,9を経て圧下スクリュ
ー8,8を上、下させ、入、也側を独立して圧下設定す
る。一般に、板厚、降伏点応力等の異なる帯板の変形程
度を比較する際、加工程度を示す指標として第{1}式
で示す加工度Kを用いている。
In order to set a roll gap between the upper and lower work rolls 3 and 4, the top girder 7 is stopped by screws 8 and 8 fixed to a stand 11 with respect to the cylinder 6. The electric motors 10, 10 on the stand 11 are rotated, and the reduction screws 8, 8 are moved up and down through the gears 9, 9, and the reduction settings are made independently on the input and aft sides. Generally, when comparing the degree of deformation of strips having different plate thicknesses, yield point stresses, etc., the degree of work K expressed by the {1} formula is used as an index indicating the degree of work.

K=pe/p ………(11但し、
pe:弾性限加工効率、p:加工効率又、ローラーレベ
ラー内の変形を上記加工度で表示した第2図の様に、ロ
ーラーレベラ一入口部で最大加工度公を受け以降てし、
減加工度&〜K,3を受ける帯板の残留内部応力は、残
留内部応力コf,(K5,K6,K7……K山,K,3
) ・・・■で求める
ことができる。
K=pe/p……(11However,
pe: elastic limit machining efficiency, p: machining efficiency. Also, as shown in Figure 2, which shows the deformation inside the roller leveler with the above machining degree, after receiving the maximum machining degree at the inlet of the roller leveler,
The residual internal stress of the strip subjected to the reduction degree &~K,3 is the residual internal stress f, (K5, K6, K7...K mountain, K,3
)...It can be found by ■.

従って、ローラーレベラーの入、出側の圧下設定を行な
うに際して、第2図に示す入側最大加工度Kinと出側
加工度Koutが、指標として使用される。一般にロー
ラーレベラーに於て、帯板の形状を矯正するために使用
されている上記加工度Kin、Koutは、Kin>3
、Koutミ1である。又通常出側加工度Koutニ1
で入側最大加工度が3以上ならば、ほぼ平坦な帯板が得
られる。ローラーレベラーの入、出側の圧下設定は、上
記加工度が得られる様に、電動機10,10によりギャ
9.9、圧下スクリュー8.8を介して圧下設定され、
帯板1を上記圧下設定にて通板し、レベリングするが、
後述する様な静的な圧下設定(ロールギャップ)と加工
度との関係から圧下設定を行なっているため、この初期
圧下設定のみではしべラー後の形状が良好な帯板を常時
確保することは困難であった。
Therefore, when setting the rolling reduction on the inlet and outlet sides of the roller leveler, the maximum machining degree Kin on the inlet side and the machining degree Kout on the outlet side shown in FIG. 2 are used as indicators. In general, in a roller leveler, the processing degrees Kin and Kout used to correct the shape of the strip plate are Kin>3.
, Kout Mi1. Also, the normal exit side machining degree Kout ni 1
If the maximum machining degree on the entry side is 3 or more, a substantially flat strip can be obtained. The reduction setting on the inlet and outlet sides of the roller leveler is set by the electric motors 10, 10 via the gear 9.9 and the reduction screw 8.8 so as to obtain the above-mentioned processing degree,
Thread the strip plate 1 with the above rolling setting and level it.
Since the reduction is set based on the relationship between the static reduction setting (roll gap) and the degree of work as described below, it is not possible to always ensure a strip with a good shape after the plater with only this initial reduction setting. was difficult.

つまり一般に、ローラーレベラーの加工度、加工曲率等
は次の様に定義されている。(第3,4図参照)【1’
加工度K K=peノ…p/ご=鍬=孝も,.....(3)但し
、 K:加工度 ご: のごp:加工歪
p:曲率半径 t:板厚 E:板のヤング率 Yp:板の降伏強度 ■ 加工曲率p P=蘭十夏 …・・・・・・(4−1)h
=委(t−H) ………(4−2)L′=ぎ′
‐‐‐‐‐‐‐‐‐く4−3)但し、H:
圧下設定値(ロールギャップ)‘3’ 圧下設定値日と
加工度Kの関係 第{3’、‘41式を整理して次式を得る。
In other words, generally, the machining degree, machining curvature, etc. of a roller leveler are defined as follows. (See Figures 3 and 4) [1'
Processing degree K K = peno...p/go = hoe = komo,. .. .. .. .. (3) However, K: Machining degree Go: Nogo P: Machining distortion
p: Radius of curvature t: Plate thickness E: Young's modulus of plate Yp: Yield strength of plate ■ Machining curvature p P = Ran Toka ...... (4-1) h
= Committee (t-H) ...... (4-2) L' = Gi'
---------- 4-3) However, H:
Reduction setting value (roll gap) '3' Relationship between reduction setting value date and working degree K Reorganize equations {3' and '41 to obtain the following equation.

K=等L洋志句2 ‐‐‐‐‐‐‐‐・【51しか
して従来行なわれている圧下設定方式は、第【乳、(4
一1)、{5}式をグラフ化したものより所要加工度K
に対する圧下設定値日を求めてしべリングを行なってい
る。しかしながら、この様な方式では、基本的に第‘5
}式で示される加工度Kは、第(4−1)、(4一2)
、(4−3)式で示される加工曲率pの算定式から明ら
かな様に、矯正中の加工度でなく、帯板を下ワークロー
ル群上に停止して上ワークロール群を押し込んだ場合に
のみ成立するものである。
K=ToL Yoshiku 2 ---------・[51 However, the conventional pressure setting method is
-1) From the graph of formula {5}, the required machining degree K
The reduction setting value for the date is determined and shibelling is performed. However, in such a method, basically the '5th
}The machining degree K shown by the formula is (4-1), (4-2)
, as is clear from the formula for calculating the machining curvature p shown in equation (4-3), when the strip is stopped on the lower work roll group and the upper work roll group is pushed in, rather than the machining degree during straightening. This only holds true.

例えば第■式から所要加工度Kを得る圧下設定値日を定
めて、通板し噛み止めテストを行なって帯板の曲率を実
測してみても、その加工度にはなっていない。つまりこ
の様な第■式にて圧下設定を行なっても所要の加工度を
得ることはできない。従ってローラーレベラー出側で形
状の良好な帯板を得ることができず、ローラーレベラー
後面での帯板の状況を観察し、Lぞりが発生していれば
第1図に示すローラーレベラー12の後面の補助ローラ
5を用いて余分に曲げを与えることにより形状を補正し
たり出側の圧下設定のみを修正し、帯板の大坂での平坦
度のみを確保している。この様に形状確保のため補助ロ
ールを使用すれば余分に帯板は加工されることになり、
出側圧下のみの調整では出側加工度が最適となっても入
側最大加工度が最適になっているか不明であり、均一な
最小内部残留応力の帯板とはならない。このため大板で
は平坦であっても第5図に示す様に条切りするとL反り
が発生する。この図でhmaxは板長さL,の中央と端
部との高さの差で、反り量を示す。以上の様に板厚、降
伏点応力の異なる帯板について、形状が良好でかつ均一
な最小内部残留応力の帯板にするための所要の加工度を
得る最適圧下設定法は確立されていない。本発明は上記
実状に鑑み、上記最適圧下設定法を見し、出して、板厚
、板幅降伏点応力の異なった帯板を形状が良好でかつ均
一な最小内部残留応力の帯板にするしべリング方法を提
供するものである。
For example, even if you determine the rolling set value date to obtain the required working degree K from the formula (2), run the strip, perform a bite test, and actually measure the curvature of the strip, the working degree is not achieved. In other words, even if the rolling reduction is set using the formula (2), it is not possible to obtain the required degree of work. Therefore, it is not possible to obtain a strip with a good shape on the exit side of the roller leveler. Observe the condition of the strip on the rear surface of the roller leveler, and if L warping has occurred, the roller leveler 12 shown in FIG. By applying extra bending using the auxiliary roller 5 on the rear surface, the shape is corrected and only the rolling reduction setting on the exit side is corrected, thereby ensuring only the flatness of the strip on the large slope. In this way, if an auxiliary roll is used to secure the shape, the strip will be processed extra.
If only the exit side reduction is adjusted, even if the exit side workability is optimized, it is unclear whether the input side maximum workability is optimal, and a strip with uniform minimum internal residual stress will not be obtained. For this reason, even if a large plate is flat, L warping occurs when it is cut into strips as shown in FIG. In this figure, hmax is the difference in height between the center and the end of the plate length L, and indicates the amount of warpage. As described above, for strips having different thicknesses and yield point stresses, an optimal rolling reduction setting method has not been established to obtain the required degree of processing to produce strips with a good shape and uniform minimum internal residual stress. In view of the above-mentioned circumstances, the present invention has developed the above-mentioned optimal rolling reduction setting method and developed it to make strips with different thicknesses and widths and yield point stresses into strips with a good shape and a uniform minimum internal residual stress. The present invention provides a shibering method.

本発明はしべリング中の加工度Kの算出の仕方について
種々検討した結果、次の理論による算出式がもっとも実
際に合っていることを見し、出した。
As a result of various studies on how to calculate the working degree K during shingling, the present invention found that the following theoretical calculation formula was the most suitable in practice.

ローラーレベラー通板中の板は、(第6図参照)ロール
と接触点で、降伏曲げモーメントMyに達しこの点を過
ぎた直後に曲げモーメントMyより小さくなり、再びM
yに達する。次のロールとの接触点に至るまでは、一様
な曲率を維持する。故に板の変形は各ロールとの接触点
で連結される円弧の連鎖と見なすことが可能である。従
って、板がローラーに入る初期条件と、ロール配列(い
いかえるとローラー矯正中の圧下値)さえ与えれば、各
ロール間に於ける曲率を次の様にして求めることができ
る。第6図はしべリング中の帯板の状況を示しており、
Hi。
The plate being passed through the roller leveler reaches the yield bending moment My at the point of contact with the rolls (see Figure 6), and immediately after passing this point, the bending moment My becomes smaller than the bending moment My, and the bending moment My returns to M again.
reaches y. A uniform curvature is maintained until the point of contact with the next roll. Therefore, the deformation of the plate can be considered as a chain of circular arcs connected at the point of contact with each roll. Therefore, as long as the initial conditions for the plate to enter the rollers and the roll arrangement (in other words, the rolling reduction value during roller straightening) are given, the curvature between each roll can be determined as follows. Figure 6 shows the condition of the strip during shibelling.
Hi.

…=aiSin(松十Q.)=(r十季+p‘)Sin
(のi+のiH) ‐‐‐…側樋H=aiSi
n(叶偽,):い−季−r)Sin的他日) .
・a,{sin(のi+Qi)一sin(Qi−の川)
}=(公十t)sin(のi+の十,)………(8}変
形して、(公十hi)cos{(のi+, 一のi)ノ
2}十Ssin{(のi+,一の,)/2}=(a+t
)cos{(のi+のi+,)/2(のi+,一の,)
/2=のとして整理するとねnの={(公十t)cos
の,一公−hi}/{S十(公十t)sinの;}とな
りのi+,=のi十2an‐1{((公十t)cosの
i一公−hi)/(S+(公十t)sinのi) ……
…00又加工曲率piは、pi=r十t/2十 {Sc
osのi+,一(公十hi)SinのM}/sin(の
i+のi+,) ………(11)となる。
...=aiSin(Matsuju Q.)=(rjuki+p')Sin
(i+iH) ---...side gutter H=aiSi
n ( Kano fake, ): I-ki-r) Sin's other day) .
・a, {sin(i+Qi) one sin(Qi-river)
} = (Koju t) sin (the i+ of the 10,)……(8} Transform, (Koju hi) cos {(the i+, 1 of the i) ノ 2} 10 S sin {(the i+, 1,)/2}=(a+t
) cos {(i+ of i+,)/2(i+, one of,)
If we organize it as /2=, then n={(Kojūt)cos
, Ichiko-hi}/{S 10 (Koju t) sin's;} next i+, = i 12 an-1 {((Koju t) cos i Ichiko - hi)/(S+( Koju t) sin i) ……
...00 Also, the machining curvature pi is pi = r +t/20 {Sc
i+ of os, M of sin}/sin(i+ of i+,) ......(11).

従って入、出側の矯正中の圧下値Hin、Houtを決
め、i番目ロール船.iとj+1番目ロールNi十1の
軸心間の中央位置での圧下値hiを決め、第7図の様に
1番目ロールM.1と2番目ロール舵.2との間に、直
線的に帯板1が進入しかつ1番目ロール地.1と2番目
ロールの帯板1との接触角の,、の2の絶対値が等しい
とする初期条件のもとで接触角の,との2 を定め、前
記{10(11)式を繰り返し計算すれば、各ロールN
o.iでの接触角のi、加工曲率piを求めることがで
きる。特定入出側圧下設定日1、HOのもとで帯板を通
板し、噛み止め試験を行ない、帯板のスプリングバック
を考慮して帯板の各ロールでの加工度を求め、次にこの
帯板の各ロールでの加工暖から矯正反力を後述する算定
式にて算定し、上ワークロールの飛び上り量SBを定め
、実際のローラー矯正中の入側圧下値Hin=HI−S
B、出側圧下値Hout=HO−SBを求めて、前記一
連の加工度算定式【IQ(11)【3}に、矯正中の実
圧下値Hin、Houtから定まる圧下値hiを代入し
て各ロールでの加工度を算出したところ、噛み止め試験
から求めた各ロールでの実際の加工度と一致した。一方
残留加工応力を最小値にするために実際上指定可能なも
のは、第■式より明らかな様に入側最大加工度Kinと
出側加工度Koutであるから、この入側最大加工度及
び出側加工度を指定して板厚、降伏点応力別に、上記加
工度が得られる、ローラー矯正中の入出側の圧下値Hi
n、Houtを前述の矯正中の加工度算出式【IQ(1
1){3’より求めた。
Therefore, the rolling reduction values Hin and Hout during straightening on the input and output sides are determined, and the roll reduction values Hin and Hout are determined for the i-th roll ship. Determine the rolling reduction value hi at the center position between the axes of the i and j+1st rolls Ni1, and as shown in FIG. 1st and 2nd roll rudder. 2, the strip plate 1 enters in a straight line between the first rolled material and the first rolled material. Under the initial condition that the absolute values of , and 2 of the contact angle with the strip plate 1 of the second roll are equal, the contact angle of , and 2 are determined, and the above equation {10 (11) is repeated. If you calculate, each roll N
o. The contact angle i at point i and the machining curvature pi can be determined. Specified entry/exit side rolling reduction setting day 1: Pass the strip under HO, conduct a bite test, calculate the degree of processing of the strip with each roll taking into account the springback of the strip, and then Calculate the straightening reaction force from the processing heat of each roll of the strip using the calculation formula described below, determine the jump amount SB of the upper work roll, and calculate the entrance side rolling reduction value Hin=HI-S during actual roller straightening.
B. Calculate the exit side reduction value Hout = HO-SB, and substitute the reduction value hi determined from the actual reduction values Hin and Hout during straightening into the series of processing degree calculation formulas [IQ (11) [3}, and calculate each When the degree of work with the rolls was calculated, it matched the actual degree of work with each roll determined from the bite test. On the other hand, what can be practically specified in order to minimize the residual machining stress is the maximum machining degree Kin on the entry side and the machining degree Kout on the exit side, as is clear from equation (2). By specifying the exit side working degree and obtaining the above working degree for each plate thickness and yield point stress, the rolling reduction value Hi on the entrance and exit side during roller straightening.
n, Hout are calculated using the above-mentioned formula for calculating the degree of machining during straightening [IQ (1
1) Determined from {3'.

以下その結果を示す(第8図参照)。{11入側最大加
工度Kin、出側加工度Koutが指定されたとき、上
記加工度を得る矯正中の入側圧下値Hin及び出側圧下
値HoutについてHin=T一日Hin
…・・・・・・(12)Hout=T−HHout
….・.…(13)として、整理する。
The results are shown below (see Figure 8). {11 When the maximum machining degree Kin on the inlet side and the machining degree Kout on the exit side are specified, Hin=T day Hin for the inlet side rolling value Hin and the exit side rolling value Hout during straightening to obtain the above machining degree
......(12) Hout=T-HHout
….・.. ...(13).

但し、Tは帯板の板厚で、HHin、HHoutは殺し
量である。殺し量HHin、HHoutは次式で定まる
。HHin=も(T、YP) ・・・・・・‐‐・
(14−1)=a,T+巻十等−T渋市十T為坪−も
.・・.・・(14‐2)HHou
t=f3(T、YP) …・・・・・・(15−
1)=qT十器‐葦十古市Tず市‐b6
..・..・(15‐2)a,〜も及びb,〜公は
上記加工度Kin、Koutで定まる定数で、YPは降
伏点応力である。
However, T is the plate thickness of the strip plate, and HHin and HHout are the cutting amount. The killing amounts HHin and HHout are determined by the following equations. HHin=mo(T,YP) ・・・・・・--・
(14-1) = a, T + Volume 10 - T Shibuichi 10 T Tametsubo - also
..・・・. ...(14-2) HHou
t=f3(T, YP) ......(15-
1) = qT Juki - Ashiju Furuichi Tzuichi - b6
.. ..・.. .. - (15-2) a, ~ and b, ~ are constants determined by the above working degrees Kin and Kout, and YP is the yield point stress.

■ 加工度Kin、Koutと矯正反力Pの関係につい
てP=BXT主XYPCk ‐‐‐‐‐‐‐‐‐(1
6)但し、(16)式に於けるCkは上記加工度Kin
、Koutにより定まる定数で、Bは板幅、Lはロール
ピッチ、Tは板厚である。
■ Regarding the relationship between the processing degree Kin, Kout and the straightening reaction force P, P=BXTmain XYPCk ‐‐‐‐‐‐‐‐‐‐(1
6) However, Ck in equation (16) is the processing degree Kin
, Kout, where B is the plate width, L is the roll pitch, and T is the plate thickness.

本発明では上記加工度Kin、Kout耳Uの定数Ck
を保有している。{3} 矯正反力Pによる飛び上り童
SBについて、SB=f4(P、B) ・・
・・・・・・・(17)SBニe.P十e2平十e3(
e4−B)P十e5..・..・・・・(18)但しe
,〜e5は定数で、Bは板幅である。
In the present invention, the processing degree Kin, Kout, the constant Ck of the edge U,
is held. {3} Regarding the jumping child SB due to the corrective reaction force P, SB = f4 (P, B)...
・・・・・・・・・(17) SBnie e. P 10 e2 Hei 10 e3 (
e4-B) P10e5. ..・.. .. ...(18) However, e
, ~e5 are constants, and B is the plate width.

従って、指定された入側最大加工度Kin、出側加工度
Koutを得る入側設定圧下値HI及び出側設定圧下値
HOはHI=Hin−SB (
19)日。
Therefore, the input side set reduction value HI and exit side set reduction value HO to obtain the specified maximum machining degree Kin and exit side machining degree Kout are HI=Hin-SB (
19) Sun.

ニHo山一SB (20)で定ま
る。従って、板厚T、板幅B、降伏点応力YP、及び所
望の入側最大加工度Kin、出側加工度Koutを与え
ることにより、第(14)式及び第(15)式にて殺し
量HHin、HHoutが算出され、第(12)式及び
第(13)式から上記加工度Kin、Ko山を得るロー
ラー矯正中の入側圧下値Hin、出側圧下値Houtが
算出され、繁(16)式から矯正反力Pが算出され、第
(17)式又は第(18)式から飛び上り墨SBが算定
され、第(19)式及び第(20)式から上記所望の加
工度Kin、Koutを得る入側及び出側設定圧下値m
、HOが算出される。
It is determined by NiHo Yamaichi SB (20). Therefore, by giving the plate thickness T, the plate width B, the yield point stress YP, the desired maximum machining degree Kin on the entry side, and the machining degree Kout on the exit side, the amount of cutoff can be calculated using equations (14) and (15). HHin and HHout are calculated, and from equations (12) and (13), the entry side rolling reduction value Hin and exit side rolling reduction value Hout during roller straightening to obtain the above working degrees Kin and Ko mountain are calculated, and the following equation (16) is calculated. The correction reaction force P is calculated from Equation (17) or Equation (18), and the jump black SB is calculated from Equation (19) and Equation (20). Inlet and outlet set pressure reduction values m
, HO are calculated.

上記入側最大加工度Kin及びぴ出側加工度Koutは
、予め形状が良好でかつ均一な最小残留内部応力の帯板
を得る加工度として算定し、保有して、与えるものであ
る。
The maximum machining degree Kin on the input side and the machining degree Kout on the exit side are calculated in advance as the machining degrees to obtain a uniform strip having a good shape and a minimum residual internal stress, and are kept and given.

具体的には、加工度Kin、Koutを指定し、更に板
厚T、降伏点応力YPを指定して第(14)(15)式
をへて殺し肇HHin、HHoutを算出し、庄下値日
1、HOを求め、これより各ロールでの圧下値hiを求
め、第00、(11)、‘3}式より各ロールでの加工
度Kiを求めて、第■式で残留内部応力を求めて、該残
留内部応力が最4・となるKin、Ko山を見し、出す
。なお平坦性を確保するため少なくともKjは1でなけ
ればならない。以上の様に本発明では予め保有している
形状が良好でかつ均一な最小内部残留応力を得る入側最
大加工度Kin、出側加工度Kout及び帯板の板厚T
、板幅B、降伏点応力YPを情報として与えるのみで、
上記加工度を得る圧下設定を自動的に行なうことができ
る。
Specifically, specify the working degree Kin and Kout, further specify the plate thickness T and the yield point stress YP, and calculate HHin and HHout by using equations (14) and (15), and calculate the Shoshita value date. 1. Find HO, find the rolling reduction value hi for each roll from this, find the degree of work Ki for each roll from equations 00, (11), and '3', and find the residual internal stress using equation ①. Then, find the Kin and Ko mountains where the residual internal stress is the maximum of 4. Note that at least Kj must be 1 to ensure flatness. As described above, in the present invention, the maximum machining degree Kin on the entry side, the machining degree Kout on the exit side, and the plate thickness T of the strip plate have a good pre-existing shape and a uniform minimum internal residual stress.
, plate width B, and yield point stress YP are given as information,
The rolling reduction setting to obtain the above working degree can be automatically performed.

前述の如く算定した入側及び出側設定圧下値m、HOで
帯板を通板すれば、従来の圧下設定法の様に出側の形状
を見て棚助ロ−ルを操作したり、出側圧下を操作するこ
となく、形状の良好な残留内部応力の4・さな帯板を得
ることができる。
If the strip is passed through the strip at the input and exit side set reduction values m and HO calculated as described above, then the shelf support rolls can be operated by looking at the shape of the exit side as in the conventional reduction setting method. It is possible to obtain a small strip with good residual internal stress and a good shape without operating the exit side reduction.

連続熱延工程で製造される帯板は、降伏点応力が冷却温
度とか成分で、又板厚が厚み制御性能によりコイル間で
、上記応力及び又は板厚が目標値より【まずれることが
あるが、レベラーに与える情報は、上記目標値を与える
ことになる。この目標値と実際に矯正される帯板との偏
差を吸収するため、上記圧下設定で帯板を通板し帯板の
先端がローラーレベラー出側より放出された時点で、以
下の圧下設定値の修正を行なう。即ち矯正反力を検知し
、算出矯正反力との偏差による入出側設定圧下値の平行
修正を行なう。更にはローラーレベラー出側より放出さ
れた帯板先端が後面テーブル上に着地した時点で、実モ
ーターパワーと予測算出モーターパワーの偏差による入
出側圧下値の平行修正を行ない、続いてローラーレベラ
ー後面の特定位置で帯板の板高さを検知し、目標板高さ
になる様に出側圧下を修正することを、モーターパワー
偏差と板高さ偏差が各々所定範囲に収束するまで繰り返
す圧下値修正を行なう。
For strips produced in the continuous hot rolling process, the yield stress may vary depending on the cooling temperature and other components, and the thickness may vary between coils due to the thickness control performance, so the stress and/or thickness may deviate from the target value. However, the information given to the leveler will give the above target value. In order to absorb the deviation between this target value and the strip that is actually straightened, when the strip is passed through with the above roll-down setting and the tip of the strip is released from the exit side of the roller leveler, the following roll-down setting value is applied. Make corrections. That is, the correction reaction force is detected, and the parallel correction of the input/output side set pressure reduction value is performed based on the deviation from the calculated correction reaction force. Furthermore, when the tip of the strip discharged from the exit side of the roller leveler lands on the rear table, the input/output side rolling reduction value is corrected for parallelism based on the deviation between the actual motor power and the predicted calculated motor power, and then the rear surface of the roller leveler is specified. The plate height of the strip is detected at the position, and the exit side reduction is corrected to reach the target plate height.The reduction value is repeatedly corrected until the motor power deviation and plate height deviation each converge within the specified range. Let's do it.

加工度とモーターパワーの関係は次の通りである。The relationship between machining degree and motor power is as follows.

N=畳蔓芳美音思う毒2Kp+△N‐‐‐‐‐‐(21
)但しNは所要動力、Vは通板速度、Eは縦弾性係数、
りは機械効率、nはロール本数、Kiはi番目のロール
での加工度、△N‘ま無負荷動力であり、上記ZKpは
、板厚T、降伏点応力YPが変化してもほぼ一定である
から前記入側最大加工度Kin、出側加工度KoM別の
定数として保有している。
N=Tatatsuri Yoshimi's Poison 2Kp+△N----- (21
) However, N is the required power, V is the threading speed, E is the longitudinal elastic modulus,
ri is the mechanical efficiency, n is the number of rolls, Ki is the machining rate of the i-th roll, △N' is the no-load power, and the above ZKp is almost constant even if the plate thickness T and yield point stress YP change. Therefore, it is held as a constant for each of the input side maximum machining degree Kin and the output side machining degree KoM.

一方、入側最大加工度Kin及び出側加工度Koutが
指定され(通常加工度KoutはKout=1で、帯板
は並坦な形状となる)、しかも、圧下設定がその加工度
が得られる様になっておれば、そのローラーレベラーか
ら吐き出される帯板は平坦であって、しかもその帯板の
吐き出し角度の肌は、■式からめout=のnで酸定さ
れる。
On the other hand, the input side maximum working degree Kin and the exit side working degree Kout are specified (the normal working degree Kout is Kout = 1, and the strip has a flat shape), and the reduction setting can obtain the working degree. If it is, the strip discharged from the roller leveler is flat, and the surface of the discharge angle of the strip is determined by n of out= from the equation (2).

特定角度の。of a specific angle.

utで帯板が吐き出されかつ帯板先端が後面テーブル上
に着地している状態を、第9図に示している。このとき
のローラーレベラー後面のx位置での帯板の板高さWは
図示の後方張力Fが小さい値なので、0とすると、モー
メントMの方程式は、M=空髪も(X−そ)−暑(舷−
そ)(X−そ).・…・(26) 但し1は断面2次モーメント、Dは単位長さ当りの荷重
、Eは帯板縦弾性係数である。
FIG. 9 shows a state in which the strip is discharged at the ut and the tip of the strip lands on the rear table. At this time, the height W of the strip at the x position on the rear surface of the roller leveler is set to 0 since the rear tension F shown in the figure is small. heat (ship)
So) (X-So). ...(26) However, 1 is the second moment of area, D is the load per unit length, and E is the longitudinal elastic modulus of the strip.

ここで限定条件x=0、(dW/dx)x=o=の肌、
Wx=o=0、x;夕、(dW/血)x=ぐ=0、Wx
=そニ0を入れたたわみ曲線は、〆=3 ノ2位1の瓜
t/D ………(27)となり、w=鞍(x‐
2そ)(xの‐溝 (公一3Z)(X−そ) ………(28)が得られる
Here, the skin of the limiting condition x=0, (dW/dx)x=o=,
Wx=o=0, x; evening, (dW/blood) x=gu=0, Wx
The deflection curve with = soni 0 is 〆 = 3 no 2nd place 1's melon t/D (27), and w = saddle (x-
2-so) (x-groove (Koichi 3Z) (X-so) ......(28) is obtained.

つまりローラーレベラー後面の特定位置での板高さで帯
板の平坦度或は出側加工度或は出側圧下設定の精度を確
認できる。即ち本発明の設定圧下値の修正は、初期圧下
設定で与えた残留加工応力上重要な加工度パターンをく
ずこない様に入、出側ともに同一量だけ修正する。
In other words, the flatness of the strip, the degree of work on the exit side, or the accuracy of the exit side rolling reduction setting can be confirmed by the height of the plate at a specific position on the rear surface of the roller leveler. That is, the set reduction value of the present invention is corrected by the same amount on both the entry and exit sides so as not to destroy the working degree pattern, which is important in terms of residual processing stress given in the initial reduction setting.

一方帯板のローラーレベラー出側の形状上重要な出側加
工度を確保するため、ローラーレベラー出側の板高さ偏
差に応じて、出側圧下値を修正する。又残留加工応力上
重要な加工度パターンをくずさずに、帯板形状上重要な
出側加工度を確保するため、モーターパワー偏差による
平行圧下修正と、上記板高さ偏差による出側圧下修正を
交互に、上記モーターパワー偏差と板高さ偏差が各々所
定範囲に収束するまで繰り返すものである。
On the other hand, in order to ensure the degree of work on the exit side, which is important for the shape of the strip on the exit side of the roller leveler, the exit side rolling reduction value is corrected according to the plate height deviation on the exit side of the roller leveler. In addition, in order to ensure the exit side workability, which is important for the strip shape, without destroying the workability pattern, which is important for residual machining stress, the parallel reduction is corrected by the motor power deviation, and the exit side reduction is corrected by the plate height deviation mentioned above. This is alternately repeated until the motor power deviation and plate height deviation each converge within a predetermined range.

以下本発明の方法を実施するしべラーの圧下制御装置の
一実施例を第10図について説明する。図面に於て12
はローラーレベラー、13,14はしべラー12に設置
した矯正反力Pを検出するロードセル、15はしべラー
12の上ワークロール3群、下ワークロール2群を駆動
するモー夕、16はモータ15の回転を検出し、通板速
度Vを検知するタコジェネレータ、17はしべラ−12
の後面に配置した帯板1の板高さ検出器である。なおロ
ーラーレベラー12の他の構成要素を示す符号は、第1
図と同一の物を示している。また20は設定器で、設定
器20には帯板1の通板前こ帯板1の板厚T、板幅B、
降伏点応力YP、及び帯板1の平坦性並びに内部残留応
力の均一性を狙った目標入側最大加工度Kin、出側加
工度Kout(具体的にはKout=1)を設定する。
Hereinafter, an embodiment of a reduction control device for a shibler implementing the method of the present invention will be described with reference to FIG. 10. 12 in the drawing
1 is a roller leveler, 13 and 14 are load cells installed on the leveler 12 to detect the correction reaction force P, 15 is a motor that drives the third group of upper work rolls and the second group of lower work rolls of the leveler 12, and 16 is a motor that drives the third group of upper work rolls and the second group of lower work rolls of the leveler 12 A tacho generator that detects the rotation of the motor 15 and the sheet passing speed V; 17 is a shibler 12;
This is a plate height detector for the strip plate 1 placed on the rear surface of the plate. Note that the symbols indicating other components of the roller leveler 12 are the first
Shows the same thing as the figure. Further, 20 is a setting device, and the setting device 20 includes the plate thickness T, plate width B,
A target maximum machining degree Kin on the input side and a machining degree Kout on the exit side (specifically, Kout=1) are set, aiming at the yield point stress YP, the flatness of the strip 1, and the uniformity of internal residual stress.

21は設定された板厚T、板幅B、応力YP及び上記加
工度Kin、Ko山を用い、第(21)式により所要モ
ーターパワーNc〔Kw〕を演算するモーターパワー演
算器、22は上記設定値T、B、YP、Kin、Kou
tを用い、第(16)式により所要矯正反力Pcを演算
する矯正反力演算器、23は上記設定値T、B、YP、
Kin、Koutと第(12)〜(15)式を用いて入
、也側の圧下値Hin、Houtを演算する圧下値演算
器で、24は上記入側最大加工度Kin、出側加工度K
o山を得る圧下設定が確実になされたときの帯板1のは
き出し角度の。
21 is a motor power calculator that calculates the required motor power Nc [Kw] using equation (21) using the set plate thickness T, plate width B, stress YP and the above-mentioned workability Kin and Ko mountain; 22 is the above-mentioned motor power calculator; Setting values T, B, YP, Kin, Kou
t, a corrective reaction force calculator that calculates the required corrective reaction force Pc according to equation (16); 23 is the set value T, B, YP,
It is a rolling reduction value calculator that calculates the rolling reduction values Hin, Hout on the input and side sides using Kin, Kout and equations (12) to (15), and 24 is the maximum machining degree Kin on the input side and the machining degree K on the exit side.
The extrusion angle of the strip 1 when the rolling reduction setting to obtain the o-mount is properly set.

utを第(23)式で求め、該角度の。utを用いた第
(27)式及び第(28)式から、板高さ検出器17の
設定位置に於ける基準板高さWcを演算する板高さ演算
器、25,26は上記演算器23からの入、出側の圧下
値Hin、Houtと、上記演算器22からの矯正反力
Pとを用いて第(18)式、第(19)式、第(20)
式から、入側設定圧下値日1、出側設定圧下値HOを演
算する入側、出側設定圧下値演算器、27は演算器21
からの所要モーターパワーNcと実モーターパワー演算
器31からのモータ15の実モーターパワーNとを比較
し、このパワー偏差ANにより実モーターパワーNが所
要モーターパワーNcになる平行圧下修正値△日を演算
する平行圧下修正値演算器で、28は板高さ検出器17
よりの板高さWと板高さ演算器24からの基準板高さW
cとの偏差△Wを求め、基準板高さWcになるまで出側
圧下修正信号を出力する比較器である。また29,30
は入、出側の圧下位暦制御装置で、入側圧下位層制御装
置29の入力端子には、入側設定圧下値演算器25、ロ
ードセル13、平行圧下修正値演算器27を接続してい
る。一方の制御装置30の入力端子には、出側設定圧下
値演算26、ロードセル14、平行圧下修正値演算器2
7、上記比較器28を接続している。以下、上記制御装
置の動作を説明する。
Find ut using equation (23), and calculate the angle. A plate height calculator which calculates the reference plate height Wc at the set position of the plate height detector 17 from equations (27) and (28) using ut; 25 and 26 are the above calculators; Equations (18), (19), and (20) are calculated using the input and exit side reduction values Hin and Hout from 23 and the correction reaction force P from the arithmetic unit 22.
From the equation, 27 is a calculator 21 for input side and outlet set pressure reduction values that calculate the input side set pressure reduction value day 1 and the output side set pressure reduction value HO.
The required motor power Nc is compared with the actual motor power N of the motor 15 from the actual motor power calculator 31, and the parallel reduction correction value △ day at which the actual motor power N changes to the required motor power Nc is determined by this power deviation AN. 28 is a parallel reduction correction value calculator that calculates the plate height detector 17
The twisted plate height W and the reference plate height W from the plate height calculator 24
This is a comparator that calculates the deviation ΔW from the reference plate height Wc and outputs an exit side reduction correction signal until the reference plate height Wc is reached. Also 29,30
is an input/output side roll lower layer control device, and an input side set roll reduction value calculator 25, a load cell 13, and a parallel roll reduction correction value calculator 27 are connected to the input terminal of the input side roll lower layer control device 29. . The input terminals of one of the control devices 30 include an output set pressure reduction value calculation 26, a load cell 14, and a parallel reduction correction value calculation unit 2.
7. The comparator 28 mentioned above is connected. The operation of the above control device will be explained below.

まず帯板1の通板前に被加工帯板1の板厚T、板幅B、
降伏点応力YP、及び帯板1の平坦性並びに内部残留応
力の均一性を狙った目標入側最大加工度Kin、出側加
工度Kout=1を設定する。モーターパワー演算器2
1は第(21)式にもとずき、所要モーターパワーNc
〔Kw〕を演算し、矯正反力演算器22は第(16)式
にもとずき所要矯正反力Pcを演算し、圧下値演算器2
3は前記第(12)、(13)、(14)、(15)式
にもとづいて、入、出側の圧下値Hin、Houtを演
算し、板高さ演算器24は帯板1のはき出し角度の。u
tを前記第(23)式で求め、該角度の肌を用い第(2
7)、(28)式から板高さ検出器17の配置位置にお
ける基準板高さWcを演算する。入側、出側設定圧下値
演算器25,26は、上記演算器22及び23から与え
られた矯正反力Pcと、入、出側の圧下値Hin、Ho
utと前記第(18)、(19)、(20)式から、入
側、出側設定圧下値日1、HOを演算し、上記演算器2
5は圧下位層制御装置29へ圧下値HIを位置基準信号
として与え、上記演算器26は圧下位層制御装置30へ
圧下値HOを位置基準信号として与える。各位直制御装
置はモーター10、ギャ9、スクリュー8を介してロー
ラーレベラ−の入、出側の圧下値を上記圧下値m、HO
に設定する以上のファーストセットアップが完了すると
、帯板1を通板し、ローラーレベラー内を通過させ、帯
板1の先端が板高さ検出器17で検知されると、まずロ
ードセル13,14からの実矯正反力Pi、Poを各々
圧下位層制御装置29,30へ与えここで上記実績正反
力Pi、Poによる実飛び上り量を第(13)式にて算
出し、先のファーストセットアップ時に算出された飛び
上り量との差分だけ、圧下値を補正する信号をモーター
10,10へ与える。
First, before passing the strip 1, the thickness T, width B of the strip 1 to be processed,
A target maximum machining degree Kin on the input side and a machining degree Kout on the exit side are set to be 1, aiming at the yield point stress YP, the flatness of the strip plate 1, and the uniformity of internal residual stress. Motor power calculator 2
1 is the required motor power Nc based on equation (21)
[Kw], the correction reaction force calculation unit 22 calculates the required correction reaction force Pc based on equation (16), and the reduction value calculation unit 2
3 calculates the reduction values Hin and Hout on the inlet and outlet sides based on equations (12), (13), (14), and (15), and the plate height calculator 24 calculates the roll-down values of the strip plate 1. of angle. u
Find t using the above equation (23), and use the skin of the angle to calculate the (2)
7) Calculate the reference plate height Wc at the arrangement position of the plate height detector 17 from equations (28). The inlet side and outlet set reduction value calculators 25 and 26 calculate the correction reaction force Pc given from the calculators 22 and 23, and the input and outlet side reduction values Hin, Ho.
ut and the formulas (18), (19), and (20) above, calculate the input side and output side set pressure reduction values day 1 and HO, and then calculate the above calculation unit 2.
5 supplies the roll-down value HI to the roll-down layer control device 29 as a position reference signal, and the arithmetic unit 26 supplies the roll-down value HO to the roll-down layer control device 30 as a position reference signal. Each direct control device controls the roll-down values on the inlet and outlet sides of the roller leveler via the motor 10, gear 9, and screw 8 to the above-mentioned roll-down values m and HO.
When the first setup is completed, the strip 1 is passed through the roller leveler, and when the tip of the strip 1 is detected by the plate height detector 17, the load cells 13 and 14 are first set. The actual correction reaction forces Pi and Po are applied to the rolling lower layer control devices 29 and 30, respectively, and the actual jump amount due to the above-mentioned actual positive reaction forces Pi and Po is calculated using equation (13), and the previous first setup is performed. A signal is given to the motors 10, 10 to correct the roll reduction value by the difference from the jump amount calculated at the time.

上記飛び上り量の補正制御が完了した時点で、実モータ
ーパワー演算器31は矯正ローラを駆動するモータ15
の電流、電圧、とタコジェネレータ16からラインスピ
ードを取り入れ基準ラインスピードに於ける実モーター
パワーN〔Kw〕を演算し、上記演算器27へ与える。
When the above-mentioned jump amount correction control is completed, the actual motor power calculator 31 calculates the motor 15 that drives the correction roller.
The actual motor power N [Kw] at the reference line speed is calculated by taking in the current, voltage, and line speed from the tacho generator 16, and provides it to the calculating unit 27.

該演算器27は演算器21から与えられたモーターパワ
ーNc〔Kw〕と比較し、モーターパワーの偏差△Nを
求め、このパワー偏差△N〔Kw〕により、実パワーN
〔Kw〕が計算パワーNc〔Kw〕になる修正圧下値△
日を定め「圧下位層制御装置29,30へ上記圧下値△
日だけ修正するような圧下位層疹正信号を与える。これ
により入、出側の圧下値が△日だけ平行修正される。上
記モーターパワー偏差△Nを消却するに必要な圧下値△
日は以下の通りである。
The arithmetic unit 27 compares the motor power Nc [Kw] given from the arithmetic unit 21 to find the motor power deviation △N, and from this power deviation △N [Kw], the actual power N
Corrected reduction value △ where [Kw] becomes calculated power Nc [Kw]
Set the date and send the above pressure reduction value △ to the pressure lower layer control devices 29 and 30.
It only corrects the pressure and gives a positive signal for the substratum eruption. As a result, the rolling reduction values on the input and output sides are corrected in parallel by △ days. Reduction value △ required to cancel the above motor power deviation △N
The dates are as follows:

庄下値△日だけ平行圧下したときのモーターパワー変化
量△Nは重回帰式より、△N=E蔓声妾雫髭美6。
The amount of change in motor power △N when the parallel pressure is reduced by the Shoshita value △day is calculated from the multiple regression equation, △N=ETsuruseiko Shizukuhigemi 6.

〔ざ十(g・十g2・T+ず・YP)‐T‐△H〕
‐‐‐‐‐‐‐‐‐(29)となる。なおず、g1、
g2、ずは定数である。(29)式より最適修正圧下値
△日は△H=〔△N−f6(T、YP、V)〕/f7(
T、YP、V) ・・・・・・
(30)で求める。
[Zaju (g・10g2・T+zu・YP)-T-△H]
‐‐‐‐‐‐‐‐‐‐(29). Naozu, g1,
g2 and z are constants. From formula (29), the optimal corrected reduction value △day is △H=[△N-f6(T, YP, V)]/f7(
T, YP, V) ・・・・・・
Find it using (30).

この平行圧下修正が完了すると、板高さ位置検出器17
で帯板1の板高さWを取り入れ、比較演算器28は△W
=Wc−Wを出側の圧下位層制御装置301こ与える。
これにより上記制御装置30は、l△WIミGにるまで
出側の圧下値を修正する。例えばG=2.5伽とする。
この修正が完了するとまず演算器27にて圧下値が修正
されたのちの実モーターパワーNと演算パワーNcを比
較し、パワー偏差ANがIANI≦Qの関係にあるかど
うか確認し、パワー偏差△Nがl△NI≦Qであれば、
パワー偏差△による入、出側の氏下修正は実行されず、
又板高さ偏差△Wによる修正も行なわない。一方パワー
偏差△Nがl△NI≦Qでない場合、パワー偏差△Nに
もとずき入、出側圧下修正値ANを、演算器27は制御
装置29,30へ出力する。この平行圧下修正が完了す
ると、演算器28は板高さ位置検出器17より板高さW
を取り入れ、まず板高さ偏差△Wを算出し、IAWIS
Gの関係にあるかどうか確認し、関係を満足していれば
、板高さ偏差△Wによる出側の庄下修正が行なわれない
。一方上記関係にない場合、板高さ偏差△Wによる出側
圧下修正が行なわれる。以下同機にパワー偏差並びに板
高さ偏差が、各々所定値内に収束するまで繰り返し行な
われる。収束すると同一帯板については、いかなる圧下
修正も実行されない。例えば上記Qは0.0印cを採用
する。第11図は板厚9肋、板幅1.5凧の帯板をロー
ラーレベラ−で形状矯正後、その帯板を長さ3仇に切断
し、更に第5図の様に4〜6条切りし、そのLぞり値の
最大高さ値和maxの分布を示したもので、A分布は従
来の圧下段定法で入、出側の圧下値を設定し補助ローラ
を操作した場合、B分布は本発明の圧下設定法で入出側
の圧下値を設定して帯板をしべリングした場合、C分布
は本発明法で圧下設定後、矯正反力による平行圧下修正
を行なった場合、D分布は本発明法で圧下設定後、矯正
反力による平行圧下修正を行ない更に板高さ偏差とモー
ターパワー偏差が各々所定範囲に収束するまでモーター
パワー偏差による平行圧下修正と板高さ偏差による出側
圧下修正を繰り返し行なった場合のLぞり値の最大高さ
値の分布をそれぞれ示している。
When this parallel reduction correction is completed, the plate height position detector 17
The plate height W of the strip plate 1 is taken in, and the comparator 28 calculates △W.
=Wc-W is given to the pressure lower layer control device 301 on the output side.
As a result, the control device 30 corrects the reduction value on the exit side until lΔWIMIG is reached. For example, let G=2.5.
When this correction is completed, first, the actual motor power N after the reduction value has been corrected is compared with the calculated power Nc in the calculator 27, and it is checked whether the power deviation AN is in the relationship IANI≦Q, and the power deviation △ If N is l△NI≦Q, then
Input and exit side corrections due to power deviation △ are not executed,
Also, no correction is made based on the plate height deviation ΔW. On the other hand, if the power deviation △N is not l△NI≦Q, the calculator 27 outputs the input/output side reduction correction value AN to the control devices 29 and 30 based on the power deviation △N. When this parallel reduction correction is completed, the calculator 28 detects the plate height W from the plate height position detector 17.
First, calculate the board height deviation △W, and then calculate the IAWIS
It is confirmed whether the relationship G is satisfied, and if the relationship is satisfied, the output side shoroshita correction by the plate height deviation ΔW is not performed. On the other hand, if the above relationship does not exist, the exit side reduction is corrected by the plate height deviation ΔW. Thereafter, the process is repeated until the power deviation and plate height deviation of the same machine are each converged within predetermined values. Once converged, no reduction correction is performed for the same strip. For example, the above Q uses 0.0 mark c. Figure 11 shows a strip with a thickness of 9 ribs and a width of 1.5 strips, which is corrected in shape with a roller leveler, cut into 3 lengths, and then cut into 4 to 6 strips as shown in Figure 5. This shows the distribution of the sum of the maximum height values max of the L sliding value. A distribution is the distribution of B when the input and exit side rolling reduction values are set using the conventional rolling method and the auxiliary roller is operated. The distribution is when the strip is plated by setting the roll reduction value on the entry and exit sides using the roll setting method of the present invention, and the C distribution is when the parallel roll correction is performed using the straightening reaction force after the roll reduction is set using the method of the present invention. After setting the roll reduction using the method of the present invention, the D distribution is adjusted using the straightening reaction force, and then the parallel roll reduction is corrected using the motor power deviation and the plate height deviation until the plate height deviation and motor power deviation respectively converge within the specified ranges. The distribution of the maximum height value of the L-slip value when the exit side reduction correction is repeated is shown.

条切り後のLぞり値が帯板の残留応力を示すものである
から、従来法と比較して本発明の圧下設定法で庄下を設
定ししべリングすることのみでも効果があることは明ら
かである。
Since the L shear value after strip cutting indicates the residual stress in the strip, it is more effective to set the shoroshita using the reduction setting method of the present invention and perform shibbling alone, compared to the conventional method. is clear.

又、板高さ偏差とモーターパワー偏差により圧下修正を
行なえば、延べつばなし圧延鋼板(コィラーで捲きとら
ない鋼板)なみの±2仇吻の範囲に収めることができる
In addition, if the rolling reduction is corrected based on the plate height deviation and motor power deviation, it is possible to keep it within the range of ±2 degrees, which is the same as a rolled steel plate without a rib (a steel plate that is not rolled up by a coiler).

以上の様に本発明のしべリング方法によれば、形状が良
好でも、均一で最小の内部残留応力の帯板を得ることが
でき、極めて帯板の矯正上有効である。
As described above, according to the shingling method of the present invention, it is possible to obtain a uniform strip with minimum internal residual stress even if the shape is good, and it is extremely effective in straightening the strip.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はローラーレベラーの概要説明図、第2図はロー
ラーレベラーによる帯板の変形過程を示すモデル図、第
3図および第4図は従来の圧下設定方法の説明図、第5
図は条切り後のL反り発生状況の説明図、第6,7およ
び8図は矯正中の帯板の加工度の算出の仕方の説明図、
第9図はローラーレベラー出側に於ける帯板の状況説明
図、第10図は本発明の矯正方法を実施するローラーレ
ベラーの説明図、第11図は本発明方法の実施により得
られる効果の説明図である。 1…・・・帯板、2・・・・・・下ワークロール、3…
・・・上ワークロール、4……バックアップロール、5
…・・・補助ローラ、6・・・・・・シリンダ、7・・
・・・・トップガーダー、8・・・・・・圧下スクリュ
ー、9・・・・・・ギヤ、10・・・・・・電動機、1
1・…・・レベラースタンド、12……ローラーレベラ
ー、13,14……ロードセル、15・・・・・・ワー
クロール駆動モータ、16・・・…夕コジェネレータ、
17・・・・・・板高さ検出器、18・・・・・・先端
検出器、20…・・・設定器、21・・・・・・モータ
ーパワー演算器、22・・・・・・矯正反力演算器、2
3・・・・・・圧下値、24・・…・板高さ演算器、2
5・・・・・・入側設定圧下値演算器、26・・・・・
・出側圧下値演算器、27・・…・平行圧下修正値演算
器、28・…・・比較器、29・・・・・・入側の圧下
位直制御装置、30・・・・・・出側の圧下位層制御装
置。 第1図 第2図 第3図 第4図 第5図 第6図 第7図 第8図 第9図 第11図 第10図
Fig. 1 is a schematic explanatory diagram of a roller leveler, Fig. 2 is a model diagram showing the deformation process of a strip by a roller leveler, Figs. 3 and 4 are explanatory diagrams of the conventional rolling reduction setting method, and Fig. 5
The figure is an explanatory diagram of the occurrence of L warpage after stripping, and Figures 6, 7, and 8 are explanatory diagrams of how to calculate the processing degree of the strip during straightening.
Fig. 9 is an explanatory diagram of the state of the strip at the outlet side of the roller leveler, Fig. 10 is an explanatory diagram of the roller leveler implementing the straightening method of the present invention, and Fig. 11 is an explanatory diagram of the effect obtained by implementing the method of the present invention. It is an explanatory diagram. 1... Band plate, 2... Lower work roll, 3...
...Top work roll, 4...Backup roll, 5
...Auxiliary roller, 6...Cylinder, 7...
...Top girder, 8...Down screw, 9...Gear, 10...Electric motor, 1
1...Leveler stand, 12...Roller leveler, 13, 14...Load cell, 15...Work roll drive motor, 16...Evening co-generator,
17...Plate height detector, 18...Tip detector, 20...Setting device, 21...Motor power calculator, 22...・Correction reaction force calculator, 2
3...Reduction value, 24...Plate height calculator, 2
5...Inlet side set pressure reduction value calculator, 26...
- Output side roll reduction value calculator, 27... Parallel roll reduction correction value calculator, 28... Comparator, 29... Inlet side roll reduction direct control device, 30... Outlet pressure lower layer control device. Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 Figure 8 Figure 9 Figure 11 Figure 10

Claims (1)

【特許請求の範囲】 1 入、出側の圧下値を調整する機構を備えたローラー
レベラーによる帯板のレベリング方法に於て、予じめ設
定した形状が良好でかつ均一な最小内部残留応力の帯板
を得る入側最大加工度Kin、出側加工度Koutと、
帯板の板厚T、板幅B、降伏点応力YPとから、下記の
ステツプ1〜5にて入、出側の最適設定圧下値HI、H
Oを算出、該圧下値HI、HOを設定して前記帯板を通
板することを特徴とする、ローラーレベラーによる帯板
のレベリング方法。 2 入、出側の圧下値を調整する機構を備えたローラー
レベラーによる帯板のレベリング方法に於て、予じめ設
定した形状が良好で、かつ均一な内部残留応力の帯板を
得る入側最大加工度Kin、出側加工度Koutと、帯
板の板厚T、板幅B、降伏点応力YPとから、下記のス
テツプ1〜5にて入、出側の最適設定圧下値HI、HO
を算出し該圧下値HI、HOを設定して前記帯板を通板
し帯板先端部がローラーレベラー出側より放出された時
点で、実矯正反力Pを検出し、前記ステツプ1での予測
矯正反力Pcとの反力偏差ΔPを求め、該偏差ΔPによ
る飛び上り量ΔSBを算出し、入、出側の圧下値を修正
することを特徴とする、ローラーレベラーによる帯板の
レベリング方法。 3 入、出側の圧下値を調整する機構を備えたローラー
レベラーによる帯板のレベリング方法に於て、予じめ設
定した形状が良好でかつ均一な最小内部残留応力の帯板
を得る入側最大加工度Kin、出側加工度Koutと、
帯板の板厚T、板幅B、降伏点応力YPとから下記のス
テツプ1〜5にて、入、出側の最適設定圧下値HI、H
Oを算出し、又下記ステツプ6にてレベリング所要動力
Ncを算出し、更に下記ステツプ7,8にてローラーレ
ベラー出側の特定位置での上記帯板のテーブルからの板
高さWcを算出し、前記圧下値HI、HO設定にて、前
記帯板を通板し、該帯板先端がローラーレベラー出側よ
り放出された時点での実矯正反力Pを検出し、予測矯正
反力Pcとの偏差ΔPを求め、該偏差ΔPによる飛び上
り量ΔSBを算出し、入、出側の圧下値を修正し、該修
正終了後引続いてローラーレベラーの駆動電動機実負荷
Nを検出し、該負荷Nが上記所要動力Ncとなる様に入
、出側の圧下値を修正し、次に上記レベラー出側の特定
位置での帯板の高さWを検知し該板高さが上記板高さに
なる様に出側の圧下値を修正することを、上記動力Nc
と上記実負荷Nの差並びに上記板高さWcと上記実板高
さWの差が各々所定範囲に収束するまで交互に繰り返す
ことを特徴とする、ローラーレベラーによる帯板のレベ
リング方法。 ステツプ1 矯正反力Pを、下記の式で表わされる帯
板の板厚T、板幅B、ロールピツチL、降伏点応力YP
及び 前記加工度Kin、Koutで決まる定 数Ckの関係で決定する。 P=(B×T^2×YP)/LCk ステツプ2 前記入、出側の加工度Kin、Kout
を得る入、出側の殺し量HHin、HHoutを下記の
式で表わされる板 厚T、降伏点応力YP、定数a_1〜 a_6、b_1〜b_6の関数で決定する。 HHin=f_2(T、YP)=a_1T+(a_2)
/YP+(a_3)/T−(a_4)/(T×YP)+
(a_5)/(T×YP^2)−a_6HHout=f
_3(T、YP)=b_1T+(b_2)/(YP)−
(b_3)/T+(b_4)/(T×YP)−(b_5
)/(T×YP^2)−b_6 ステツプ3 前記入、
出側の圧下値Hin、Houtを下記の式により板厚T
、前記殺し量HHin、HHoutから定める。 Hin=T−HHin Hout=T−HHout ステツプ4 前記矯正反力Pによる飛び上り量SBを
下記の式で表わされる前記矯正反力Pと板幅Bと定数e
_1〜e_5の関数で決定する。 SB=e_1P+b_2P^2+e_3(e_4−B)
P+e_5 ステツプ5 前記入、出側の圧下値Hin
、Houtから前記飛び上り量SBを下記の式の如く差
し引いて入、出側の最 適設定圧下値HI、HOを定める。 HI=Hin−SB HO=Hout−SB ステツプ6 帯板の板厚T、板幅B、降伏点応力YP
、通板速度V、前記加工度Kin及びKoutで定まる
定数Σ Kp、縦弾性係数E、機械効率 η、および無負荷動力ΔNで表わ される下記関数式でローラーレベ ラーの駆動電動機所要動力Ncを 求める。 Nc=(B×T×YP^2×V)/(E×η×60×1
02)ΣKp+ΔN ステツプ7 ローラーレベラーの
出側の帯板のはきだし角度φoutを、該レベラーのロ
ール半径r、ロール間距離 S、板厚t、接触角φi+1,φ i、圧下値hiで表わされる下記関 係式より定める。 φi+1=φi+2tan^−^1{((2r+t)c
osφi−2r−hi)/(S+(2rt+t)sin
φi)} ステツプ8 ローラーレベラーの出側の特定
位置での帯板のテーブルからの板高さWcを前記角度φ
out、ローラー レベラー後面のX位置での帯板の 板高さW、後面テーブル上に着地 している帯板先端位置l、単位長 さ当りの荷重D、帯板縦弾性係数 E、断面2次モーメント1からな る下記関数式で定める。 W=(φoutX)/(2l^2)(X−2l)(X−
l)−(DX^2)/(48EI)(2X−3l)(X
−l)
[Claims] 1. In a method of leveling a strip using a roller leveler equipped with a mechanism for adjusting rolling reduction values on the inlet and outlet sides, the strip plate has a preset shape with a good and uniform minimum internal residual stress. The maximum machining degree Kin on the input side and the machining degree Kout on the exit side to obtain the strip,
Based on the strip thickness T, strip width B, and yield point stress YP, the optimal setting reduction values HI and H for the input and output sides are determined in steps 1 to 5 below.
A method for leveling a strip using a roller leveler, the method comprising calculating O, setting the rolling reduction values HI and HO, and passing the strip. 2 In a method of leveling a strip using a roller leveler equipped with a mechanism to adjust the rolling reduction value on the input and exit sides, the input side is used to obtain a strip with a good preset shape and uniform internal residual stress. Based on the maximum working degree Kin, the exit side working degree Kout, the strip thickness T, the sheet width B, and the yield point stress YP, the optimum setting reduction values HI and HO for the input and output sides are determined in steps 1 to 5 below.
is calculated, the rolling reduction values HI and HO are set, and the strip is passed through. When the tip of the strip is released from the exit side of the roller leveler, the actual straightening reaction force P is detected, and the actual straightening reaction force P is detected. A method for leveling a strip using a roller leveler, characterized in that the reaction force deviation ΔP from the predicted correction reaction force Pc is determined, the jump amount ΔSB is calculated based on the deviation ΔP, and the rolling reduction values on the input and exit sides are corrected. . 3 In a method of leveling a strip using a roller leveler equipped with a mechanism to adjust the rolling reduction value on the input and exit sides, the input side is used to obtain a strip with a good preset shape and a uniform minimum internal residual stress. Maximum machining degree Kin, exit side machining degree Kout,
Based on the strip thickness T, strip width B, and yield point stress YP, in steps 1 to 5 below, determine the optimal set reduction values HI and H on the inlet and outlet sides.
In addition, in Step 6 below, the required power Nc for leveling is calculated, and in Steps 7 and 8 below, the height Wc of the strip from the table at a specific position on the exit side of the roller leveler is calculated. , with the rolling reduction values HI and HO set, the strip is passed through, and the actual straightening reaction force P at the time when the tip of the strip is released from the exit side of the roller leveler is detected, and the predicted straightening reaction force Pc is calculated. The deviation ΔP is calculated, the jump amount ΔSB is calculated based on the deviation ΔP, the rolling reduction values on the input and exit sides are corrected, and after the correction is completed, the actual load N of the drive motor of the roller leveler is detected, and the load is Adjust the rolling reduction value on the input and exit side so that N is equal to the above required power Nc, then detect the height W of the strip at a specific position on the exit side of the leveler, and check that the height W of the strip is equal to the above board height. The above power Nc should be adjusted to correct the rolling reduction value on the exit side so that
and the actual load N, and the difference between the plate height Wc and the actual plate height W are alternately repeated until each converges within a predetermined range. Step 1 The straightening reaction force P is expressed by the following equation: strip thickness T, strip width B, roll pitch L, yield point stress YP
It is determined based on the relationship between the processing rates Kin and Kout, and a constant Ck determined by the processing degrees Kin and Kout. P=(B×T^2×YP)/LCk Step 2 Machining degree Kin, Kout on the entry and exit sides
The inlet and outlet side kill amounts HHin and HHout are determined by the functions of plate thickness T, yield point stress YP, and constants a_1 to a_6 and b_1 to b_6 expressed by the following formula. HHin=f_2(T,YP)=a_1T+(a_2)
/YP+(a_3)/T-(a_4)/(T×YP)+
(a_5)/(T×YP^2)-a_6HHout=f
_3(T, YP)=b_1T+(b_2)/(YP)-
(b_3)/T+(b_4)/(T×YP)−(b_5
)/(T×YP^2)-b_6 Step 3 Enter above,
The rolling reduction values Hin and Hout on the exit side are determined by the plate thickness T using the following formula.
, is determined from the killing amounts HHin and HHout. Hin=T-HHin Hout=T-HHout Step 4 The jump amount SB due to the straightening reaction force P is expressed by the following formula: the straightening reaction force P, the plate width B, and the constant e.
Determined by the functions _1 to e_5. SB=e_1P+b_2P^2+e_3(e_4-B)
P+e_5 Step 5 Previous entry, exit side reduction value Hin
, Hout by subtracting the jump amount SB as shown in the following formula to determine the optimal set pressure reduction values HI and HO on the input and output sides. HI=Hin-SB HO=Hout-SB Step 6 Strip plate thickness T, plate width B, yield point stress YP
The required power Nc of the drive motor of the roller leveler is determined by the following functional formula expressed by the plate threading speed V, the constant Σ Kp determined by the processing rates Kin and Kout, the modulus of longitudinal elasticity E, the mechanical efficiency η, and the no-load power ΔN. Nc=(B×T×YP^2×V)/(E×η×60×1
02) ΣKp+ΔN Step 7 The ejection angle φout of the strip on the exit side of the roller leveler is expressed by the following relationship expressed by the leveler's roll radius r, inter-roll distance S, plate thickness t, contact angle φi+1, φi, and rolling reduction value hi. Determined from the formula. φi+1=φi+2tan^-^1{((2r+t)c
osφi-2r-hi)/(S+(2rt+t)sin
φi)} Step 8 Set the height Wc of the strip from the table at the specific position on the exit side of the roller leveler to the angle φ
out, height W of the strip at the X position on the rear surface of the roller leveler, position l of the tip of the strip landing on the rear table, load D per unit length, longitudinal elastic modulus E of the strip, quadratic cross-section It is determined by the following functional formula consisting of moment 1. W=(φoutX)/(2l^2)(X-2l)(X-
l)-(DX^2)/(48EI)(2X-3l)(X
-l)
JP225077A 1977-01-12 1977-01-12 Method of leveling a strip using a roller leveler Expired JPS6016292B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP225077A JPS6016292B2 (en) 1977-01-12 1977-01-12 Method of leveling a strip using a roller leveler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP225077A JPS6016292B2 (en) 1977-01-12 1977-01-12 Method of leveling a strip using a roller leveler

Publications (2)

Publication Number Publication Date
JPS5387962A JPS5387962A (en) 1978-08-02
JPS6016292B2 true JPS6016292B2 (en) 1985-04-24

Family

ID=11524103

Family Applications (1)

Application Number Title Priority Date Filing Date
JP225077A Expired JPS6016292B2 (en) 1977-01-12 1977-01-12 Method of leveling a strip using a roller leveler

Country Status (1)

Country Link
JP (1) JPS6016292B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0427723Y2 (en) * 1986-06-19 1992-07-03

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6356303A (en) * 1986-08-26 1988-03-10 Kyodo Printing Co Ltd Method and device for tempering material
JP2560322B2 (en) * 1987-04-24 1996-12-04 大同特殊鋼株式会社 Method for reducing residual stress in metal strips
JP5168170B2 (en) * 2009-01-29 2013-03-21 新日鐵住金株式会社 Method for estimating the material constant and straightening state of the material to be straightened in roller straightening, and roller roller leveling method
JP7364901B2 (en) * 2019-04-18 2023-10-19 日本製鉄株式会社 Method for estimating deformation state of material to be straightened and method for controlling roll push amount of roller leveler
JP7397311B2 (en) * 2019-04-18 2023-12-13 日本製鉄株式会社 Method for estimating deformation state of material to be straightened and method for controlling roll push amount of roller leveler

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0427723Y2 (en) * 1986-06-19 1992-07-03

Also Published As

Publication number Publication date
JPS5387962A (en) 1978-08-02

Similar Documents

Publication Publication Date Title
DE69637428T2 (en) Method for measuring strip profile and method for controlling continuous rolls
KR900001824B1 (en) Method for controlling a shape of a plate
JPS6016292B2 (en) Method of leveling a strip using a roller leveler
KR870001491B1 (en) A method of rolling method
JPH04167910A (en) Method and apparatus for controlling rolling mill
TWI744739B (en) Thick steel plate cooling control method, cooling control device, and thick steel plate manufacturing method
CN109226278B (en) Single-side corrugated plate shape control method for five-frame cold continuous rolling high-strength steel plate strip
JPS5942135A (en) Thin sheet corrugating device
JP7364901B2 (en) Method for estimating deformation state of material to be straightened and method for controlling roll push amount of roller leveler
JP7251533B2 (en) Method for calculating water cooling heat transfer coefficient of steel plate, method for cooling steel plate, and method for manufacturing steel plate
CN109226279B (en) Quarter wave plate shape control method for five-frame cold continuous rolling high-strength steel plate strip
JP6385847B2 (en) Thickness control method of rolling mill
JP2017006941A (en) Zero point adjustment method of roller leveler
JP5557576B2 (en) Hot straightening method for steel
DE112016005878B4 (en) BAND SHAPE CORRECTION APPARATUS AND METHOD
JPH04111910A (en) Method for controlling shape of rolled stock in multistage rolling mill
JPH05111716A (en) Method for operating roller leveler
JPS59185524A (en) Controlling method of tension leveler
JPH0236321B2 (en) KINZOKUSEIMUZENBERUTONOSEIZOHOHO
JP4078765B2 (en) Roll width control method and apparatus for rolled material in continuous hot rolling mill, and recording medium
WO2024023910A1 (en) Thickness schedule computing method for tandem rolling mill, and rolling plant
JP7397311B2 (en) Method for estimating deformation state of material to be straightened and method for controlling roll push amount of roller leveler
JP6520864B2 (en) Method and apparatus for controlling plate thickness of rolling mill
JPS6036348B2 (en) Initial roll gap setting method and roll gap setting correction method for fin pass rolls of ERW steel pipes
JP2713050B2 (en) Method for controlling crown and flatness of strip