JPS60162723A - Surface hardening method of large-diameter cast iron member - Google Patents
Surface hardening method of large-diameter cast iron memberInfo
- Publication number
- JPS60162723A JPS60162723A JP1443284A JP1443284A JPS60162723A JP S60162723 A JPS60162723 A JP S60162723A JP 1443284 A JP1443284 A JP 1443284A JP 1443284 A JP1443284 A JP 1443284A JP S60162723 A JPS60162723 A JP S60162723A
- Authority
- JP
- Japan
- Prior art keywords
- temperature
- heating
- quenching
- diameter
- preheating
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D5/00—Heat treatments of cast-iron
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Heat Treatment Of Articles (AREA)
Abstract
Description
【発明の詳細な説明】
本発明は鋳鉄からなる大型部材、就中、中実大径部材ま
たは厚肉大径筒状部材の表層の所定部分に可及的に厚い
有効硬化層を誘導加熱を用いた熱処理によって形成する
方法に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention is directed to forming an effective hardened layer as thick as possible on a predetermined portion of the surface layer of a large member made of cast iron, particularly a solid large diameter member or a thick large diameter cylindrical member, by induction heating. The present invention relates to a method of forming by heat treatment using the present invention.
近来、機械類は精密化とともに大型化する傾向があり、
これに伴つ【使用される要素部材も大型化している。要
素部材の大型化は素材の多#、使用となるため、素材材
料原価の高低が極めて顕著に製造コストを左右すること
となるので、当業者は可及的に安価な素材材料を使用し
、設計上必要とされる機械的性質な必要とされる部分に
のみ付与・・−・・・・・例えば熱処理等・・・・・・
・・・して高価な素材材料を使用した場合に得られると
同等もしくはそれ以上の機械的性質を有する部材に仕上
げようと努力する。In recent years, machinery has become more precise and larger.
Along with this, the size of the elements used has also increased. Since increasing the size of element members requires the use of a large number of materials, the production cost is extremely influenced by the cost of raw materials, so those skilled in the art use the cheapest materials possible. Adding mechanical properties required by design only to necessary parts...For example, heat treatment, etc.
We strive to create parts that have mechanical properties equivalent to or better than those obtained when using expensive raw materials.
ところで、大型の要素部材として安価な素材材質はねず
み鋳鉄等のFC材である。By the way, an inexpensive material for a large element member is an FC material such as gray cast iron.
しかし乍ら、FC材は例えば部材表面を高周波電流が通
電される誘導加熱コイルで極めて短時間急速加熱して当
該部材表面を所定焼入れ温度まで昇温させ、直ちに急速
冷却することによって1m程度の有効硬化層が形成され
れば十分とするが如き、工作機械のベッドの摺動面の焼
入れ等、極めて薄い有効硬化層を得る場合を除き、多少
なりとも厚い有効硬化層を形成しようとすれば殆んどの
場合焼割れを生ずるので、従来から深層焼入れを施すの
は不可能として忌避されていた。However, with FC materials, for example, the material surface can be heated rapidly in a very short period of time using an induction heating coil to which a high-frequency current is passed, raising the temperature of the material surface to a predetermined quenching temperature, and then rapidly cooling it immediately. It is sufficient to form a hardened layer, except in cases where an extremely thin effective hardened layer is obtained, such as when hardening the sliding surface of a bed of a machine tool. Since quenching cracks occur in most cases, deep quenching has traditionally been considered impossible and avoided.
これがため、長さが数メートルー直径が700m+から
、1,000mを超える中実大径部材や、肉厚が200
1111以上もある筒状大径部材等多量の素材材料が必
要な大型部材で、当該部材の所定部分表層に比較的厚い
有効硬化層を形成ず・れば機械的性質が十分満足される
場合であっても、鋳鉄より2倍以上も高価な、しかし焼
割れの虞れがない鍛造材または鋳鋼材からなる部材の使
用を余儀なくされ、製品コスト低減を阻害する大きな要
因として、その対策を迫られていた。For this reason, solid large-diameter members with lengths of several meters and diameters from 700 m+ to over 1,000 m, and wall thicknesses of 200 m+
For large parts that require a large amount of material, such as large-diameter cylindrical parts with a diameter of 1111 or more, the mechanical properties can be sufficiently satisfied if a relatively thick effective hardened layer is not formed on the surface layer of a predetermined part of the part. However, even if there is, it is necessary to use parts made of forged or cast steel materials, which are more than twice as expensive as cast iron, but do not have the risk of quench cracking. was.
而して、上記焼割れの虞のない鍛造材もしくは鋳鋼材か
らなる大型部材の所定部分に所望の深ざの硬化ノーを形
成する従来誘導加熱を用いた熱処理方法は、予め部材全
体を電気炉等で予熱の5え、さらに所定被処理部分を相
対移動する誘導加熱コイルで複数回予熱して所定焼入れ
温度近傍まで昇温させ、最後の相対移動加熱で所定焼入
れ温度として直ちに急冷するか、または部材全体の予熱
を省いた所定被処理部分に対する複数(9)の相対移動
加熱と急冷とによるかのいづれかの手法によるのが通例
とされている。部材全体の予熱や所定被処理部分の誘導
加熱コイルによる複数回の予熱・本加熱を行う理由は、
大型部材では必然的に被処理面積が太き(なるので轟然
部材と誘導加熱コイルとの相対移動による加熱となるが
、現行#j等加熱装置の電源として最高出力クラス−例
えば600騙−でも付与エネルギーの不足からである。Therefore, in the conventional heat treatment method using induction heating to form a hardening hole of a desired depth in a predetermined portion of a large member made of forged material or cast steel material with no risk of quench cracking, the entire member is heated in advance in an electric furnace. etc., and then preheat the predetermined part to be treated multiple times with an induction heating coil that moves relatively to raise the temperature to near the predetermined quenching temperature, and immediately quench it to the predetermined quenching temperature with the final relative movement heating, or It is customary to use one of several (9) methods of relative movement heating and rapid cooling for a predetermined portion to be treated, which eliminates preheating of the entire member. The reason for preheating the entire part and preheating and main heating the predetermined part to be treated multiple times using an induction heating coil is as follows.
With large parts, the area to be treated is inevitably large (as a result, heating is performed by relative movement between the part and the induction heating coil, but even the highest output class power source for current #j heating equipment, such as 600 F), can be applied. This is due to lack of energy.
本発、明は上記の如き手法を用いて所定部分に所望の深
さの硬化層を形成して使用されている大径の中実部材や
厚肉筒状部材の鍛造材や鋳鋼からなる材質を従来法規れ
が不可能とされていた鋳鉄に賛える目的でなされた新規
な鋳鉄の表面硬化方法を提供するもので、これにより機
械類の大W*索部材に耐摩耗性・耐衝撃性その他必値と
される機械的性質をFC材にも付与可能となり、製品の
コ′ストを大巾に低減せしめんとするものである。The present invention is directed to materials made of forged or cast steel for large-diameter solid members and thick-walled cylindrical members that are used by forming a hardened layer of a desired depth in a predetermined portion using the method described above. This product provides a new surface hardening method for cast iron, which was previously considered impossible to comply with laws and regulations. It is possible to impart other required mechanical properties to FC materials, thereby significantly reducing the cost of the product.
本発明を完成するに至る過程で行われた多数の実験の中
から、鍛造材や鋳鋼からなる大型部材に適用されている
従来方法な鋳鉄からなる大型部材に施してみた実験例を
先ず示す。Among the many experiments conducted in the process of completing the present invention, we will first show an example of an experiment performed on a large member made of cast iron using the conventional method applied to large members made of forged material or cast steel.
実験例1゜ (1)供試体 材質:FC30相当材 寸法;外径1,160m 内径 560■ 肉厚 300閤 長さ 898m 尚、供試体は電気炉による応力線 去焼鈍しく550℃X9Hr)の前処理済である。Experimental example 1゜ (1) Specimen material: FC30 equivalent material Dimensions: Outer diameter 1,160m Inner diameter 560■ Thickness: 300 yam Length: 898m In addition, the specimen is a stress line produced by an electric furnace. It has been pretreated by annealing at 550°C for 9 hours.
(2)目標表面硬化層
表面硬さ:Hs68以上
硬化深さ; 2.0w以上(H畠60)(3)熱処理
1予 熱;電気炉による全体加熱
180’Cx 7 )Ir
剥部分子熱;本加熱と急冷;上記予熱した供試体を当該
供試体の外周と
所定間隙を隔てて対向可能な
1ターンの誘導加熱コイルを
用い、6回の繰り返し移動加
熱(5回の予熱と1回の水加
熱)によって表面を焼入れ温
度に達せしめたうえで急冷・
焼入れした。加熱条件および
冷却条件は下記のとおりであ
り、また供試体の各加熱過程
における表面昇温状態は第1
表のとおりであった。(2) Target surface hardness of surface hardening layer: Hardening depth of Hs68 or more; Hardening depth of 2.0W or more (H Hatake 60) (3) Heat treatment 1 preheating; Whole heating with electric furnace 180'Cx 7) Ir peeling molecular heat; Main heating and rapid cooling: The preheated specimen was repeatedly heated six times (preheating five times and heating once with After the surface was brought to the quenching temperature by heating, it was rapidly cooled and quenched. The heating conditions and cooling conditions were as follows, and the surface temperature increase state during each heating process of the specimen was as shown in Table 1.
加熱条件;電源出力 54011 (6回とも同一条件) 周波数 3KHz 送り速度 2.0−Δ− 冷却条件;最終加熱過程において移 動中の誘導加熱コイルに追随 する冷却ジャケットから噴射 する冷却液で焼入れ温度に昇 湛した供試体表面を急冷した。Heating conditions; power output 54011 (Same conditions for all 6 times) Frequency: 3KHz Feed rate 2.0-Δ- Cooling conditions: Transfer during the final heating process. Follows the induction heating coil during operation injection from the cooling jacket The quenching temperature is raised with a cooling liquid. The flooded surface of the specimen was rapidly cooled.
使用冷却液は0.81%PVA溶液 であり、急冷後の供試体表面 温度は約80℃となっていた。The coolant used is 0.81% PVA solution. The surface of the specimen after quenching The temperature was approximately 80°C.
第 1 表
(4)実験結果;熱処理を施された供試体は、約5分後
に槍をたてて軸方向全長にわたる局面焼割れを生じた。Table 1 (4) Experimental results: The heat-treated specimens exhibited scalar cracking over the entire length in the axial direction after about 5 minutes.
また供試体表層の硬さ測足結果は第1図に示すとおりで
あって、界面硬さはようや、く目標値Hs68に達して
いるものの、硬化深さは1.75 vm (I(@60
) L、か得られ又いなかった。In addition, the hardness measurement results of the surface layer of the specimen are as shown in Figure 1, and although the interface hardness has finally reached the target value Hs68, the hardening depth is 1.75 vm (I (@ 60
) L, I got it, and I didn't get it.
上記実験例1.は正に従来の忌避を犯しズ当然の結果を
得たまでのものではあるが、本発明者はここで、FCC
熟熱処理おいて焼割れ発生の原因となるのは急冷焼入れ
時に発生する熱応力が材料強度を上まわるからではない
か、との仮説を立てた。Experimental example 1 above. Although this was a violation of conventional avoidance and resulted in a deserved result, the inventor here
We hypothesized that the cause of quench cracking during deep heat treatment is that the thermal stress generated during rapid quenching exceeds the material strength.
この仮説を立証するため、かつさらに多くのデータを得
て熱処理条件の策定に資するため、次の実験を行った。In order to prove this hypothesis and to obtain more data to help formulate heat treatment conditions, the following experiment was conducted.
実験例2゜
(1)供試体 材質・寸法ともに実験例1.と同一で、
また前処理済である。Experimental example 2゜(1) Specimen Both material and dimensions are the same as those in Experimental example 1. is the same as
It has also been pretreated.
(2)目標表面硬化層 実験例1と同一(3)熱処理
1予熱;′電気炉による全体加熱330℃X9HrH部
分子熱・本加熱と急冷;上記予熱した供試体を実験例1
に用いたと
同一の誘導加熱コイルを用い、
加熱条件も同一として、3回
の繰り返し移動加熱(2回の
予熱と1回の本加熱)によつ
て表面を焼入れ温度に達せし
めたうえで急冷・焼入れした。(2) Target hardened surface layer Same as Experimental Example 1 (3) Heat treatment 1 preheating; 'Overall heating in an electric furnace at 330°C x 9HrH partial molecular heating, main heating and rapid cooling; Experimental Example 1
Using the same induction heating coil and the same heating conditions, the surface was brought to the quenching temperature by repeated movement heating three times (two preheatings and one main heating), and then rapidly cooled and heated. Hardened.
この間、第2図(、)に示す如く 供試体Tの所定位置にφ3■ の孔を所定深さまで孔設して 熱電対による温度計測を行っ た。供試体の各加熱過程にお ける表面昇温状態は第2表の とおりであった。During this time, as shown in Figure 2 (,) φ3■ in the specified position of the specimen T Drill the holes to a specified depth. Measure temperature with thermocouple Ta. During each heating process of the specimen Table 2 shows the surface temperature rise condition. That's right.
巣2表
(3)実験結果;供試体は本加熱後の急冷中に熱電体挿
入孔を起点とした軸方向全長にわたる局面焼割れを生じ
た。Table 2 (3) Experimental results: During the rapid cooling after main heating, the specimen developed a curved quench crack that started from the thermoelectric element insertion hole and spanned the entire length in the axial direction.
また本加熱直後(急冷前)と急冷直後の供試体の温度計
測値からめた温度特性曲線は第2図(b)にそれぞれA
およびBとして示されるとおりであった。また供試体の
断面硬さ測定結果は第2図(C)に示すとおりであって
、破線で示される1g60ライン以上の硬化層が表面か
ら3.4mの深さまで形成されたことが紹められた。In addition, the temperature characteristic curves calculated from the temperature measurements of the specimen immediately after main heating (before quenching) and immediately after quenching are shown in Figure 2 (b), respectively.
and B. In addition, the cross-sectional hardness measurement results of the specimen are as shown in Figure 2 (C), and it is shown that a hardened layer of 1g60 line or more, shown by the broken line, was formed to a depth of 3.4 m from the surface. Ta.
上記実験例2.によってめた第2図(b)の温度特性曲
線図から、本加熱直後(急冷前>m度特性曲線Aと急冷
直後の温度特性曲線Bとは350℃前後で交差しており
、表面温度と内部温度との温度差が極めて大であって、
急冷によって表層に生ずる引張り応力が高い温度を維持
している内部に大きく関与し、供試体の実体強度を超え
ていることが推定され、そこで急冷直後の部材内部&[
分布をもとに当該時点において部材に生ずる熱応力を解
析した。熱応力解析結果は第2図(d)に示すとおりで
あって、供試体表面の引張り応力は53Kff/iJで
あり、30W4f/sJとされているFe12材の引張
り強さをはるかに超えていることが判明し、発明者の仮
説が立証された。Experimental example 2 above. From the temperature characteristic curve diagram in Figure 2(b), it can be seen that the temperature characteristic curve A immediately after main heating (before quenching > m degrees) and the temperature characteristic curve B immediately after quenching intersect at around 350°C, and the surface temperature The temperature difference with the internal temperature is extremely large,
It is estimated that the tensile stress generated in the surface layer due to quenching has a large influence on the interior, which maintains a high temperature, and exceeds the actual strength of the specimen.
Based on the distribution, we analyzed the thermal stress generated in the member at that point. The thermal stress analysis results are shown in Figure 2 (d), and the tensile stress on the surface of the specimen is 53 Kff/iJ, which far exceeds the tensile strength of Fe12 material, which is 30W4f/sJ. This proved the inventor's hypothesis.
一方、熱処理条件の観点から実験例1と2との対比を試
みた。On the other hand, an attempt was made to compare Experimental Examples 1 and 2 from the viewpoint of heat treatment conditions.
先ず硬化層形成の点からするならば、実験例1.では1
回の相対移動予熱で供試体の表面が相当高温を得ても次
回の予熱開始までにはFC材の特性である高熱伝導性に
よって大巾な表面温度低下がみられ、このため6回まで
も繰り返し加熱を施してやっと所定焼入れ温度を得て急
冷を施したが、結果は硬化不足に終り、この結果をもと
に供試体全体予熱の予熱温度を高くした実験例2.では
3回の繰り返し加熱および急冷でpfr望深さを十分満
足する硬化層が形成されている。他方焼割れ発生の点か
ら考察すれば、実験例1.では熱処理終了後に生じ、実
験例2.では3回目の繰り返し加熱を実行中の加熱コイ
ルに追随する冷却ジャケットが加熱された供試体を急冷
中に生じている。従って供試体全体予熱と部分予熱とに
極めて矛盾を学んだ相関関係が指摘された。First, from the point of view of forming a hardened layer, Experimental Example 1. So 1
Even if the surface of the specimen reaches a considerably high temperature during relative movement preheating for 6 times, by the time the next preheating starts, a large drop in surface temperature is observed due to the high thermal conductivity, which is a characteristic of FC material. Experimental example 2: After repeated heating, the predetermined hardening temperature was finally obtained and rapid cooling was performed, but the result was insufficient hardening.Based on this result, the preheating temperature for preheating the entire specimen was increased. In this case, a hardened layer sufficiently satisfying the desired PFR depth was formed by repeated heating and rapid cooling three times. On the other hand, considering the occurrence of quench cracking, Experimental Example 1. In Experimental Example 2, it occurs after the heat treatment is completed. In this example, the cooling jacket following the heating coil during the third repeated heating occurs while the heated specimen is being rapidly cooled. Therefore, it was pointed out that there was an extremely contradictory correlation between the whole preheating of the specimen and the partial preheating.
本発明は上述実験例を含む多数の実験を踏まえて完成し
た。The present invention was completed based on numerous experiments including the above-mentioned experimental examples.
本発明の基本的技術思想を表現する本願第1発明の侠旨
は、
(1)鋳鉄からなる大径部材の所定部分に可及的に厚い
有効硬化層を形成する方法が、
(2)上記部材全体を予熱したうえ所定部分表層を誘導
加熱により本加熱して急冷する熱処理過程によるものと
するとともに、
(3)上記部材全体の予熱が上記急冷直後における部材
の表面温度と内部滞冑熱温度との温度差を、急冷によっ
て惹起する熱応力が部材の実体強度を超えない昇占限界
温度範囲内にとどめるように施され、
(4)上記本加熱が部材所定部分の一方端から他方端へ
順次相対移動する加熱コイルの対向する部材局部を所定
深さまで一気に所定焼入れ温度に昇温可能な移動速度で
行われる移動加熱によって施され、
(5)上記急冷が順次本加熱iれる局部へ直ちに施され
る
ことを特徴とする大径鋳鉄部材の表面硬化方法にある。The purpose of the first invention of the present application, which expresses the basic technical idea of the present invention, is as follows: (1) A method for forming an effective hardened layer as thick as possible in a predetermined portion of a large diameter member made of cast iron is (2) a method described above. The entire member is preheated, and then a predetermined portion of the surface layer is heated by induction heating and then rapidly cooled. (4) The main heating is carried out from one end of a predetermined part of the member to the other end. (5) The rapid cooling is applied immediately to the local parts that are sequentially subjected to the main heating. A method for surface hardening a large diameter cast iron member.
換言すれば、部材の質量の大きさから部材全体の予熱は
必要ではあるが、急冷時に生ず熱応力が部材の実体強度
を超えないように、当該急冷直後における部材の表面m
度と内部にiwしている予熱の温度との温度差を所定の
昇温限界温度範囲内にとどめるが如き予熱を施し、一方
所定部分の衣層を所定焼入れ温度にまで昇温せしめる加
熱を、部材と加熱コイルとの相対移動による所定部分の
一方端から他方端へかけての好ましくは1回の移動加熱
とし、当該移動加熱の移動速度を加熱コイルに対向する
部材局部の表層少くとも2回以上の所定深さまでが一気
に上記温度となる速度として大径部材焼入れの常法たる
複数回繰り返し加熱に伴5内部への熱蓄積を避け、順次
上記温度まで昇温した局部を直ちに急冷して硬化層を形
成せんとするものである。In other words, although it is necessary to preheat the entire member due to the mass of the member, the surface m of the member immediately after the rapid cooling must be
Preheating is performed such that the temperature difference between the preheating temperature and the preheating temperature heated inside is kept within a predetermined temperature increase limit temperature range, and heating is performed to raise the temperature of the coating layer in a predetermined portion to a predetermined quenching temperature. Movement heating is performed preferably once from one end to the other end of a predetermined portion by relative movement between the member and the heating coil, and the moving speed of the movement heating is adjusted at least twice to the surface of the local part of the member facing the heating coil. The speed at which the above specified depth reaches the above temperature at once is repeated several times as is the usual method for hardening large diameter parts, avoiding heat accumulation inside 5, and immediately quenching and hardening the local parts that have been heated to the above temperature one after another. It is intended to form a layer.
また、上記本願第1発明の基本的技術思想4を具現する
ための本願第2発明の要旨は、(1)鋳鉄からなる大径
部材を予め予熱のうえ部材の所定部分をこれに対向して
相対移動する加熱コイルによって順次局部的に加熱し急
冷して当該所定部分に可及的に厚い有効硬化ノーを形成
する動台において、
(2)上記予熱が
1、上記部材の実体強度;引張り強さをめる工程
弱、上記急冷直後の部材表面温度と部材内部温度分布と
を推定もしくは実験によってめる工程
−8上記求め得た部材表面温度と部材内部温反分布とか
ら部材に生ずる熱応力を算出する工程 (
閣、上記算出された熱応力と上記求めた実体強度とから
熱応力が実体強度を超えないような部材内部の昇温限界
温度をめる
工程
によって得られる湯度範囲内で施され、 ((3)かつ
急冷直前の部材内部温度が上記昇温限界温度以下に維持
されている
ことを特徴とする大径鋳鉄部材の表面硬化方法にある。In addition, the gist of the second invention of the present application for realizing the basic technical idea 4 of the first invention of the present application is as follows: (1) A large diameter member made of cast iron is preheated in advance, and a predetermined portion of the member is placed opposite to the large diameter member. In a moving table that sequentially heats locally with a relatively moving heating coil and rapidly cools it to form an effective hardening nozzle as thick as possible in the predetermined part, (2) the preheating is 1. the actual strength of the member; A process of estimating or experimenting to estimate or experiment the member surface temperature and member internal temperature distribution immediately after the above-mentioned rapid cooling -8 Thermal stress generated in the member from the above-determined member surface temperature and member internal temperature distribution. The process of calculating (3) A method for surface hardening a large-diameter cast iron member, characterized in that the internal temperature of the member immediately before quenching is maintained below the temperature increase limit temperature.
本願第2発明を実施例に従って以下に詳述する。The second invention of the present application will be described in detail below according to examples.
実施例
(1)部材 材質;FC30材但し前処8!街寸法:第
3図(、)に示す如く、一方端面が異形閉面となった筒
状体
外径・・・・−・・・・1,160■
内径・・・・・−・・560■
肉厚・四−・・ 300sa+
長さ・曲曲3,010m
2)目標表面硬化層;第3図(&)にhとして示す所定
長さ範囲にわたる表面に下記の硬化層を形成する
表面硬さ・・−・−・・Ha6g以上
硬化深さ・・・・・−・・2.0−以上(Hs60)3
)部材全体予熱条件の設定
1、部材の実体強度: 31 Kff、メー但し試験片
を用いたアムスラー引張り試験機による測定値。Example (1) Component Material: FC30 material, but pre-treatment 8! Dimensions: As shown in Figure 3 (,), the outer diameter of a cylindrical body with an irregularly closed end surface is 1,160■ Inner diameter: 560■ Thickness: 4-...300sa+ Length: Curvature: 3,010m 2) Target hardened surface layer; Surface hardness to form the following hardened layer on the surface over a predetermined length range shown as h in Figure 3 (&)・・・・・Ha6g or more Hardening depth・・・2.0− or more (Hs60) 3
) Setting of preheating conditions for the entire member 1. Substantive strength of the member: 31 Kff, however, the value measured by an Amsler tensile tester using a test piece.
―、予熱および本加熱して急冷される部材の急冷直後に
おける表面温度および内部温度分布:部材が実験例2.
における供試体と同一材質および同一肉厚であるので当
該実験例2.によってめた測定値を使用する。- Surface temperature and internal temperature distribution of a member immediately after quenching after preheating and main heating: Experimental example 2.
Since it is made of the same material and has the same wall thickness as the specimen in Experiment Example 2. Use the measured value determined by
鋼、熱応力の算出:下記の計算式を使用し、温度変化量
を種々変えて計算した。計算結果は第3表に示すとおり
である。Calculation of steel and thermal stress: Calculations were made using the following formula and varying the amount of temperature change. The calculation results are shown in Table 3.
す==、 * j、、 (&f:T、 、む+/rTr
−dr−Tarす・四くυ
但し、σθ;円周方向の熱応力
α;熱膨張係数・・・・・・12”X10°6E;ヤン
グ率・・−・・・・・12,5001adV;ポアソン
比・・・・・・・・・0.26r;部材中心からの距離
a;内半径・・・・・・・・・最内側温度測定位置であ
る580m
b;外半径・・−・・1,160■
Tr;中心からrの位置における
温度変化(2次函数とした)
T;中心からrの位置における
温度
尚上記計算式(1)は各項に示す数値にもとすいて計算
された。S==, * j,, (&f:T, , M+/rTr
-dr-Tarsu・4kuυ However, σθ; Thermal stress α in the circumferential direction; Thermal expansion coefficient...12"X10°6E;Young's modulus...12,5001 adV; Poisson's ratio...0.26r; Distance a from the center of the member; Inner radius...580m, which is the innermost temperature measurement position b; Outer radius... 1,160■ Tr: Temperature change at the position r from the center (used as a quadratic function) T: Temperature at the position r from the center The above calculation formula (1) is calculated based on the numerical values shown in each term. Ta.
■、熱応力と実体強度とから、熱応力が実体強度を超え
ないような部材内部の昇温限界温度の設定;第3表に示
される部材内部熱応力計算結果を用い、部材の実体強度
は31駆レーではあるが安全率を前照して20 Kff
7’i−とし゛、部材の昇温限界温度をめたところ、部
材内径部分の温度
が急冷直後に150℃以下であることが予熱の条件とし
てめられた。@咳熱応力
解析結果を第3図(b)に示す。■ From thermal stress and actual strength, set the temperature increase limit inside the member so that the thermal stress does not exceed the actual strength; Using the calculation results of internal thermal stress of the member shown in Table 3, the actual strength of the member is Although it is a 31 wheel drive race, considering the safety factor, it is 20 Kff.
7'i-, and when determining the temperature limit temperature of the member, it was determined that the temperature of the inner diameter portion of the member should be 150° C. or less immediately after quenching as a condition for preheating. @Cough heat stress analysis results are shown in Figure 3 (b).
(4)部材全体予熱;予熱後から本加熱までの時間を考
慮して、電気炉を用い下記条件による部材全体予熱を施
した。(4) Preheating of the entire member: Considering the time from preheating to main heating, the entire member was preheated using an electric furnace under the following conditions.
180℃ X7Hr
(5)部材所定部分の本加熱・急冷
上記の如(全体予熱を施した部材を直ちに銹導加熱装置
内に搬入し、下記条件に従って部材所定部分を部材と加
熱コイルとを相対移動せしめつつ、加熱コイルが対向す
る部材局部を順次本加熱して急冷した。180°C While heating, the local parts of the member facing the heating coil were sequentially main-heated and rapidly cooled.
加熱条件;電源出力・・・・・・600KIE周波数・
・・・・・・・・・・・3 KHz相対移動速度・・・
・・・1.0卿一
部材・コイル間クリアランス・・・5m冷却液;1.0
チPVA溶液
加熱開始前部材表面温度;120〜130℃相対移動す
る加熱コイルによる上記加熱条件で部材は順次局部的に
加熱され、表面がほぼ860℃まで昇温し、追随する冷
却ジャケットから噴射される冷却液によって急冷された
。Heating conditions: Power output...600KIE frequency
・・・・・・・・・・・・3 KHz relative movement speed...
...1.0 Clearance between main parts and coils...5m Coolant; 1.0
Part surface temperature before starting PVA solution heating: 120 to 130°C Under the above heating conditions using a relatively moving heating coil, the member is successively locally heated until the surface temperature reaches approximately 860°C, and then sprayed from the following cooling jacket. It was rapidly cooled by the cooling liquid.
(6)熱処理結果;焼割れは発生しなかった。部材に形
成された硬化層は表面硬さHa 74〜77、硬化深さ
3.4−が得られた。(6) Heat treatment results: No quench cracking occurred. The hardened layer formed on the member had a surface hardness Ha of 74 to 77 and a hardening depth of 3.4.
尚、所定位置に装着した熱電対による急冷直前・直後そ
れぞれにおける部材の温度計側値からめた温度特性曲線
図を第3図(c)に示す。図におい【曲線Aは急冷直前
の、また曲線Bは急冷直後の部材内部温度分布を表わし
ている。Incidentally, FIG. 3(c) shows a temperature characteristic curve diagram obtained from the thermometer values of the member immediately before and immediately after rapid cooling using a thermocouple attached to a predetermined position. In the figure, [Curve A represents the internal temperature distribution of the member immediately before quenching, and curve B represents the internal temperature distribution of the member immediately after quenching.
上記実施例では、Fe12材からなる大径部材に本発明
を実施した場合であるが、他のFC材もそれぞれの実体
強度に応じ【本発明に従った熱処理を施せば実施例と同
様可及的に厚い有効硬化層を形成し5る。In the above example, the present invention is applied to a large-diameter member made of Fe12 material. A thick effective hardening layer is formed.
尚、実施例では全体予熱後の部材の所定部分を極めて遅
い移動速度1ml/11eの相対移動による1回加熱で
局部的に860℃まで加熱して急冷を施しているが、例
えば電源出力が不足するような場合、少くとも急冷直前
の部材内部温度な昇温限界温度以下に維持しうるならば
相対移動を複数回繰り返したうえで急冷してもよい。し
かし、この場合、焼割れのおそれはないが十分な硬化深
さを期待する際は満足が得られないであろう。In the example, a predetermined part of the member after the entire preheating is heated once by relative movement at an extremely slow movement speed of 1ml/11e to locally heat it to 860°C and rapidly cool it. However, for example, if the power supply output is insufficient, In such a case, the relative movement may be repeated a plurality of times before quenching, as long as the internal temperature of the member immediately before quenching can be maintained below the temperature increase limit temperature. However, in this case, although there is no risk of quench cracking, it may not be satisfactory if a sufficient hardening depth is expected.
上述の如く本発明は法規入れが不可能とされていた大径
鋳鉄部材に熱処理で2m以上の有効硬化層を形成可能と
するので、従来の鍛造材や紬調を使用せざるを得なかっ
た大径部材の材料に鋳鉄を用いうろことができ、その製
造コストは大巾に低減が可能となり、奏する効果は極め
て大である。As mentioned above, the present invention makes it possible to form an effective hardened layer of 2 m or more by heat treatment on large diameter cast iron members, which were previously considered impossible to comply with, so conventional forged materials or pongee-like materials had to be used. Cast iron can be used as the material for the large-diameter member, and the manufacturing cost can be greatly reduced, resulting in extremely large effects.
第1図は実施例1の供試体表層硬さを示す線図、第2図
(、)は実験例2の供試体温度測定位置を示す部分正面
およびlII面図、第2図(b)は実験例2で得た急冷
直前および直後の供試体内部温度分布をそれぞれAおよ
びBとして示す線図、第2図(C)は実験例2の供試体
表1−硬さを示す線図、第2図(d)は実験例2におけ
る熱応力解析結果を示すグラス第3図(a)は本発明の
実施例とされた大径鋳鉄部材の一部〜1面正面図、第3
図(b)は本発明実施例における熱応力解析結果を示す
グ:77、第3図(c)は本発明実施例における急冷直
前および直後の部材内部温度分布をそれぞれ曲縁Aおよ
びBとして示す線図である。
代理人 弁理士 小 林 傅
第1図
s
0123456mm
第2図(b)
第 2 図 (C)
s
0 1 23、456mm
第 2 図 (d)
mm
8表
面Figure 1 is a diagram showing the surface layer hardness of the specimen in Example 1, Figure 2 (,) is a partial front and II side view showing the temperature measurement position of the specimen in Experimental Example 2, and Figure 2 (b) is a diagram showing the surface hardness of the specimen in Example 1. Figure 2 (C) is a diagram showing the internal temperature distribution of the specimen immediately before and immediately after rapid cooling obtained in Experimental Example 2 as A and B, respectively. Figure 2(d) shows the results of thermal stress analysis in Experimental Example 2. Figure 3(a) is a front view of a portion of a large-diameter cast iron member according to an embodiment of the present invention.
Figure 3 (b) shows the thermal stress analysis results in the example of the present invention. Figure 3 (c) shows the internal temperature distribution of the member immediately before and after rapid cooling in the example of the present invention as curved edges A and B, respectively. It is a line diagram. Agent Patent Attorney Fu Kobayashi Figure 1 s 0123456mm Figure 2 (b) Figure 2 (C) s 0 1 23, 456mm Figure 2 (d) mm 8 surface
Claims (1)
効硬化層を形成する方法が、上記部材全体を予熱したう
え所定部分表層な銹導加熱により本加熱して急冷する熱
処理過程に゛よるものとするとともに、上記部材全体の
予熱が上記急冷直後における部材の表面温度と内部滞留
熱温度との温度差を、急冷によって惹起する熱応力が部
材の実質強度を超えない昇渦限界龜度範囲内にとどめる
ように施され、上記本加熱が部材所定部分の一方端から
他方端へ順次相対移動する加熱コイルの対向する部材局
部を所定深さまで一気に所定焼入れ温度に昇温可能な移
動速度で行われる移動加熱によって施され、上記急冷が
順次本加熱される局部へ直ちに施されることを特徴とす
る大径鋳鉄部材の表面硬化方法。 2)形成される有効硬化層の厚さが少くとも2−以上で
ある特許請求の範囲第1項記載の大径鋳鉄部材の表面硬
化方法。 3)!#鉄からなる大径部材を予め予熱のうえ部材の所
定部分をこれに対向して相対移動する加熱コイルによっ
て順次局部的に加熱し急冷して尚該所定部分に可及的に
厚い有効硬化層を形成する場合において、上記予熱が 1、上記部材の実体強度;引張り強さをめる工程 本上記急冷直後の部材表面温度と部材内部温度分布とを
推定もしくは実験によってめる工程 画、上記求め得た部材表面温度と部材内部温度分布とか
ら部材に生ずる熱応力を算出する工程 閣、上記算出された熱応力と上記求めた実体強度とから
熱応力が実体強度を超えないような部材内部の昇温限界
温度をめる 工程 によって得られる温度範囲内で施され、かつ急冷直前の
部材内部温度が上記昇温限界温度以下に維持されている
ことを特徴とする大径鋳部材の表面硬化方法。[Claims] 1) A method for forming an effective hardened layer as thick as possible in a predetermined portion of a large-diameter member made of cast iron is to preheat the entire member and then main-heat the predetermined portion of the surface layer by rust induction heating. In addition, the preheating of the entire member increases the temperature difference between the surface temperature of the member immediately after the quenching and the temperature of internal retained heat, and the thermal stress caused by the quenching reduces the actual strength of the member. The heating coil is applied so as to stay within the vortex rising limit temperature range that cannot be exceeded, and the main heating is performed by sequentially moving relatively from one end of a predetermined part of the member to the other end of the member, to a predetermined depth, at once to a predetermined quenching temperature. A method for surface hardening a large-diameter cast iron member, characterized in that the surface hardening is performed by moving heating performed at a moving speed that allows the temperature to rise, and the quenching is immediately applied to local areas that are successively subjected to main heating. 2) The surface hardening method for a large diameter cast iron member according to claim 1, wherein the thickness of the effective hardened layer to be formed is at least 2- or more. 3)! # A large-diameter member made of iron is preheated in advance, and a predetermined portion of the member is successively locally heated and rapidly cooled using a heating coil that moves relative to the predetermined portion of the member to form an effective hardened layer as thick as possible in the predetermined portion. In the case of forming, the preheating is 1, the actual strength of the member; the process of determining the tensile strength, the step of estimating or experimenting the member surface temperature and internal temperature distribution of the member immediately after the quenching, and the above calculation. The process calculates the thermal stress occurring in the member from the obtained member surface temperature and internal temperature distribution, and calculates the internal temperature of the member such that the thermal stress does not exceed the actual strength from the above calculated thermal stress and the above determined substantial strength. A method for surface hardening a large-diameter cast member, characterized in that the surface hardening is performed within the temperature range obtained by the step of determining the temperature increase limit temperature, and the internal temperature of the member immediately before quenching is maintained below the temperature increase limit temperature. .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1443284A JPS60162723A (en) | 1984-01-31 | 1984-01-31 | Surface hardening method of large-diameter cast iron member |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1443284A JPS60162723A (en) | 1984-01-31 | 1984-01-31 | Surface hardening method of large-diameter cast iron member |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS60162723A true JPS60162723A (en) | 1985-08-24 |
JPH0142325B2 JPH0142325B2 (en) | 1989-09-12 |
Family
ID=11860857
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1443284A Granted JPS60162723A (en) | 1984-01-31 | 1984-01-31 | Surface hardening method of large-diameter cast iron member |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS60162723A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017002372A (en) * | 2015-06-12 | 2017-01-05 | 富士電子工業株式会社 | Manufacturing method and heat treating method of cast, and high frequency quenching device |
-
1984
- 1984-01-31 JP JP1443284A patent/JPS60162723A/en active Granted
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017002372A (en) * | 2015-06-12 | 2017-01-05 | 富士電子工業株式会社 | Manufacturing method and heat treating method of cast, and high frequency quenching device |
Also Published As
Publication number | Publication date |
---|---|
JPH0142325B2 (en) | 1989-09-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2119799B1 (en) | Residual stress improving method of pipeline | |
CA1077378A (en) | Method of working steel machine parts including machining during quench cooling | |
CN105543459B (en) | A kind of compound process for quenching of Cr12MoV rolls | |
JPS60162723A (en) | Surface hardening method of large-diameter cast iron member | |
CN106987686A (en) | The process for quenching of steel member | |
JPS63274713A (en) | Heat treatment method for bar-like parts | |
JPH1080746A (en) | Die and hardening method therefor | |
EP3168313B1 (en) | Low pressure induction carburization | |
CN105256242B (en) | A kind of manufacture method of marine petroleum exploitation equipment forging blank | |
JP6962084B2 (en) | A method for determining the cooling rate of a steel pipe and a method for manufacturing a steel pipe using the method. | |
Easton et al. | Effects of Forming Route and Heat Treatment on the Distortion Behavior of Case-Hardened Martensitic Steel type S156 | |
Sims et al. | Process to Minimize Distortion during High Pressure Gas Quenching Processes | |
JPS5852428A (en) | Heat treatment for improving stress of shaft | |
JPH0610302B2 (en) | Partial surface quenching and tempering method for uneven thickness cylindrical members | |
JPS6047881B2 (en) | Induction hardening method | |
JP2904505B2 (en) | Method of manufacturing steel wire for cold / warm forging and steel wire for cold / warm forging | |
GB722686A (en) | Improvements relating to methods of manufacturing hollow tubular articles of hardened metal such as piston pins | |
Ferguson et al. | Stress and Deformation during Induction Hardening of Tubular Products | |
RU2112811C1 (en) | Method of low-deformation hardening after nitrocementation | |
JP2001049333A (en) | Method for simulating quenching range | |
JPH0262416A (en) | Roll made of heat resistant stainless steel | |
CN115354119A (en) | Heat treatment method for forge piece of secondary hardening steel | |
JP2733841B2 (en) | Moving quenching method for shafts | |
JP2990821B2 (en) | Manufacturing method of steel parts | |
SU298666A1 (en) | METHOD OF THERMAL PROCESSING OF CEMENTED DETAILS |