JP2017002372A - Manufacturing method and heat treating method of cast, and high frequency quenching device - Google Patents

Manufacturing method and heat treating method of cast, and high frequency quenching device Download PDF

Info

Publication number
JP2017002372A
JP2017002372A JP2015119399A JP2015119399A JP2017002372A JP 2017002372 A JP2017002372 A JP 2017002372A JP 2015119399 A JP2015119399 A JP 2015119399A JP 2015119399 A JP2015119399 A JP 2015119399A JP 2017002372 A JP2017002372 A JP 2017002372A
Authority
JP
Japan
Prior art keywords
coil
induction heating
frequency
workpiece
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015119399A
Other languages
Japanese (ja)
Other versions
JP6618279B2 (en
Inventor
純一郎 白井
Junichiro Shirai
純一郎 白井
孝夫 奥野
Takao Okuno
孝夫 奥野
昌大 井上
Masahiro Inoue
昌大 井上
武則 桐原
Takenori Kirihara
武則 桐原
潤二 己之上
Junji Minoue
潤二 己之上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electronics Industry Co Ltd
Daihatsu Metal Co Ltd
Original Assignee
Fuji Electronics Industry Co Ltd
Daihatsu Metal Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electronics Industry Co Ltd, Daihatsu Metal Co Ltd filed Critical Fuji Electronics Industry Co Ltd
Priority to JP2015119399A priority Critical patent/JP6618279B2/en
Publication of JP2017002372A publication Critical patent/JP2017002372A/en
Application granted granted Critical
Publication of JP6618279B2 publication Critical patent/JP6618279B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • General Induction Heating (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a manufacturing method of a cast casting a work using flaky graphite cast iron as a raw material without cracking when the work surface of the work is performed high frequency quenching.SOLUTION: When high frequency induction heating is executed, a frequency of electric current flowing to a coil is monitored. A base time is a time when the frequency changed (time c), and electric power supplied to a coil is lowered from the base time, and the state is maintained during some period of time. Then, a cooling step of stopping the high frequency induction heating and quenching the work is executed.SELECTED DRAWING: Figure 2

Description

本発明は、鋳造品の製造方法に関するものである。
また本発明は、鉄系材料を誘導加熱によって熱処理する方法に関するものである。さらに本発明は、高周波焼き入れ装置に関するものである。
The present invention relates to a method for producing a cast product.
The present invention also relates to a method for heat-treating an iron-based material by induction heating. The present invention further relates to an induction hardening apparatus.

鋳造は、複雑な形状のものを容易に成形することができるという利点がある。また周知の鋳造材料として片状黒鉛鋳鉄と球状黒鉛鋳鉄がある。
片状黒鉛鋳鉄を使用した鋳物は、球状黒鉛鋳鉄を使用した鋳物に比べて硬度や剛性が低く、対磨耗性が劣る。
そのため片状黒鉛鋳鉄は、工作機の架台や、椅子の脚等の様に、静止した状態で使用される部材を鋳造する際の材料として使用される場合が多い。
しかしながら、片状黒鉛鋳鉄は材料が安価であり、且つ湯の流れがスムーズであるという利点がある。
Casting has an advantage that a complicated shape can be easily formed. Known casting materials include flake graphite cast iron and spheroidal graphite cast iron.
Castings using flake graphite cast iron are lower in hardness and rigidity and inferior in wear resistance than casts using spheroidal graphite cast iron.
For this reason, flake graphite cast iron is often used as a material for casting a member used in a stationary state, such as a frame of a machine tool or a leg of a chair.
However, flake graphite cast iron has the advantages that the material is inexpensive and the flow of hot water is smooth.

そのため片状黒鉛鋳鉄をバルブや送風機等の機械装置の部材たる、弁体、羽根、歯車、シャフト等の様な、動きがあり、摺動、摩擦等を受ける部材を鋳造する際の材料として使用したいという市場の要求がある。即ち片状黒鉛鋳鉄を使用して機械部品を製造したいという市場の要求がある。
片状黒鉛鋳鉄を素材として摩擦等を受ける部材を鋳造する場合には、摩擦等を受ける部位の硬度を上昇させるため、鋳型に冷し金が埋め込まれる。
For this reason, flake graphite cast iron is used as a material for casting members that have movement, such as valve bodies, blades, gears, shafts, etc., which are members of mechanical devices such as valves and blowers, and that receive sliding, friction, etc. There is a market demand for it. That is, there is a market demand for manufacturing machine parts using flake graphite cast iron.
When casting a member that receives friction or the like using flake graphite cast iron as a raw material, the mold is cooled and embedded with gold in order to increase the hardness of the portion that receives friction or the like.

冷し金が埋め込まれた鋳型によって鋳造された鋳造品は、摺動面等の硬度が実用に耐える程度に高い。
また他の部位については、比較的硬度が低いので鋳造後に行う後加工が容易である。
The cast product cast by the mold in which the cooling metal is embedded has such a high hardness that the sliding surface can withstand practical use.
Further, since the other parts have a relatively low hardness, post-processing performed after casting is easy.

即ち、機械部品は、鋳造後にドリル加工や、フライス加工、旋盤加工等の様な切削作業による後加工が成される場合が多いが、片状黒鉛鋳鉄を材料とする部材は、冷し金でチルされた摺動面等以外の部位の硬度が低く、ドリル等による切削作業が容易である。
また鉄系材料を使用したワークを硬化させる方法として、高周波焼き入れが知られている。
In other words, machine parts are often post-processed by machining such as drilling, milling, and lathe after casting, but members made of flake graphite cast iron are made of cold metal. The hardness of parts other than the chilled sliding surface is low, and the cutting work with a drill or the like is easy.
Further, induction hardening is known as a method for hardening a workpiece using an iron-based material.

特開2004−133935号公報JP 2004-133935 A

高周波焼き入れは、ワークを部分的に昇温することができ、ワークを部分的に焼き入れしてワークの一部だけを部分的に硬化することができる。そのためワークの後加工が容易である。
その他、高周波焼き入れは、短時間で焼き入れ処理を終えることができるという点、焼き入れに要するエネルギーが少ないという点など、多数の特長を有している。
In the induction hardening, the workpiece can be partially heated, and only a part of the workpiece can be partially cured by partially quenching the workpiece. Therefore, post-processing of the workpiece is easy.
In addition, induction hardening has a number of features such as the fact that the quenching process can be completed in a short time and that less energy is required for quenching.

そこで本発明者らは、機械部品(ワーク)を鋳造で成形し、その後で、硬度が要求される部位を高周波焼き入れすることを考えた。
本発明者らが想定した効果は、次の通りであった。
(1)鋳造時に冷し金を埋め込む必要が無いので型作りが容易である。
(2)特定の部位だけを硬化することができるために鋳造後の後加工が容易である。
Therefore, the present inventors have considered that a machine part (work) is formed by casting, and then a part requiring hardness is induction-hardened.
The effects assumed by the present inventors were as follows.
(1) Since it is not necessary to embed a cooling metal during casting, it is easy to mold.
(2) Since only specific parts can be cured, post-processing after casting is easy.

しかしながら、片状黒鉛鋳鉄を素材として機械部品の形状のワークを鋳造し、その特定の部位を高周波焼き入れしたところ、予期しない問題が発生した。
即ち片状黒鉛鋳鉄を素材とするワークを高周波誘導加熱した後、急冷すると割れが多発した。
特に、焼き入れを施す部位の断面形状が真円から外れた形状であったり、肉厚が不均一である場合に、割れが多発する傾向があった。即ち焼き入れを施す部位の断面形状に突出部があったり、厚さが他の部位に比べて薄い部分がある部材を高周波誘導加熱した後、急冷すると、突出部分や薄い部分に割れが生じることが多かった。
本発明は、この問題に対処するものであり、片状黒鉛鋳鉄を素材としてワークを鋳造し、その特定の部位高周波焼き入れする場合に、割れを生じさせない熱処理方法及び鋳造品の製造方法を提供するものである。
また本発明は、割れを生じさせない熱処理方法及び高周波焼き入れ装置を開発することを課題とするものである。
However, when a flake graphite cast iron was used as a raw material and a workpiece in the shape of a machine part was cast, and that specific part was induction-hardened, an unexpected problem occurred.
That is, cracks occurred frequently when a workpiece made of flake graphite cast iron was subjected to high frequency induction heating and then rapidly cooled.
In particular, cracks tend to occur frequently when the cross-sectional shape of the part to be quenched is out of a perfect circle or the thickness is not uniform. In other words, if a part with a protrusion in the cross-sectional shape of the part to be quenched or a part with a thinner part than other parts is subjected to high-frequency induction heating and then rapidly cooled, cracks will occur in the protruding part and the thin part. There were many.
The present invention addresses this problem, and provides a heat treatment method that does not cause cracking when casting a work using flake graphite cast iron as a raw material and induction-quenching that specific part, and a method for producing a cast product To do.
Moreover, this invention makes it a subject to develop the heat processing method and induction hardening apparatus which do not produce a crack.

本発明者らは、実験のために炭素鋼を切削加工し、突出部や肉薄部を有するワークを成形し、高周波焼き入れしたが、割れの発生は少なかった。即ち炭素鋼を素材として機械部品の形状のワークを成形し、当該ワークを高周波焼き入れしたが、割れの発生は少なかった。
同様に球状黒鉛鋳鉄を素材として同じ形状のワークを鋳造し、高周波焼き入れしたが、割れの発生は少なかった。
そこで割れの発生は、片状黒鉛鋳鉄を素材とする場合に多発するものであるとの結論に至った。
割れが突出部と肉薄部に頻発することから、高周波誘導加熱する際に、突出部及び肉薄部の温度が他の部位よりも高くなっていると予想され、これを改善することを試みたが、突出部と肉薄部は容積が小さいので、高周波誘導加熱時にその温度を他の部位と同じにすることは困難であった。
For the experiment, the inventors cut carbon steel, formed a workpiece having a projecting portion and a thin portion, and induction-hardened, but the occurrence of cracking was small. That is, a work having the shape of a machine part was formed using carbon steel as a raw material, and the work was induction-hardened, but the occurrence of cracks was small.
Similarly, a work having the same shape was cast using spheroidal graphite cast iron as a raw material, and induction hardening was performed, but the occurrence of cracks was small.
Thus, it has been concluded that cracks frequently occur when flake graphite cast iron is used as a raw material.
Since cracks frequently occur in the protruding part and the thin part, the temperature of the protruding part and the thin part is expected to be higher than other parts when induction heating is carried out, and attempts were made to improve this. Since the protrusion and the thin part have a small volume, it is difficult to make the temperature the same as that of other parts during high-frequency induction heating.

そこで次に、高周波加熱を行っている際のワークに温度ばらつきが生じることを是認したうえで、全体の温度ばらつきを所定の範囲に収めることを考えた。
即ちワークの最も高温となる部位が、急冷時に割れが発生しない程度の温度であり、且つ最も低温の部位が、焼き入れ可能な温度に達している様に制御すれば、焼き入れが可能であって且つ割れの発生を防止することができると考えた。
Then, after approving that the temperature variation occurs in the workpiece during high-frequency heating, it was considered to keep the entire temperature variation within a predetermined range.
In other words, quenching is possible if the highest temperature part of the workpiece is controlled so that cracks do not occur during rapid cooling and the lowest temperature part reaches a quenchable temperature. Moreover, it was thought that generation | occurrence | production of a crack could be prevented.

以下、その原理と問題点を説明する。
鉄系材料は、常温ではフェライト・パーライト組織であるが、昇温し変態点(AC1)を越えるとオーステナイト組織が生成し始め、AC3変態点を越えるとフェライト・パーライト組織が完全にオーステナイト組織に変化する。
ここでワークが仮に鋳鉄ではなく炭素綱であるならば、ワークはAC3変態点を越えても固体状態を保っている。そのためワークが仮に炭素綱であるならば、AC3変態点を越えてフェライト・パーライト組織が完全にオーステナイト組織に変化した後にワークを急冷し、緻密なマルテンサイト組織を作り、硬度を上昇させる。
実際の焼き入れは、亜共析鋼の場合では、AC3変態点を越える温度まで昇温して急冷し、過共析鋼の場合にあっては、AC1変態点とAC3変態点との間の温度に昇温して急冷する。
The principle and problems will be described below.
Iron-based materials have a ferrite-pearlite structure at room temperature, but when the temperature rises and exceeds the transformation point (AC1), an austenite structure begins to form, and when the AC3 transformation point is exceeded, the ferrite-pearlite structure completely changes to an austenite structure. To do.
Here, if the workpiece is not a cast iron but a carbon steel, the workpiece remains in a solid state even when the AC3 transformation point is exceeded. Therefore, if the workpiece is a carbon steel, the ferrite pearlite structure is completely changed to an austenite structure beyond the AC3 transformation point, and then the workpiece is rapidly cooled to form a dense martensite structure to increase the hardness.
In the case of hypoeutectoid steel, the actual quenching is performed by raising the temperature to a temperature exceeding the AC3 transformation point and quenching, and in the case of hypereutectoid steel, it is between the AC1 transformation point and the AC3 transformation point. Raise the temperature to quench.

これに対して本発明者らが機械部品(ワーク)の素材として選定した片状黒鉛鋳鉄は、含有する炭素が多く、AC3を越えると液化が始まる。そのため片状黒鉛鋳鉄で造られたワークをAC3を越えて昇温し、これを急冷すると、割れが生じる頻度が高まる。即ち片状黒鉛鋳鉄は焼き入れ可能であって、且つ割れが生じない温度範囲が、炭素鋼等に比べて狭い。
そのため片状黒鉛鋳鉄を素材とするワークを焼き入れする際、突出部及び肉薄部の様な高温になりやすい部位の温度と、他の部分との間に許容される温度ばらつきは小さい。従ってワークを高周波誘導加熱する際に、ワークの表面温度を正確に検知し、各部の温度ばらつきを許容範囲に収めることができれば、割れは発生しない。
On the other hand, flake graphite cast iron selected by the present inventors as a material for machine parts (workpieces) contains a large amount of carbon, and liquefaction starts when AC3 is exceeded. Therefore, when the temperature of a workpiece made of flake graphite cast iron is increased over AC3 and rapidly cooled, the frequency of occurrence of cracks increases. That is, flake graphite cast iron can be quenched and the temperature range in which cracks do not occur is narrower than that of carbon steel or the like.
For this reason, when quenching a workpiece made of flake graphite cast iron, there is little variation in the temperature that is allowed between the temperature of a portion that tends to be high, such as the protruding portion and the thin portion, and other portions. Therefore, when the work is subjected to high-frequency induction heating, if the surface temperature of the work is accurately detected and the temperature variation of each part can be within an allowable range, cracking does not occur.

しかしながら、高周波誘導加熱時にワークの表面温度を正確に検知することは困難であり、温度を監視しながら高周波誘導加熱を行う方策は、断念せざるを得なかった。   However, it is difficult to accurately detect the surface temperature of the workpiece at the time of high-frequency induction heating, and a method for performing high-frequency induction heating while monitoring the temperature has to be abandoned.

本発明者らがさらに研究を重ねたところ、高周波焼き入れ装置に使用されている発振装置は、高周波誘導加熱時に興味ある挙動を示すことを知った。
即ち発振装置をカレントトランスを介して誘導加熱コイルに接続し、当該誘導加熱コイルで鉄系材料で構成されたワークを高周波誘導加熱する場合、発振装置の出力ボリュームを一定にしておくと、ワークは、図1(a)の様に昇温する。
即ち鉄系材料は、磁気変態点近傍(現実のAC1変態点とAC3変態点の間)で昇温カーブが鈍化するものの、一定時間後に再度上昇する。
一方、発振装置の発振周波数に注目すると、図1(b)の様に一定の時間、周波数が安定しており、その後に僅かに上昇し、その後に再度安定する。即ち発振装置の発振周波数は、常にわずかずつ変化しているが、それまでの変化軌跡から外れて変化する。より具体的には、周波数が安定した状態から突然に上昇傾向に変化する。
As a result of further studies by the present inventors, it has been found that the oscillation device used in the induction hardening apparatus exhibits an interesting behavior during induction heating.
In other words, when an oscillation device is connected to an induction heating coil via a current transformer and a work made of an iron-based material is induction-heated by the induction heating coil, if the output volume of the oscillation device is kept constant, The temperature is raised as shown in FIG.
That is, the iron-based material rises again after a certain time, although the temperature rise curve becomes dull near the magnetic transformation point (between the actual AC1 transformation point and the AC3 transformation point).
On the other hand, paying attention to the oscillation frequency of the oscillation device, as shown in FIG. 1B, the frequency is stable for a certain time, then increases slightly, and then stabilizes again. That is, the oscillation frequency of the oscillation device always changes little by little, but changes out of the change locus so far. More specifically, the frequency suddenly changes from a stable state to an upward trend.

この様に発振装置の発振周波数がそれまでの変化軌跡から外れて変化するのは、ワークの透磁率が変化するためであると考えられる。即ち鉄系材料には磁気変態点があり、磁気変態点の前後でワークの透磁率が大きく変化する。そして磁気変態点は、前記したオーステナイト組織が生成し始める変態点(AC1)よりも高い温度である。
従って、発振装置の発振周波数が変化した時点は、磁気変態点を越えた時点であり、ワーク中のフェライト・パーライトがオーステナイトに組織変化しはじめる時点であると言える。また磁気変態点は、AC3の温度よりも低い温度であるから、ワークは固体状態である。
The reason why the oscillation frequency of the oscillation device changes out of the change locus so far is considered to be because the permeability of the workpiece changes. That is, the iron-based material has a magnetic transformation point, and the magnetic permeability of the workpiece changes greatly before and after the magnetic transformation point. The magnetic transformation point is a temperature higher than the transformation point (AC1) at which the austenite structure starts to form.
Therefore, it can be said that the time when the oscillation frequency of the oscillation device changes is the time when the magnetic transformation point is exceeded, and the time when the ferrite pearlite in the workpiece starts to change its structure to austenite. Further, since the magnetic transformation point is a temperature lower than the temperature of AC3, the work is in a solid state.

そのため高周波誘導加熱の際に、発振装置の発振周波数を監視すれば、磁気変態点の通過時期を知ることができる。そして発振装置の発振周波数がそれまでの変化軌跡から外れて上昇すれば、磁気変態点を通過していると考えてよく、ワークの温度はAC1を越えていて組織がオーステナイト化している。
そのため発振装置の発振周波数が上昇した際に、誘導加熱コイルに供給される電流又は電力を下げれば、ワークの温度は磁気変態点の近傍を維持し、オーステナイト組織の生成が進み、且つ固体状態を維持することとなる。
従って発振装置の発振周波数が上昇した際に、誘導加熱コイルに供給される電流又は電力を下げ、この状態を維持した後にワークを急冷すれば、ワークに割れを生じさせず、且つワークを硬化させることができる。
Therefore, when the oscillation frequency of the oscillation device is monitored during high-frequency induction heating, it is possible to know the passage time of the magnetic transformation point. If the oscillation frequency of the oscillation device rises off the change trajectory up to that point, it may be considered that the magnetic transformation point is passed, and the temperature of the workpiece exceeds AC1 and the structure is austenitic.
Therefore, if the current or power supplied to the induction heating coil is lowered when the oscillation frequency of the oscillation device is increased, the temperature of the workpiece is maintained near the magnetic transformation point, the austenite structure is generated, and the solid state is maintained. Will be maintained.
Therefore, when the oscillation frequency of the oscillation device rises, if the current or power supplied to the induction heating coil is lowered and the workpiece is rapidly cooled after maintaining this state, the workpiece is not cracked and the workpiece is cured. be able to.

なお、発振装置の発振周波数が変化することによる副次的作用として、誘導加熱コイルに供給される電流や電力も変化する。即ちワークの温度が磁気変態点を通過すると、コイルに供給される電流や電力も変化する。
コイルに供給される電流は、発振装置の出力ボリュームが一定であるにも係わらす、図1(c)の様に次第に低下してゆく。そのため、誘導加熱コイルに供給される電流や電力を検知しても磁気変態点の通過時期を知ることができる。即ち、誘導加熱コイルに供給される電流や電力が低下傾向となれば変態点を通過していると考えてよい。
Note that, as a secondary effect due to the change in the oscillation frequency of the oscillation device, the current and power supplied to the induction heating coil also change. That is, when the workpiece temperature passes through the magnetic transformation point, the current and power supplied to the coil also change.
The current supplied to the coil gradually decreases as shown in FIG. 1C even though the output volume of the oscillation device is constant. Therefore, it is possible to know the passage time of the magnetic transformation point even if the current or power supplied to the induction heating coil is detected. That is, it may be considered that the transformation point has been passed if the current or power supplied to the induction heating coil tends to decrease.

上記した知見に基づいて開発された請求項1に記載の発明は、片状黒鉛鋳鉄製のワークを成形する鋳造工程と、前記ワークを焼き入れする焼き入れ工程を有する鋳造品の製造方法において、前記焼き入れ工程は、発振装置と誘導加熱コイルを備えた誘導加熱装置を使用して前記ワークを誘導加熱する誘導加熱工程を有し、誘導加熱工程においてはワークを誘導加熱する際に前記コイルに流れる電流、電力、あるいはコイルに流れる電流の周波数の少なくともいずれかを監視し、これらのいずれかがそれまでの変化軌跡から外れて変化した際、又は変化の傾向が現れた際に前記コイルに供給する電流又は電力を低下させてその状態を一定時間維持する抑制加熱工程を実施し、その後に誘導加熱を停止してワークを急冷する冷却工程を実施することを特徴とする鋳造品の製造方法である。   The invention according to claim 1 developed on the basis of the above-mentioned knowledge, in a casting manufacturing method including a casting step of molding a flake graphite cast iron workpiece and a quenching step of quenching the workpiece, The quenching step includes an induction heating step of induction heating the workpiece using an induction heating device including an oscillation device and an induction heating coil. In the induction heating step, the coil is subjected to induction heating when the workpiece is induction heated. Monitor at least one of the current, power, and / or frequency of the current flowing in the coil, and supply to the coil when any of these changes or changes from the previous change trajectory. The controlled heating process that reduces the current or power to be maintained and maintains the state for a certain period of time is performed, and then the cooling process that quenches the workpiece by stopping induction heating is performed. Which is a method for producing a casting, characterized.

また請求項2に記載の発明は、コイルに流れる電流、電力、あるいはコイルに流れる電流の周波数の少なくともいずれかを監視し、前記コイルに流れる電流又は電力が低下傾向となった時点、あるいはコイルに流れる電流の周波数が変化した際、又は変化の傾向が現れた時点を基準時とし、当該基準時を基準として抑制加熱工程を実施することを特徴とする請求項1に記載の鋳造品の製造方法である。   The invention according to claim 2 monitors at least one of the current and power flowing in the coil and the frequency of the current flowing in the coil, and when the current or power flowing in the coil tends to decrease, The method for producing a cast product according to claim 1, wherein when the frequency of the flowing current is changed, or when a change tendency appears, is set as a reference time, and the suppression heating process is performed based on the reference time. It is.

本発明では、誘導加熱を実施している間、コイルに流れる電流、電力又はコイルに流れる電流の周波数の少なくともいずれかを監視する。そしてコイルに流れる電流又は電力が低下傾向となった時点、あるいはコイルに流れる交流の周波数が変化する時点を基準時とし、コイルに供給する電流又は電力を低下させてその状態を一定時間維持する。「コイルに供給する電流又は電力を低下させてその状態を一定時間維持する」とは、ピーク時に比べて電流又は電力が低い状態を維持するという趣旨であり、この際の電流又は電力は一定である必要はない。
「コイルに供給する電流又は電力を低下さる」ための具体的方策としては、例えば発振装置のボリュームを絞って、コイルに印加すね電圧を低下させる方法がある。
前記した様に、コイルに流れる電流又は電力が低下傾向となった時点、あるいはコイルに流れる交流の周波数が上昇傾向となって時点におけるワークの温度は、磁気変態点近傍(現実のAC1変態点とAC3変態点の間)である。そのため本発明の基準時においては、ワークの温度は、変態点近傍(現実のAC1変態点とAC3変態点の間)であると言える。
本発明では、コイルに流れる電流等を監視することによって、間接的に変態点の通過を知り、その後に、出力ボリュームを絞ってコイルに供給する電流又は電力を低下させる。その結果、ワークは、磁気変態点を通過した後、一定の時間、磁気変態点近傍の温度を維持し、フェライト・パーライト組織がオーステナイト組織に変態する。そしてその後に、誘導加熱を停止し、急冷すると、オーステナイト組織がマルテンサイト組織に変態する。
本発明では、ワークを過度に昇温させない。また一定の時間、磁気変態点近傍の温度を維持することによりワークの各部の温度ばらつきが小さくなる。そのため急冷後にワークが割れることは少ない。
In the present invention, during the induction heating, at least one of the current flowing through the coil, the electric power, and the frequency of the current flowing through the coil is monitored. Then, when the current or power flowing through the coil tends to decrease or when the frequency of the alternating current flowing through the coil changes, the current or power supplied to the coil is decreased and the state is maintained for a certain period of time. “To decrease the current or power supplied to the coil and maintain the state for a certain period of time” means to maintain a state where the current or power is lower than the peak time. The current or power at this time is constant. There is no need.
As a specific measure for “decreasing the current or power supplied to the coil”, for example, there is a method of reducing the voltage applied to the coil by reducing the volume of the oscillation device.
As described above, the temperature of the workpiece at the time when the current or power flowing through the coil tends to decrease, or when the frequency of the alternating current flowing through the coil tends to rise, is near the magnetic transformation point (actual AC1 transformation point and Between AC3 transformation points). Therefore, at the reference time of the present invention, it can be said that the temperature of the workpiece is near the transformation point (between the actual AC1 transformation point and the AC3 transformation point).
In the present invention, the current or power supplied to the coil is reduced by monitoring the current flowing through the coil, etc., and indirectly knowing the passage of the transformation point and then reducing the output volume. As a result, after passing through the magnetic transformation point, the workpiece maintains a temperature in the vicinity of the magnetic transformation point for a certain time, and the ferrite / pearlite structure is transformed into an austenite structure. After that, when induction heating is stopped and rapidly cooled, the austenite structure is transformed into a martensite structure.
In the present invention, the temperature of the workpiece is not excessively increased. Further, by maintaining the temperature near the magnetic transformation point for a certain time, the temperature variation of each part of the work is reduced. For this reason, the work is unlikely to crack after rapid cooling.

請求項3に記載の発明は、コイルに流れる電流の周波数が上昇傾向となった後に抑制加熱工程を実施することを特徴とする請求項1又は2に記載の鋳造品の製造方法である。   The invention according to claim 3 is the method of manufacturing a cast product according to claim 1 or 2, wherein the suppression heating step is performed after the frequency of the current flowing in the coil tends to increase.

請求項4に記載の発明は、誘導加熱工程においては、ワークは特定の部位だけが誘導加熱され、誘導加熱される部位には突出部及び/又は厚さが他の部位に比べて薄い部分があることを特徴とする請求項1乃至3のいずれかに記載の鋳造品の製造方法である。   According to a fourth aspect of the present invention, in the induction heating process, only a specific part of the work is induction-heated, and the part to be induction-heated has a protrusion and / or a part whose thickness is thinner than other parts. It is a manufacturing method of the casting in any one of Claims 1 thru | or 3 characterized by the above-mentioned.

請求項5に記載の発明は、発振装置を備えた交流発生源に接続された誘導加熱コイルを使用して、鉄系材料で作られたワークを誘導加熱して行う熱処理方法において、ワークを誘導加熱する際に前記コイルに流れる電流、電力又はコイルに流れる電流の周波数の少なくともいずれかを監視し、これらのいずれかがそれまでの変化軌跡から外れて変化した際、又は変化の傾向が現れた際に前記コイルに供給する電流又は電力を低下させてその状態を一定時間維持し、その後に誘導加熱を停止することを特徴とする熱処理方法である。   According to a fifth aspect of the present invention, there is provided a heat treatment method in which a work made of an iron-based material is induction-heated using an induction heating coil connected to an AC generating source having an oscillation device. When heating, at least one of the current flowing through the coil, the electric power, or the frequency of the current flowing through the coil was monitored, and when any of these changed out of the previous change trajectory, or a tendency to change appeared In this case, the current or power supplied to the coil is reduced to maintain the state for a certain time, and then the induction heating is stopped.

請求項6に記載の発明は、高周波発振装置と誘導加熱コイルを備えた高周波焼き入れ装置において、前記コイルに流れる電流、電力又はコイルに流れる電流の周波数の少なくともいずれかを監視する監視手段を有し、これらのいずれかがそれまでの変化軌跡から外れて変化した際、又は変化の傾向が現れた際にコイルに供給する電流又は電力を低下させる抑制加熱制御が実行されることを特徴とする高周波焼き入れ装置である。   According to a sixth aspect of the present invention, there is provided a high-frequency quenching apparatus including a high-frequency oscillation device and an induction heating coil, comprising monitoring means for monitoring at least one of a current flowing through the coil, a power, or a frequency of a current flowing through the coil. And when any of these changes out of the change trajectory up to that point, or when a change tendency appears, suppression heating control is performed to reduce the current or power supplied to the coil. Induction hardening device.

本発明の鋳造品の製造方法及び熱処理方法によると、焼き入れ工程における割れが少なく、歩留りが高い。また本発明の高周波焼き入れ装置を使用すると、ワークの割れが少なく、歩留りが高い。   According to the method for manufacturing a cast product and the heat treatment method of the present invention, there are few cracks in the quenching process, and the yield is high. Moreover, when the induction hardening apparatus of this invention is used, there are few cracks of a workpiece | work and a yield is high.

片状黒鉛鋳鉄製のワークを高周波誘導加熱した際の温度変化と、周波数の変動と電流の変動を同一の時間軸上に並べたグラフである。It is the graph which arranged the temperature change at the time of carrying out high frequency induction heating of the workpiece | work made from flake graphite cast iron, the fluctuation | variation of a frequency, and the fluctuation | variation of an electric current on the same time axis. 本発明の実施形態の方法に則って、片状黒鉛鋳鉄製のワークを高周波誘導加熱した際の温度変化と、周波数の変動と電流の変動を同一の時間軸上に並べたグラフである。It is the graph which arranged the temperature change at the time of carrying out the high frequency induction heating of the workpiece | work made from flake graphite cast iron, the fluctuation | variation of a frequency, and the fluctuation | variation of an electric current on the same time axis according to the method of embodiment of this invention. 本発明の実施形態の熱処理方法を実施する際に使用する高周波誘導加熱装置の概念図である。It is a conceptual diagram of the high frequency induction heating apparatus used when implementing the heat processing method of embodiment of this invention. 本発明の実施形態の熱処理方法の工程を示すフローチャートである。It is a flowchart which shows the process of the heat processing method of embodiment of this invention. 本発明の実施形態の鋳造品の製造方法によって製造されたワークを切断し、さらにエッチング処理した後の断面のスケッチであり、ワークは基準時からコイルに供給する電流を低下させてその状態を1.5秒維持し、その後に誘導加熱を停止してワークを急冷して造られたものを示す。FIG. 3 is a sketch of a cross-section after cutting a workpiece manufactured by the method for manufacturing a cast product according to the embodiment of the present invention and further etching the workpiece, and the workpiece reduces the current supplied to the coil from the reference time to 1 .5 seconds, after which induction heating is stopped and the workpiece is rapidly cooled. 本発明の実施形態の鋳造品の製造方法によって製造されたワークを切断し、さらにエッチング処理した後の断面のスケッチであり、ワークは基準時からコイルに供給する電力を低下させてその状態を6.5秒維持し、その後に誘導加熱を停止してワークを急冷して造られたものを示す。FIG. 4 is a sketch of a cross-section after cutting a workpiece manufactured by the method for manufacturing a cast product according to the embodiment of the present invention and further etching the workpiece; the workpiece reduces the power supplied to the coil from the reference time and changes its state to 6; .5 seconds, after which induction heating is stopped and the workpiece is rapidly cooled.

以下さらに本発明の実施形態について説明する。本実施形態は、所定形状のワーク100を鋳造し、ワーク100の一部を高周波焼き入れして硬化させる工程を有する、機械部品(鋳造品)の製造方法である。
ワーク100は、前記した様に鋳造によって成形されたものである。鋳造に使用された素材は、片状黒鉛鋳鉄である。ワーク100は特定の部位が高周波焼き入れされる。
ワーク100は、断面形状が卵形のシャフトであり、その一部にネジ部101がある。 ワーク100は断面形状が卵形の部分の一定領域(以下、焼き入れ領域103 図3)だけが高周波焼き入れされる。
即ちワーク100の焼き入れされる部位(焼き入れ領域103)の断面形状は真円ではなく、卵形であり、突出部102がある。本実施形態の鋳造品の製造方法では、鋳造後に焼き入れ領域103の全周を高周波焼き入れする。
ワーク100を焼き入れするための高周波誘導加熱装置2は、誘導加熱コイル3と、カレントトランス5と、高周波発振機6及び制御装置7によって構成されている。
誘導加熱コイル3は、公知のワンターンコイルである。
Embodiments of the present invention will be further described below. The present embodiment is a method of manufacturing a machine part (cast product), which includes a step of casting a workpiece 100 having a predetermined shape and hardening a part of the workpiece 100 by induction hardening.
The workpiece 100 is formed by casting as described above. The material used for casting is flake graphite cast iron. A specific part of the workpiece 100 is induction-hardened.
The work 100 is a shaft having an oval cross-sectional shape, and a screw portion 101 is provided in a part thereof. The workpiece 100 is induction-hardened only in a certain region (hereinafter, quenching region 103, FIG. 3) having an oval cross-sectional shape.
That is, the cross-sectional shape of the part (quenched region 103) where the workpiece 100 is quenched is not a perfect circle but an oval shape, and has a protrusion 102. In the method for manufacturing a cast product according to this embodiment, the entire periphery of the quenching region 103 is induction-quenched after casting.
A high-frequency induction heating device 2 for quenching the workpiece 100 includes an induction heating coil 3, a current transformer 5, a high-frequency oscillator 6 and a control device 7.
The induction heating coil 3 is a known one-turn coil.

高周波発振機6は、図示しない商用電源に接続されていて、高周波電流を発生させる装置である。高周波発振機6の発振周波数は、ボリューム等(バリアブルコンデンサー等を含む)によって設定することが可能であるが、発振周波数は誘導加熱コイル3の状態等に応じて変動する。即ち制御装置7のボリューム20によって周波数を上昇させたり下降させたりすることが可能であるが、高周波発振機6は、誘導加熱コイル3を含む同調回路によって発振周波数が決まるものであり、誘導加熱コイル3のインダクタンスが変化すれば、発振周波数が変わってしまう。   The high frequency oscillator 6 is a device that is connected to a commercial power source (not shown) and generates a high frequency current. The oscillation frequency of the high-frequency oscillator 6 can be set by a volume or the like (including a variable capacitor or the like), but the oscillation frequency varies depending on the state of the induction heating coil 3 or the like. In other words, the frequency can be increased or decreased by the volume 20 of the control device 7, but the high frequency oscillator 6 has an oscillation frequency determined by a tuning circuit including the induction heating coil 3. If the inductance of 3 changes, the oscillation frequency will change.

また高周波発振機6は、制御装置7のボリューム21によって誘導加熱コイル3に印加する電圧を変化させ、結果的に出力電流(誘導加熱コイル3に流れる電流)を変化させることができる。またその結果、誘導加熱コイル3に供給される電力が変化する。
ただし高周波発振機6の出力電流は、ボリューム21の抵抗だけでなく、誘導加熱コイル3のインダクタンス、各部のキャパシタンス、及び発振周波数によって変動する。
Moreover, the high frequency oscillator 6 can change the voltage applied to the induction heating coil 3 by the volume 21 of the control device 7, and can change the output current (current flowing through the induction heating coil 3) as a result. As a result, the power supplied to the induction heating coil 3 changes.
However, the output current of the high-frequency oscillator 6 varies not only with the resistance of the volume 21 but also with the inductance of the induction heating coil 3, the capacitance of each part, and the oscillation frequency.

制御装置7は、前記したボリューム20,21を有する他、後記する制御工程を実行するプログラムが内蔵されている。
即ち制御装置7には、高周波発振機6の発振周波数を監視するプログラムと、高周波発振機6の発振周波数が変化した場合に、一定時間、誘導加熱コイル3に印加する電圧を低下させ、結果的に出力電流を低下させ、その後に高周波発振機6の発振を停止するプログラムが内蔵されている。より具体的には、高周波発振機6の発振周波数がそれまでの変化軌跡から外れて上昇した場合に、一定時間、出力電流を低下させ、その後に高周波発振機6の発振を停止するプログラムが内蔵されている。
本実施形態では、制御装置7がコイルに流れる電流の周波数を監視する監視手段である。
また本実施形態では、制御装置7からの信号に基づいて抑制加熱制御が実行される。
In addition to having the volumes 20 and 21 described above, the control device 7 incorporates a program for executing a control process described later.
That is, the control device 7 reduces the voltage applied to the induction heating coil 3 for a certain period of time when the oscillation frequency of the high-frequency oscillator 6 is changed and the program for monitoring the oscillation frequency of the high-frequency oscillator 6 is changed. A program for reducing the output current and then stopping the oscillation of the high-frequency oscillator 6 is incorporated. More specifically, when the oscillation frequency of the high-frequency oscillator 6 rises off the locus of change so far, a program for reducing the output current for a certain time and then stopping the oscillation of the high-frequency oscillator 6 is built-in. Has been.
In the present embodiment, the control device 7 is a monitoring unit that monitors the frequency of the current flowing through the coil.
In the present embodiment, the suppression heating control is executed based on a signal from the control device 7.

次に本実施形態の焼き入れ方法を実際の工程に則して説明する。
高周波誘導加熱装置2は、前記した誘導加熱コイル3が、カレントトランス5を介して高周波発振機6に接続されたものである。そして高周波誘導加熱装置2の誘導加熱コイル3にワーク100の焼き入れ領域103が近接されて熱処理が開始される。以下の処理は、制御装置7に内蔵されたプログラムに則り、自動的に実行される。
Next, the quenching method of the present embodiment will be described in accordance with actual steps.
The high-frequency induction heating device 2 is such that the induction heating coil 3 is connected to a high-frequency oscillator 6 via a current transformer 5. Then, the quenching region 103 of the workpiece 100 is brought close to the induction heating coil 3 of the high frequency induction heating device 2 and heat treatment is started. The following processing is automatically executed in accordance with a program built in the control device 7.

即ちステップ1で高周波発振機6に通電され、誘導加熱コイル3に高周波電流が通電される。なお本実施形態では、誘導加熱時にワーク100を回転させる。また誘導加熱コイル3はワーク100の回転に追従して偏心運動させる。
誘導加熱コイル3に高周波電流が通電される結果、ワーク100の焼き入れ領域103に誘導電流が発生し、焼き入れ領域103が昇温する。誘導加熱コイル3に高周波電流が通電された直後における、焼き入れ領域103の温度、誘導加熱コイル3に対する供給電流(または電力)及び高周波発振機6の発振周波数は、図2の期間Aの様である。
即ち発振周波数は、グラフFの様に短時間(0からa)の内に上昇する。誘導加熱コイル3に対する供給電流は、グラフDの様に上昇する。焼き入れ領域103の温度は、急激に上昇する。
That is, in step 1, the high-frequency oscillator 6 is energized, and the induction heating coil 3 is energized. In the present embodiment, the workpiece 100 is rotated during induction heating. The induction heating coil 3 is eccentrically moved following the rotation of the workpiece 100.
As a result of the high-frequency current being applied to the induction heating coil 3, an induction current is generated in the quenching region 103 of the workpiece 100, and the quenching region 103 is heated. The temperature of the quenching region 103, the supply current (or power) to the induction heating coil 3 and the oscillation frequency of the high frequency oscillator 6 immediately after the high frequency current is passed through the induction heating coil 3 are as shown by period A in FIG. is there.
That is, the oscillation frequency rises within a short time (from 0 to a) as shown in the graph F. The supply current to the induction heating coil 3 rises as shown in the graph D. The temperature of the quenching region 103 increases rapidly.

続く期間Bでは、発振周波数は、グラフFの様に安定した状態となる。供給電流は、グラフDの様に上昇を続ける。焼き入れ領域103の温度は、上昇カーブがやや鈍化するものの、略一様に上昇を続ける。   In the subsequent period B, the oscillation frequency is in a stable state as shown in the graph F. The supply current continues to rise as shown in graph D. The temperature of the quenching region 103 continues to rise substantially uniformly, although the rising curve is somewhat dull.

そして発振開始後、突然に発振周波数が上昇する。即ち図2のグラフによると、時刻aから時刻bまでの間の発振周波数の変化軌跡は平行又は少しづつ上昇する傾向の軌跡であるが、時刻bを過ぎたころからそれまでの変化軌跡から外れて発振周波数が変化する。
即ち時刻bから時刻cまでの発振周波数の近似直線は、それまで(時刻aから時刻b間)の近似直線とは明らかに相違する。言い換えれば、時刻bから時刻cまでの発振周波数の近似直線の延長線上に、時刻b以降の発振周波数の数値が乗らない状態となる。
Then, after the oscillation starts, the oscillation frequency suddenly increases. That is, according to the graph of FIG. 2, the change locus of the oscillation frequency from time a to time b is a locus that tends to increase in parallel or little by little, but deviates from the change locus until then after the time b. The oscillation frequency changes.
That is, the approximate straight line of the oscillation frequency from time b to time c is clearly different from the approximate straight line until that time (between time a and time b). In other words, the value of the oscillation frequency after the time b is not on the extension line of the approximate straight line of the oscillation frequency from the time b to the time c.

この様に時刻bから時刻cまでの間に、発振周波数が異様に上昇する。即ち発振周波数は常に変化しているが、変化の傾向や変化勾配が明らかに変わり、発進周波数の上昇傾向が顕著となる。例えば一定の時間内に周波数が一定量以上又は一定割合以上変わる。
本実施形態では、発振周波数が一定周波数だけ変化した時点(時刻c)を基準点としている。
変化率の目安は、2から10パーセント程度であり、1秒間に3から7パーセント程度変化した場合を基準点とすることが望ましい。
In this way, the oscillation frequency rises abnormally between time b and time c. That is, although the oscillation frequency is constantly changing, the change tendency and the change gradient are clearly changed, and the rising frequency of the start frequency becomes remarkable. For example, the frequency changes by a certain amount or a certain ratio within a certain time.
In this embodiment, the time point (time c) when the oscillation frequency changes by a certain frequency is used as a reference point.
The standard of the rate of change is about 2 to 10 percent, and it is desirable to use the case where the rate of change is about 3 to 7 percent per second as a reference point.

ここで本実施形態が採用するプログラムでは、図4の様にステップ2,3で、発振周波数を監視しており、発振周波数が一定周波数だけ上昇すると、ステップ3からステップ4に移行し、誘導加熱コイル3に対する供給電流を強制的に低下させる。より具体的には、誘導加熱コイル3に印加する電圧を低下させ、抑制加熱制御を実行する。
誘導加熱コイル3に印加する電圧の低下率は、20%から70%が望ましい。実際には予備試験によって、ワーク100の単位時間あたりの温度上昇が摂氏50度/秒以下、より望ましくは摂氏30度/秒以下、さらに望ましくは摂氏25度/秒程度となる様に誘導加熱コイル3に印加する電圧を低下させる。
また基準点である時刻cにおいて、ステップ5で所定のタイマーをオンし、ステップ6で当該タイマーが計時を終えるのを待つ。
Here, in the program employed in this embodiment, the oscillation frequency is monitored in steps 2 and 3 as shown in FIG. 4, and when the oscillation frequency rises by a certain frequency, the routine proceeds from step 3 to step 4 to induce induction heating. The supply current to the coil 3 is forcibly reduced. More specifically, the voltage applied to the induction heating coil 3 is reduced, and the suppression heating control is executed.
The reduction rate of the voltage applied to the induction heating coil 3 is desirably 20% to 70%. Actually, it is an induction heating coil so that the temperature increase per unit time of the workpiece 100 is 50 degrees centigrade / second or less, more desirably 30 degrees centigrade / second or less, and more desirably about 25 degrees centigrade / second by preliminary tests. The voltage applied to 3 is reduced.
Further, at a time point c, which is a reference point, a predetermined timer is turned on in step 5 and the timer waits for the timer to finish counting in step 6.

この時の、焼き入れ領域103の温度、誘導加熱コイル3に対する供給電流(または電力)及び高周波発振機6の発振周波数は、図2の通りであり、焼き入れ領域103の温度は、磁気変態点を通過した直後から一定の温度範囲に維持する。即ち焼き入れ領域103の温度は、磁気変態点を通過した温度に維持され、温度変化が小さい状態となる。
供給電流は、前記した様に強制的に低下されるので、グラフDの様に低く押さえられ、且つ一定に保たれる。
発振周波数は、なりゆきであるが、やや上昇する傾向となる。
At this time, the temperature of the quenching region 103, the supply current (or power) to the induction heating coil 3 and the oscillation frequency of the high-frequency oscillator 6 are as shown in FIG. 2, and the temperature of the quenching region 103 is the magnetic transformation point. The temperature is maintained within a certain temperature range immediately after passing through. That is, the temperature of the quenching region 103 is maintained at a temperature that has passed the magnetic transformation point, and the temperature change is small.
Since the supply current is forcibly reduced as described above, it is kept low as shown in the graph D and kept constant.
The oscillation frequency tends to increase, but tends to increase slightly.

そしてステップ6でタイマーが計時を終えたことが確認されると、ステップ7に移行して誘導加熱コイル3に対する電流供給を停止し、ステップ8で焼き入れ領域103を急冷する。
なお誘導加熱コイル3に対する電流供給を停止してから、焼き入れ領域103を急冷するまでの間に、わずかな遅延時間を設け、ワーク100を空冷することが望ましい。
When it is confirmed in step 6 that the timer has finished counting, the process proceeds to step 7 where the current supply to the induction heating coil 3 is stopped, and in step 8 the quenching region 103 is rapidly cooled.
It should be noted that it is desirable to provide a slight delay time between the time when the current supply to the induction heating coil 3 is stopped and the time when the quenching region 103 is rapidly cooled to cool the work 100 by air.

上記した工程によって製造されたワーク100は、割れの発生が少ない。また図5、図6の様にワーク面が均一に焼き入れされている。   The workpiece 100 manufactured by the above-described process is less likely to crack. Further, as shown in FIGS. 5 and 6, the work surface is evenly quenched.

本実施形態では、時刻c(基準時)に供給電流(又は電力)を低下させるが、電流(又は電力)の低下量はワーク100が基準時の温度を維持する程度であることが望ましい。しかしながら、実際上、多少の温度上昇があっても構わない。
また供給電流(又は電力)を低下した状態を維持する時間によって、焼き入れ深度を調整することができる。
供給電流(又は電力)を低下した状態を維持する時間が短い場合は、図5の様に焼き入れ深度が浅くなる。逆に供給電流を低下した状態を維持するが長い場合は、図6の様に焼き入れ深度が深くなる。
In the present embodiment, the supply current (or power) is reduced at time c (reference time), but the amount of decrease in the current (or power) is preferably such that the workpiece 100 maintains the reference temperature. However, in practice, there may be a slight temperature increase.
Further, the quenching depth can be adjusted by the time for maintaining the state where the supply current (or power) is reduced.
When the time for maintaining the state where the supply current (or power) is reduced is short, the quenching depth becomes shallow as shown in FIG. On the contrary, the state in which the supply current is reduced is maintained, but if the supply current is long, the quenching depth becomes deep as shown in FIG.

上記した実施形態では、発振周波数が一定の範囲で変化した時点(時刻c)を基準時としたが、変化の傾向が現れた時期(時刻b)を基準時としてもよい。また周波数に代えて、電流値を基準として基準時を決定してもよい。   In the above-described embodiment, the time point (time c) when the oscillation frequency changes within a certain range is set as the reference time, but the time point when the change tendency appears (time b) may be set as the reference time. Further, the reference time may be determined based on the current value instead of the frequency.

本発明は、鋳造品の形状や構造、用途を限定するものではなく、筐体、歯車、軸、その他の鋳造品を製造する方法として有効である。
本発明の技術思想は、あらゆる形状の鉄系材料を熱処理する場合にも応用することができる。
The present invention does not limit the shape, structure, and application of the cast product, but is effective as a method for manufacturing a casing, gears, shafts, and other cast products.
The technical idea of the present invention can also be applied to heat treatment of iron materials of any shape.

2 高周波誘導加熱装置
3 誘導加熱コイル
5 カレントトランス
6 高周波発振機
7 制御装置
20 ボリューム
21 ボリューム
100 ワーク軸
2 High-frequency induction heating device 3 Induction heating coil 5 Current transformer 6 High-frequency oscillator 7 Control device 20 Volume 21 Volume 100 Work axis

Claims (6)

片状黒鉛鋳鉄製のワークを成形する鋳造工程と、前記ワークを焼き入れする焼き入れ工程を有する鋳造品の製造方法において、
前記焼き入れ工程は、発振装置と誘導加熱コイルを備えた誘導加熱装置を使用して前記ワークを誘導加熱する誘導加熱工程を有し、誘導加熱工程においてはワークを誘導加熱する際に前記コイルに流れる電流、電力、あるいはコイルに流れる電流の周波数の少なくともいずれかを監視し、これらのいずれかがそれまでの変化軌跡から外れて変化した際、又は変化の傾向が現れた際に前記コイルに供給する電流又は電力を低下させてその状態を一定時間維持する抑制加熱工程を実施し、その後に誘導加熱を停止してワークを急冷する冷却工程を実施することを特徴とする鋳造品の製造方法。
In a casting process for forming a workpiece made of flake graphite cast iron, and a method for producing a cast product having a quenching step of quenching the workpiece,
The quenching step includes an induction heating step of induction heating the workpiece using an induction heating device including an oscillation device and an induction heating coil. In the induction heating step, the coil is subjected to induction heating when the workpiece is induction heated. Monitor at least one of the current, power, and / or frequency of the current flowing in the coil, and supply to the coil when any of these changes or changes from the previous change trajectory. A method for producing a cast product, comprising: carrying out a suppression heating step of reducing a current or electric power to be maintained and maintaining the state for a certain period of time, and then carrying out a cooling step of stopping induction heating and rapidly cooling the workpiece.
コイルに流れる電流、電力、あるいはコイルに流れる電流の周波数の少なくともいずれかを監視し、前記コイルに流れる電流又は電力が低下傾向となった時点、あるいはコイルに流れる電流の周波数が変化した際、又は変化の傾向が現れた時点を基準時とし、当該基準時を基準として抑制加熱工程を実施することを特徴とする請求項1に記載の鋳造品の製造方法。   Monitoring at least one of the current flowing through the coil, the power, or the frequency of the current flowing through the coil, and when the current or power flowing through the coil tends to decrease, or when the frequency of the current flowing through the coil changes, or The method for producing a cast product according to claim 1, wherein a time point at which a change tendency appears is set as a reference time, and the suppression heating step is performed based on the reference time. コイルに流れる電流の周波数が上昇傾向となった後に抑制加熱工程を実施することを特徴とする請求項1又は2に記載の鋳造品の製造方法。   The method for producing a cast product according to claim 1 or 2, wherein the suppression heating step is performed after the frequency of the current flowing through the coil tends to increase. 誘導加熱工程においては、ワークは特定の部位だけが誘導加熱され、誘導加熱される部位には突出部及び/又は厚さが他の部位に比べて薄い部分があることを特徴とする請求項1乃至3のいずれかに記載の鋳造品の製造方法。   In the induction heating process, only a specific part of the work is induction-heated, and the part to be induction-heated has a protrusion and / or a part whose thickness is thinner than other parts. The manufacturing method of the casting in any one of thru | or 3. 発振装置を備えた交流発生源に接続された誘導加熱コイルを使用して、鉄系材料で作られたワークを誘導加熱して行う熱処理方法において、ワークを誘導加熱する際に前記コイルに流れる電流、電力又はコイルに流れる電流の周波数の少なくともいずれかを監視し、これらのいずれかがそれまでの変化軌跡から外れて変化した際、又は変化の傾向が現れた際に前記コイルに供給する電流又は電力を低下させてその状態を一定時間維持し、その後に誘導加熱を停止することを特徴とする熱処理方法。   In a heat treatment method in which an induction heating coil connected to an AC generating source equipped with an oscillation device is used to induction heat a work made of an iron-based material, the current flowing through the coil when the work is induction heated Monitoring at least one of power and / or frequency of current flowing in the coil, and supplying current to the coil when any of these changes or changes from the previous change trajectory, or A heat treatment method characterized by reducing power to maintain the state for a certain period of time and then stopping induction heating. 高周波発振装置と誘導加熱コイルを備えた高周波焼き入れ装置において、前記コイルに流れる電流、電力又はコイルに流れる電流の周波数の少なくともいずれかを監視する監視手段を有し、これらのいずれかがそれまでの変化軌跡から外れて変化した際、又は変化の傾向が現れた際にコイルに供給する電流又は電力を低下させる抑制加熱制御が実行されることを特徴とする高周波焼き入れ装置。   A high-frequency quenching apparatus including a high-frequency oscillation device and an induction heating coil has monitoring means for monitoring at least one of a current flowing through the coil, a power, or a frequency of a current flowing through the coil. A high-frequency quenching apparatus is characterized in that suppression heating control is performed to reduce the current or power supplied to the coil when a change occurs outside of the change locus or when a change tendency appears.
JP2015119399A 2015-06-12 2015-06-12 Casting manufacturing method, heat treatment method and induction hardening apparatus Active JP6618279B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015119399A JP6618279B2 (en) 2015-06-12 2015-06-12 Casting manufacturing method, heat treatment method and induction hardening apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015119399A JP6618279B2 (en) 2015-06-12 2015-06-12 Casting manufacturing method, heat treatment method and induction hardening apparatus

Publications (2)

Publication Number Publication Date
JP2017002372A true JP2017002372A (en) 2017-01-05
JP6618279B2 JP6618279B2 (en) 2019-12-11

Family

ID=57751516

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015119399A Active JP6618279B2 (en) 2015-06-12 2015-06-12 Casting manufacturing method, heat treatment method and induction hardening apparatus

Country Status (1)

Country Link
JP (1) JP6618279B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020162211A (en) * 2019-03-25 2020-10-01 日本製鉄株式会社 Annealing device for motor core and annealing method for motor core
CN114150118A (en) * 2020-09-07 2022-03-08 丰田自动车株式会社 Heat treatment apparatus and heat treatment method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5022743B1 (en) * 1970-09-22 1975-08-01
JPS60162723A (en) * 1984-01-31 1985-08-24 Kawasaki Steel Corp Surface hardening method of large-diameter cast iron member
JPH07197135A (en) * 1994-01-07 1995-08-01 Nippon Steel Corp Temperature controller
JP2005015906A (en) * 2003-06-30 2005-01-20 Kikuchi Co Ltd Induction-heating method for thin sheet-made article and apparatus therefor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5022743B1 (en) * 1970-09-22 1975-08-01
JPS60162723A (en) * 1984-01-31 1985-08-24 Kawasaki Steel Corp Surface hardening method of large-diameter cast iron member
JPH07197135A (en) * 1994-01-07 1995-08-01 Nippon Steel Corp Temperature controller
JP2005015906A (en) * 2003-06-30 2005-01-20 Kikuchi Co Ltd Induction-heating method for thin sheet-made article and apparatus therefor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020162211A (en) * 2019-03-25 2020-10-01 日本製鉄株式会社 Annealing device for motor core and annealing method for motor core
CN114150118A (en) * 2020-09-07 2022-03-08 丰田自动车株式会社 Heat treatment apparatus and heat treatment method

Also Published As

Publication number Publication date
JP6618279B2 (en) 2019-12-11

Similar Documents

Publication Publication Date Title
US20120091122A1 (en) Selective case depth thermo-magnetic processing and apparatus
JP6618279B2 (en) Casting manufacturing method, heat treatment method and induction hardening apparatus
WO2013043246A1 (en) Method of laser hardening a surface for wear and corrosion resistance with overlapping hardened bands
US10841985B2 (en) System and method for heat treating a tubular
JP2009019230A (en) Method for manufacturing workpiece
WO2014069149A1 (en) Heat treatment method and method for manufacturing machine part
US2730472A (en) Method of manufacturing hollow tubular articles
JP2003183735A5 (en)
CN103710516B (en) A kind of major diameter fine module gear quenching technology
US9915335B2 (en) Method for treating a component such as a gearwheel
JP2007100121A (en) Method and apparatus for tempering-processing and member for heat treatment
JP4255694B2 (en) Method and apparatus for manufacturing barrel of twin screw extruder
JP5855338B2 (en) Induction hardening method and manufacturing method of products made of steel
CN203048985U (en) H-shaped grooved pulley quenching inductor
US20160333434A1 (en) Enhanced surface structure
JP2011021242A (en) Method and apparatus for high frequency-induction heating
Rudnev et al. Tempering of induction hardened steels
Krause et al. Induction Hardening for the Aeronautic and Aerospace Industry
CN108145166A (en) Powder part heat treatment process
Rudnev Recent inventions and innovations in induction hardening of gears and gear-like components
CN106834892A (en) A kind of manufacture method of heavy-duty commercial vehicle high intensity austempered ductile iron spiral bevel gear
Candeo Induction hardening of components for the aerospace industry
RU2455386C1 (en) Method to process long steel part
Tupalo et al. Considerations for Induction Quench and Temper of Tubular Products with Upset Ends—A Case Study of API 5CT L80 and P110 Casing and Tubing
JP2007231367A (en) Heat treatment method and device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180417

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190313

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190328

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190524

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191031

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191112

R150 Certificate of patent or registration of utility model

Ref document number: 6618279

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250