JPS60162198A - Liquid-filled type heat exchanger - Google Patents
Liquid-filled type heat exchangerInfo
- Publication number
- JPS60162198A JPS60162198A JP1593684A JP1593684A JPS60162198A JP S60162198 A JPS60162198 A JP S60162198A JP 1593684 A JP1593684 A JP 1593684A JP 1593684 A JP1593684 A JP 1593684A JP S60162198 A JPS60162198 A JP S60162198A
- Authority
- JP
- Japan
- Prior art keywords
- heat transfer
- tube
- heat exchanger
- fluid
- transfer tube
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F13/00—Arrangements for modifying heat-transfer, e.g. increasing, decreasing
- F28F13/18—Arrangements for modifying heat-transfer, e.g. increasing, decreasing by applying coatings, e.g. radiation-absorbing, radiation-reflecting; by surface treatment, e.g. polishing
- F28F13/185—Heat-exchange surfaces provided with microstructures or with porous coatings
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
Abstract
Description
【発明の詳細な説明】
〔発明の技術分野〕
本発明は、伝熱管内を流れる加熱流体によって、その伝
熱管の管外における被加熱流体の加熱を行なう満液式熱
交換器に係り、特に例えば海水の温度差等の低熱落差エ
ネルギを利用して発電する低熱落差発電プラント等に使
用される満液式熱交換器に関する。[Detailed Description of the Invention] [Technical Field of the Invention] The present invention relates to a flooded heat exchanger that heats a fluid to be heated outside a heat exchanger tube by a heating fluid flowing inside the heat exchanger tube. For example, the present invention relates to a flooded heat exchanger used in a low thermal drop power generation plant that generates electricity using low thermal drop energy such as seawater temperature difference.
〔発明の技術的背景およびその問題点〕第1図は、海水
の温度差を利用して発電する海洋温度差発電プラントの
概略系統図でおって、例えばフロン、アンモニア等の低
沸点媒体からなる作動流体が、蒸発器lにおいて海洋表
層部の比較的高温の海水によって加熱・蒸発せしめられ
、蒸気加減弁コを経て蒸気タービン3に導入され、そこ
で膨張仕事を行ない蒸気タービン3を駆動し、コク−(
2)
その蒸気タービン3によって発電機Vを回して発¥IL
を行なう。一方、蒸気タービン3から排出された蒸気は
、凝縮器夕で海洋深層部の比較的温度が低い海水によシ
凝縮され、その凝縮水は一旦タンク乙に貯溜された後、
循環ポンプ7によって再び蒸発器lに返流される。[Technical background of the invention and its problems] Figure 1 is a schematic diagram of an ocean temperature difference power generation plant that uses temperature differences in seawater to generate electricity. The working fluid is heated and evaporated in the evaporator 1 by relatively high-temperature seawater at the surface of the ocean, and is introduced into the steam turbine 3 through the steam control valve, where it performs expansion work to drive the steam turbine 3 and generate steam. −(
2) The steam turbine 3 turns the generator V and generates ¥IL
Do the following. On the other hand, the steam discharged from the steam turbine 3 is condensed into relatively low-temperature seawater in the deep ocean in a condenser, and the condensed water is temporarily stored in a tank B.
The circulating pump 7 returns the water to the evaporator l.
こ\で、上記蒸発器lからの蒸発量は常に一定に保持さ
れ、発電機Vの負荷変動に対しては、ターヒンノζイバ
ス弁rを開閉することによって蒸気タービン3の駆動力
を稠節することにより対応せしめられる。Here, the amount of evaporation from the evaporator 1 is always kept constant, and the driving force of the steam turbine 3 is adjusted in response to load fluctuations of the generator V by opening and closing the engine valve r. This will allow you to respond accordingly.
ところが、このような発電プラントでは高低熱源の温度
差が小さいため、送電端効率が数チと低く、単位発電出
力らたシの熱交換器熱負荷が非常に大きなものとなり、
熱交換器の製作費・設置スペースに占める割合がきわめ
て大きくなる。一方、フロン等の低沸点媒体は、従来の
作動流体である水に比べて、−桁程度伝熱特性が劣る。However, in such a power generation plant, the temperature difference between the high and low heat sources is small, so the net efficiency of the transmission is low, on the order of several inches, and the heat load on the heat exchanger per unit power output is extremely large.
The manufacturing cost and installation space of the heat exchanger will be extremely large. On the other hand, low boiling point media such as chlorofluorocarbons have heat transfer characteristics that are about an order of magnitude worse than water, which is a conventional working fluid.
そのため、熱交換器の高性能化・コンパクト化を達成す
るためには、ます熱貫流率を規定する作動流体側伝熱性
能の向上を図る必要がある。Therefore, in order to achieve higher performance and more compact heat exchangers, it is necessary to improve the heat transfer performance on the working fluid side, which defines the heat transfer coefficient.
蒸発器用伝熱管において、その沸騰熱伝達の促進を図る
ため、管体外表面に機械加工、粉末冶金、金属繊維の旬
着などを行なうようにすることはすでに知られている。In heat transfer tubes for evaporators, it is already known that the outer surface of the tube is subjected to machining, powder metallurgy, deposition of metal fibers, etc. in order to promote boiling heat transfer.
しかしこのような方法では、広範囲の処理面に均一かつ
経済的にしかも管壁との熱抵抗を抑えて凹凸面を形成す
ることにはかなシ困敞性が伴なう。However, with this method, it is difficult to uniformly and economically form an uneven surface over a wide range of treated surfaces while suppressing thermal resistance with the tube wall.
そこで、管体外表面に銅粉末を火炎溶射して銅溶射層を
形成して、優れた沸騰伝熱性能を有するようにした蒸発
器用伝熱管も提案されている(特開昭、?7−1評67
号)。しかしながら、低熱落差発電プラント等に蒸発器
として使用される熱交換器に、上述の如き伝熱管を適用
して作動流体側の伝熱性能を向上させても、管内海水側
の伝熱性能が低いと、蒸発器の熱貫流率は管内海水側の
伝熱性能によって規定されるため、必ずしもその効果は
十分発揮できない蝉の問題がある。Therefore, a heat exchanger tube for an evaporator has been proposed in which a copper sprayed layer is formed by flame spraying copper powder on the outer surface of the tube body to have excellent boiling heat transfer performance (JP-A-Sho, ?7-1 Review 67
issue). However, even if the heat transfer tubes described above are applied to heat exchangers used as evaporators in low heat drop power generation plants to improve the heat transfer performance on the working fluid side, the heat transfer performance on the seawater side in the tubes is low. Since the heat transfer coefficient of the evaporator is determined by the heat transfer performance of the seawater side in the tube, there is a problem that the effect cannot always be fully demonstrated.
このようなことから、蒸発器の高性能化・コンパクト化
を達成するには、管内海水側の伝熱性能(3)
をも改善する必要がある。ところで、管内側の熱伝達係
数を向上させる方法としては、従来流路内にねじシ板、
らせん羽根を入れて主流を回転させたり、流路内に一定
間隔で円板、円環を入れて主流を撹乱させたり、またけ
伝熱面に突起物を設けて境界層を撹乱させる等の方法が
とられている。For this reason, in order to achieve higher performance and more compact evaporators, it is also necessary to improve the heat transfer performance (3) on the seawater side of the pipe. By the way, as a method to improve the heat transfer coefficient inside the tube, conventionally, a threaded plate,
Inserting spiral blades to rotate the mainstream, inserting disks or rings at regular intervals in the flow path to disturb the mainstream, or providing protrusions on the heat transfer surface to disturb the boundary layer. A method is being taken.
しかし、上述のねじり板等の乱流促進体を設けたものに
おいては、熱伝達係数は向上するが、一方では熱伝達係
数の向上の割合以上に圧力損失が増大する。しかして、
前記発電プラントの蒸発器に上述の如き乱流促進体を用
いることは、熱貫流率の改善により得られるメリット以
上に海水循環ポンプの設備費および動力費が増加する可
能性が大きい等の問題がおる。However, in the case where a turbulence promoter such as the above-mentioned torsion plate is provided, the heat transfer coefficient is improved, but on the other hand, the pressure loss increases more than the proportion of the improvement in the heat transfer coefficient. However,
Using a turbulence promoter as described above in the evaporator of the power plant has problems such as the possibility that the equipment cost and power cost of the seawater circulation pump will increase more than the benefit obtained by improving the heat transfer coefficient. is.
本発明はこのような点に鑑み、格別動力費が増すような
ことがなく伝熱管の伝熱効率を十分高くした満液式熱交
換器を得ることを目的とする。In view of these points, it is an object of the present invention to provide a flooded heat exchanger in which the heat transfer efficiency of the heat transfer tubes is sufficiently increased without any particular increase in power costs.
本発明は、伝熱管内を流れる加熱流体によって、(≠)
その伝熱管の管外における被加熱流体の加熱を行なう満
液式熱交換器において、上記伝熱管の外表面に多孔質層
を設けるとともに、その内表面に、管内流体の流れ方向
手前側に起立面およびこの起立面上端から流体の流れ方
向に沿ってなだらかに下降する傾斜面からなる周方向に
延びる複数個の環状突起を形成したことを特徴とするも
のである。The present invention provides a flooded heat exchanger in which a fluid to be heated outside the heat transfer tube is heated (≠) by a heating fluid flowing inside the heat transfer tube, in which a porous layer is provided on the outer surface of the heat transfer tube. At the same time, a plurality of annular protrusions extending in the circumferential direction are formed on the inner surface of the tube, which are made up of an upright surface on the front side in the flow direction of the fluid in the pipe and an inclined surface that gently descends from the upper end of the upright surface along the flow direction of the fluid. It is characterized by this.
以下、第2図乃至第6図を参照して本発明の一実施例に
ついて説明する。An embodiment of the present invention will be described below with reference to FIGS. 2 to 6.
第2図は本発明の満液式熱交換器における伝熱管の縦断
面図であって、伝熱管10の外表面には金属粉粒を火炎
溶射することによって形成された多孔質層//が設けら
れている。また、伝熱管IOの内壁面には、管長手方向
に間隔を設けて複数の周方向に延びる環状突起/2が形
成しである。上記環状突起7.2は、第3図に示すよう
に、伝熱管IO内部を流れる流体の流れ方向手前側の部
分が管長手方向に対して直角に起立する起立面/Jaと
、この起立面/、2aの上端から矢印で示す流体流れ方
向前方に向けて下降するなだらかな傾斜面/コbとで構
成されている。FIG. 2 is a longitudinal sectional view of a heat exchanger tube in the flooded heat exchanger of the present invention, and the outer surface of the heat exchanger tube 10 has a porous layer formed by flame spraying metal powder particles. It is provided. Further, a plurality of annular protrusions /2 extending in the circumferential direction are formed on the inner wall surface of the heat exchanger tube IO at intervals in the tube longitudinal direction. As shown in FIG. 3, the annular protrusion 7.2 has an upright surface /Ja whose front side in the flow direction of the fluid flowing inside the heat exchanger tube IO stands up at right angles to the longitudinal direction of the tube, and this upright surface. /, 2a, and a gentle slope descending from the upper end of 2a toward the front in the fluid flow direction shown by the arrow.
ところで、上述のように伝熱管の外表面に多孔質層を設
けたものにおける沸騰性能に関係する因子は、溶射する
金属の種類・溶射粉粒の大きさ、溶射層厚さ等であるが
、溶射金属としては溶射被&層のM抵抗を小さくするた
めに、銅、銅合金などの熱伝導率の高い相別が望ましい
。すなわち、熱伝導率が高い程溶射被覆層での熱抵抗を
小さくできるので、管壁温度が高くなυ、多孔質層がそ
の効果を一層発揮できる。By the way, as mentioned above, the factors related to the boiling performance of heat exchanger tubes with a porous layer provided on the outer surface are the type of metal to be sprayed, the size of the sprayed powder particles, the thickness of the sprayed layer, etc. As the sprayed metal, in order to reduce the M resistance of the sprayed coating and layer, it is desirable to use a phase with high thermal conductivity such as copper or copper alloy. That is, the higher the thermal conductivity, the lower the thermal resistance in the sprayed coating layer, so the higher the tube wall temperature υ, the more effective the porous layer will be.
一方、溶射粉粒としては、粒度が3.25メツシユよシ
粗く、200メツシユよυ細かいものを用いることが望
ましい。すなわち、3.25メツシユ未満の細かい粒度
にすると、溶射ノズルからの広がりが太きくなシ、溶射
効率の悪化を招き易く、逆に200メツシユ以上の粗い
粒度にすると、伝熱管表面での未溶融物が生じ易く、充
分な伺着強度をもつ溶躬烏の形成が困難となる。第ダ図
は、火炎溶射により形成した銅溶射管において作動流体
(被加熱流体)としてフロンを用いたものにおける、沸
騰熱伝達係数と溶射層厚さの関係を示す図であり、溶射
層が厚くなる程棉騰熱伝達係数は上昇する。On the other hand, it is desirable to use thermal spray powder particles with a particle size coarser than 3.25 mesh and finer than 200 mesh. In other words, if the particle size is less than 3.25 mesh, the spread from the spray nozzle will not be large and the spraying efficiency will be likely to deteriorate.On the other hand, if the particle size is coarser than 200 mesh, the unmelted particles on the surface of the heat transfer tube will be reduced. This makes it difficult to form a welding material with sufficient adhesion strength. FIG. As the temperature rises, the heat transfer coefficient increases.
一方、前記環状突起/コを設けた伝熱管の特性値を得る
ために、圧力損失および熱伝達係数を測定し、その測定
結果により得られた、圧力損失を一定とした平滑管に対
する伝熱管の特性値を第3図に示す。なおこの場合、圧
力損失は管内流速をOJ〜ti、oI′/8に変化させ
ることによp得、熱伝達係数は流速を一定(約2.θシ
。)とし、熱負荷を変えることによって得た。On the other hand, in order to obtain the characteristic values of the heat exchanger tube provided with the annular protrusions, the pressure loss and heat transfer coefficient were measured, and the results of the measurements showed that the difference between the heat exchanger tube and the smooth tube with constant pressure loss The characteristic values are shown in Figure 3. In this case, the pressure loss can be reduced by changing the flow rate in the pipe to OJ~ti, oI'/8, and the heat transfer coefficient can be calculated by keeping the flow rate constant (approximately 2.θ) and changing the heat load. Obtained.
上l]2第j図は、横軸に環状突起間の間隔Pとその起
立面高δθの比重/、をとバ縦軸にポンプ動力(圧力損
失)・熱負葡一定の拘束条件のもとにおける本発明の伝
熱管の熱伝達係数α′と平滑管の熱伝達係数α8の比咬
。 を取った図である。In Fig. 2, the abscissa axis represents the interval P between the annular protrusions and the specific gravity of their upright surface height δθ, and the ordinate axis represents the pump power (pressure loss) and heat load under constant constraint conditions. The ratio between the heat transfer coefficient α' of the heat transfer tube of the present invention and the heat transfer coefficient α8 of the smooth tube in and. This is a diagram taken from .
に
の図から明らかなように、第3図の矢印方向(順方向)
に置体を流した場合、起立面の高さθが大きくなるにつ
れて熱伝達係数の比咬。は次第に増加し、起立面の高さ
eがo、smO時最大値7.4t−7となる。また、起
立面の高さがさらに太きα′
くなると、熱伝達係数の比 ×1はかえって減少する。As is clear from the figure, the direction of the arrow in Figure 3 (forward direction)
When a body is placed under the flow, as the height θ of the upright surface increases, the ratio of the heat transfer coefficient increases. gradually increases, reaching a maximum value of 7.4t-7 when the height e of the upright surface is o and smO. Furthermore, when the height of the upright surface becomes thicker α', the ratio x1 of the heat transfer coefficient decreases on the contrary.
一方、流体を矢印と反対方向(逆方向)に流した場合に
は、点線で示すように上記a′/a。ほかなシ小さなも
のとなる。したがって、流体の流れ方向手前側に起立面
がおるようにするとともに、起立面の高さθとしては、
実用的見地からO9,2〜0.7が好ましく、0.3〜
θ、夕が一層好ましい〇また、突起が大きすぎる伝熱管
は、突起の根元部付近に汚れが付着しやすく、除去しに
くくなυ、汚れ係数が増加し、熱貫流率が低下する。し
たがって、管内側熱伝達を促進しようとした意義がなく
なる。このため、伝熱管内面の形状はスポンジボール洗
浄またはブラシ洗浄の効果を十分に発揮できるものとす
る必要がオシ、この点からも起立面の高さelj:0.
71JL以下が好ましい。On the other hand, when the fluid flows in the direction opposite to the arrow (reverse direction), the above a'/a as shown by the dotted line. Others will be small. Therefore, the upright surface should be on the front side in the fluid flow direction, and the height θ of the upright surface should be:
From a practical standpoint, O9.2 to 0.7 is preferable, and 0.3 to 0.7.
In addition, heat exchanger tubes with too large protrusions tend to have dirt attached to the vicinity of the base of the protrusions, which is difficult to remove, increases the dirt coefficient, and reduces the heat transfer coefficient. Therefore, there is no point in trying to promote heat transfer inside the tube. For this reason, the shape of the inner surface of the heat exchanger tube must be such that it can fully demonstrate the effect of sponge ball cleaning or brush cleaning, and from this point of view as well, the height of the upright surface elj: 0.
71 JL or less is preferable.
さらに、起立面θに対する起立面のピッチpの比p/1
0については、V6が増加すると、熱伝達係数の比a′
/a8は次第に増加し、へが1IsO時最大値をとる。Furthermore, the ratio p/1 of the pitch p of the upright surface to the upright surface θ
0, as V6 increases, the ratio of heat transfer coefficients a′
/a8 gradually increases and reaches its maximum value when 1IsO.
そして、鶴がさらに大きくなると、次第に減少する。し
かして、&−とじては3〜Sθがよく、30〜60がさ
らに好ましい。Then, as the crane grows larger, it gradually decreases. Therefore, &- is preferably 3 to Sθ, more preferably 30 to 60.
第6図は、本発明における伝熱管の熱貫流率と溶射層厚
さの関係を示す図であり、作動流体としてはフロンを用
いて行なった試験結果を示す図でめる。しかして、熱貫
流率は溶射層が厚くなるに従って増加するが、次第にそ
の増加割合は減少し、溶射層が100μm以上では熱貫
流率ははソ一定値となる。したがって、内面に前述の如
き環状突起を有する伝熱管外面に実施する溶射層厚さを
100〜.200μmとした場合に、本発明による熱交
換器は最も効率がよいものとなる。FIG. 6 is a diagram showing the relationship between the heat transmission coefficient and the sprayed layer thickness of the heat exchanger tube according to the present invention, and is a diagram showing the results of a test conducted using Freon as the working fluid. Therefore, the heat transmission coefficient increases as the sprayed layer becomes thicker, but the rate of increase gradually decreases, and when the sprayed layer is 100 μm or more, the heat transmission coefficient becomes a constant value. Therefore, the thickness of the thermal spray layer applied to the outer surface of the heat exchanger tube having the above-mentioned annular protrusion on the inner surface is 100 to 100. When the thickness is 200 μm, the heat exchanger according to the present invention is most efficient.
なお、上述の如き伝熱管の製造方法としては、まず帯状
の条板にロール加工によシ前述した最適な突起形状を塑
性加工することによυ、条板の長手方向に対して直角方
向に複数形成する0次にその形成した突起が内側となる
ように造管した後、長手方向に沿う継目を溶接し、内面
に突起を有しかつ外面が平滑な管を製作する。ついで、
溶射層の付着強度を増すために、溶射加工の前処理とし
て、伝熱管外表面にアルミナグリッドによるシラスト処
理を実施し、その後粒度200〜3.25メツシユの銅
または銅合金の粉末を1oo−200μmの厚さに、伝
熱管外表面に火炎溶射することによシ多孔質層を形成す
る。In addition, as for the manufacturing method of the above-mentioned heat exchanger tube, firstly, a strip-shaped strip is rolled and then plastically worked into the optimal protrusion shape described above. After forming a pipe so that the formed protrusions are on the inside, the joints along the longitudinal direction are welded to produce a pipe having protrusions on the inner surface and a smooth outer surface. Then,
In order to increase the adhesion strength of the thermal spray layer, as a pretreatment for thermal spraying, the outer surface of the heat transfer tube is treated with alumina grid, and then copper or copper alloy powder with a particle size of 200 to 3.25 mesh is applied to 100 to 200 μm. A porous layer is formed by flame spraying on the outer surface of the heat transfer tube to a thickness of .
以上説明したように、本発明においては伝熱管の外表面
に多孔質層を設けるとともに、その表面に、管内流体の
流れ方向手前側に起立面およびこの起立面上端から流体
の流れ方向に沿ってなだらかに下降する傾斜面からなる
周方向に延びる複数個の環状突起を形成したので、伝熱
管内外両面の伝熱性能を茜くするとともに、伝熱管内を
流れる流体の圧力損失も抑制することができ、熱交換器
としての効率を一段と向上せしめることができて、低熱
落差エネルギを利用する発電プラント等において使用し
た場合、格別大形化することなく十分上記熱エネルギを
利用することができる。As explained above, in the present invention, a porous layer is provided on the outer surface of the heat transfer tube, and a raised surface is provided on the surface of the porous layer on the front side in the flow direction of the fluid in the tube, and a surface is formed from the upper end of the raised surface along the fluid flow direction. By forming a plurality of circumferentially extending annular protrusions consisting of gently descending slopes, it is possible to improve the heat transfer performance on both the inside and outside of the heat exchanger tube and to suppress the pressure loss of the fluid flowing inside the heat exchanger tube. The efficiency of the heat exchanger can be further improved, and when used in a power generation plant or the like that utilizes low heat drop energy, the heat energy can be fully utilized without being particularly large.
第1図は海洋温度差発電プラントの概略系統図、第2図
は本発明の熱交換器における伝熱管の縦断面図、第3図
は伝熱管内面を示す拡大斜視図、第1図は銅溶射管の沸
騰熱伝達に及はす溶射層厚さの影響を示す線図、第5図
は環状突起の高さおよびピッチ等に対する熱伝達係数の
変化を示す線図、第6図は伝熱管の熱貫流率と溶射層厚
さの関係を示す図である。
10・・・伝熱管、//・・・多孔質層、/2・・・環
状突起、/ユa・・・起立面、/コb・・・傾斜面。
出動人代理人 猪 股 消
486
薄jN4専ぐ (pm)
l fi5聞
ξ 第6目
;宕射眉厚A!(ILm)Figure 1 is a schematic system diagram of an ocean temperature difference power generation plant, Figure 2 is a longitudinal cross-sectional view of a heat exchanger tube in the heat exchanger of the present invention, Figure 3 is an enlarged perspective view showing the inner surface of the heat exchanger tube, and Figure 1 is a copper A diagram showing the influence of the sprayed layer thickness on boiling heat transfer of a thermal sprayed tube. Figure 5 is a diagram showing changes in the heat transfer coefficient with respect to the height and pitch of the annular protrusion. Figure 6 is a diagram showing the influence of the sprayed layer thickness on the boiling heat transfer of the thermal sprayed tube. FIG. 3 is a diagram showing the relationship between the thermal transmittance coefficient and the sprayed layer thickness. 10... Heat exchanger tube, //... Porous layer, /2... Annular projection, /Ua... Upright surface, /B... Inclined surface. Dispatch agent boar crotch erasure 486 thin jN4 special (pm) l fi5mon ξ 6th; Minami eyebrow thickness A! (ILm)
Claims (1)
管外における被加熱流体の加熱を行なう満液式熱交換器
において、上記伝熱管の外表面に多孔質層を設けるとと
もに、その内表面に、管内流体の流れ方向手前側に起立
面およびこの起立面上端から流体の流れ方向に沿ってな
だらかに下降する傾斜面からなる周方向に延びる複数個
の環状突起を形成したことを特徴とする、満液式熱交換
器。 λ、多孔質層は、伝熱管外表面に粒度コOO〜326メ
ツシユの銅または銅合金の粉末を100−200μmの
厚さに火炎溶射することによシ形成されていることを特
徴とする特許請求の範囲第1JJ記載の満液式熱交換器
。 3、環状突起の高さは0.3〜o、sm、隣接する突(
1) s・ 起間のピッチは上記高さの30〜60倍であることを特
徴とする特許請求の範囲第1項記載の満液式熱交換器◇[Claims] 1. In a flooded heat exchanger that heats a fluid to be heated outside the heat exchanger tube by a heating fluid flowing inside the heat exchanger tube, a porous layer is provided on the outer surface of the heat exchanger tube. At the same time, a plurality of annular protrusions extending in the circumferential direction are formed on the inner surface of the tube, consisting of an upright surface on the front side in the flow direction of the fluid in the pipe and an inclined surface that gently descends from the upper end of the upright surface along the fluid flow direction. A flooded heat exchanger characterized by: A patent characterized in that the porous layer is formed on the outer surface of the heat transfer tube by flame spraying copper or copper alloy powder with a particle size of 0 to 326 mesh to a thickness of 100 to 200 μm. A flooded heat exchanger according to claim 1 JJ. 3. The height of the annular protrusion is 0.3~o, sm, the height of the annular protrusion (
1) The flooded heat exchanger according to claim 1, characterized in that the pitch between the s.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1593684A JPS60162198A (en) | 1984-01-31 | 1984-01-31 | Liquid-filled type heat exchanger |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1593684A JPS60162198A (en) | 1984-01-31 | 1984-01-31 | Liquid-filled type heat exchanger |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS60162198A true JPS60162198A (en) | 1985-08-23 |
Family
ID=11902647
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1593684A Pending JPS60162198A (en) | 1984-01-31 | 1984-01-31 | Liquid-filled type heat exchanger |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS60162198A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2022010814A (en) * | 2020-06-29 | 2022-01-17 | 株式会社クボタ | Thermal decomposition pipe comprising fluid agitation element |
-
1984
- 1984-01-31 JP JP1593684A patent/JPS60162198A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2022010814A (en) * | 2020-06-29 | 2022-01-17 | 株式会社クボタ | Thermal decomposition pipe comprising fluid agitation element |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Bergles | Enhanced heat transfer: endless frontier, or mature and routine? | |
Kalidasan et al. | Absorber tube with internal hinged blades for solar parabolic trough collector | |
AU621507B2 (en) | Method of making a heat exchanger | |
US8356658B2 (en) | Heat transfer enhancing system and method for fabricating heat transfer device | |
Bergies | The imperative to enhance heat transfer | |
WO2011039051A1 (en) | Central tube for a linear concentrating solar thermal power plant, having an absorber layer, and method for applying said absorber layer | |
US11504814B2 (en) | Air cooled condenser and related methods | |
Nakayama | Enhancement of heat transfer | |
JPS60162198A (en) | Liquid-filled type heat exchanger | |
CN111023882B (en) | Three-dimensional ribbed tube with two-way memory effect and processing method | |
JPH03229667A (en) | Method for manufacture of highly efficient heat transfer surface and said surface manufactured by said method | |
JP2010151363A (en) | Sealed type cooling apparatus | |
Ravigururajan et al. | Optimization of in-tube enhancement for large evaporators and condensers | |
Bergles | New frontiers in enhanced heat transfer | |
US4824530A (en) | Method of producing heat-transfer material | |
Zaza et al. | The influence of the cooling system fouling on the thermal performance of a CSP plant: Recent research updated | |
Kalidasan et al. | Absorber tube with internal pin-fins for solar parabolic trough collector | |
Kalidasan et al. | Ameliorating heat transfer performance of absorber tube for single axis concentrators | |
JPS59212601A (en) | Falling liquid-film type evaporator | |
Yang et al. | Critical heat flux for downward facing boiling on a coated hemispherical surface | |
JPS62796A (en) | Heat transfer tube | |
Bergles | Advanced enhancement for heat exchangers | |
Mochida et al. | Performance of the heat exchangers of a 100-kW (Gross) OTEC plant | |
SU1092178A1 (en) | Blowing tuyere for blast furnace | |
Gupta et al. | HAWAII GEOTHERMAL PROJECT |