JPS62796A - Heat transfer tube - Google Patents

Heat transfer tube

Info

Publication number
JPS62796A
JPS62796A JP13939785A JP13939785A JPS62796A JP S62796 A JPS62796 A JP S62796A JP 13939785 A JP13939785 A JP 13939785A JP 13939785 A JP13939785 A JP 13939785A JP S62796 A JPS62796 A JP S62796A
Authority
JP
Japan
Prior art keywords
heat transfer
main body
heat exchanger
fluid
exchanger tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13939785A
Other languages
Japanese (ja)
Inventor
Yoshio Mochida
芳雄 餅田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP13939785A priority Critical patent/JPS62796A/en
Publication of JPS62796A publication Critical patent/JPS62796A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/40Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only inside the tubular element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/18Arrangements for modifying heat-transfer, e.g. increasing, decreasing by applying coatings, e.g. radiation-absorbing, radiation-reflecting; by surface treatment, e.g. polishing
    • F28F13/185Heat-exchange surfaces provided with microstructures or with porous coatings

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

PURPOSE:To improve heat transfer performance by a method wherein a coating, having recesses and protrusions of substantially uniform size, is formed on the outer surface of main body of the heat transfer tube while the inner wall of the main body is provided with a plurality of annular protuberances arranged with given intervals mutually in the longitudinal direction of the main body. CONSTITUTION:The heat transfer tube is formed with the coating 11, covered by metal grains of uniform grain size and having recesses and protrusions of uniform size, on the outer surface of the main body while the inner wall of the main body of the same is provided with a plurality of annular protuberances 12 with given intervals mutually in the longitudinal direction of the main body. The coating 11 is constituted of the metal grains having the grain size of 12-60 mesh. The annular protuberance 12 is constituted of an upright surface 12a, standing orthogonally to the flow direction of fluid which flows through the heat transfer tube against the flow of the fluid, and a slant surface 12b gently slopes down from the upper edge of the upright surface 12 along the flow direction of the fluid. The height (e) of the annular protuberance 12 is designed so as to be 0.3-0.5mm while the mutual interval or the pitch P thereof is designed so as to be 30-60 times of the height (e).

Description

【発明の詳細な説明】 [発明の技術分野] 本発明は、例えば海洋温度差発電プラントの満液式熱交
換器における伝熱性能の向上を実現し、熱交換器の小型
化をより進めるのに好適な伝熱管に関する。
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention improves the heat transfer performance in a flooded heat exchanger for, for example, an ocean temperature difference power generation plant, and further promotes the miniaturization of the heat exchanger. The present invention relates to a heat exchanger tube suitable for.

[発明の技術的背景とその問題点] 海洋における表層海水と瀾層海水との温度差を利用し、
ここから得られる熱エネルギで電力を発生するいわゆる
海洋温度差発電がエネルギ資源に乏しい我が国などにお
いて熱心に研究され、技術的な面ではほぼ見通しが立つ
ところまできている。
[Technical background of the invention and its problems] Utilizing the temperature difference between the surface seawater and the surrounding seawater in the ocean,
The so-called ocean temperature difference power generation, which generates electricity using the thermal energy obtained from this, is being actively researched in countries such as Japan, which is poor in energy resources, and has almost reached the point where it is technically viable.

しかし、経済的な面での課題の克服は今もって充分とは
言えず早期にこの方面の問題に対して研究開発のウエー
トをおく事が求められている。現状、幾つかの課題があ
るが、熱変換器が極端に大型化し、経済性が損われると
いう問題にはより多くの感心が向けられねばならない。
However, it is still not enough to overcome the economic issues, and there is a need to focus research and development on these issues at an early stage. Currently, there are several problems, but more attention must be paid to the problem of extremely large heat converters, which impairs economic efficiency.

すなわち、一般に、海洋温度差発電プラントでは、高低
熱源の温度差が小さく、送電端効率は数%と少ない。こ
のため単位発電用ノ〕当たりの熱交換器熱負荷が非常に
大きなものとなり、熱交換器が極端に大型化するという
問題がある。一方ここでで用いられる低沸点媒体はフロ
ン、アンモニアなどであるが、総じてこれらは伝熱性能
の面で従来の作動流体である水よりも劣っており、熱交
換器が大型化するのを助長する傾向にある。従って、大
型化を喰い止めてより望ましい方向に導くには、まず熱
貫流率を規定する作動流体側での伝熱性能の向上を図ら
ねばならない。
That is, in general, in an ocean temperature difference power generation plant, the temperature difference between high and low heat sources is small, and the net power transmission efficiency is as low as a few percent. Therefore, the heat load on the heat exchanger per unit power generation becomes extremely large, and there is a problem in that the heat exchanger becomes extremely large. On the other hand, the low boiling point media used here are CFCs, ammonia, etc., but these are generally inferior to water, which is the conventional working fluid, in terms of heat transfer performance, and they encourage the enlargement of heat exchangers. There is a tendency to Therefore, in order to stop the increase in size and lead in a more desirable direction, it is first necessary to improve the heat transfer performance on the working fluid side, which defines the heat transfer coefficient.

従来、かかる作動流体側での伝熱性能の向上を意図して
熱交換器、つまり満液式蒸発器の伝熱管にその外側から
転造加工、金屑溶射あるいは粉末冶金などの方法を用い
て凹凸を形成し、沸騰熱伝達を促進するという考えが公
にされている。しかし、この様な方法では広い面積に均
一な寸法の凹凸をつくるのが難しく、高い品質のものを
多数得るとなると、経済的な負担がますます大きくなる
Conventionally, with the intention of improving heat transfer performance on the working fluid side, methods such as rolling, metal spraying, or powder metallurgy have been used on the heat exchanger, that is, the heat transfer tube of a flooded evaporator, from the outside. The idea that it forms irregularities and promotes boiling heat transfer has been made public. However, with such a method, it is difficult to create irregularities of uniform size over a wide area, and the economic burden becomes increasingly large if a large number of high-quality products are to be obtained.

また、フロンを作動流体とする蒸発器に関し、同様に沸
騰熱伝達を促進しようとの考えから、その伝熱管に外側
から熱伝導率に優れた銅粉末を火炎溶射して銅溶射層を
形成する方法が提案されている。(例えば特開昭57−
82469号公報参照)しかしながら、アンモニアを作
動流体とする蒸発器では、アンモニアが銅、あるいは銅
合金に対して激しい腐蝕性を示すので、銅溶射層により
沸騰熱伝達を促進するという考えは採用されるまでに至
らない。
In addition, with regard to evaporators that use Freon as the working fluid, in order to similarly promote boiling heat transfer, copper powder with excellent thermal conductivity is flame sprayed from the outside onto the heat transfer tubes to form a copper spray layer. A method is proposed. (For example, JP-A-57-
(See Publication No. 82469) However, in evaporators that use ammonia as the working fluid, ammonia is highly corrosive to copper or copper alloys, so the idea of promoting boiling heat transfer with a copper spray layer is not adopted. It doesn't reach that point.

一方、このような方法によらないで優れた沸騰熱伝達の
促進方法が開発され、作動流体側の伝熱性能の向上が図
かれたとしても伝熱管内を通る加熱流体、つまり海水側
の伝熱性能が低くては、蒸発器の熱貫流率が海水側の伝
熱性能により規定されるため、海水側の伝熱性能に対す
る配慮が怠れないものとなる。
On the other hand, even if an excellent method for promoting boiling heat transfer that does not rely on such a method is developed and the heat transfer performance of the working fluid side is improved, the transfer of heated fluid passing through the heat transfer tube, that is, the seawater side, If the thermal performance is low, the heat transfer coefficient of the evaporator is determined by the heat transfer performance of the seawater side, so consideration must be given to the heat transfer performance of the seawater side.

従来、この点への配慮として伝熱管内にねじり板、らせ
ん羽根等を置き、その主流に対して回転を与えたり、あ
るいは伝熱管内に一定の間隔で円環状部材を設け、主流
を撹乱させたり、また伝熱面に突起物を設け、これによ
り境界層を撹乱させるなどの方法が公にされている。し
かし、これらの部材等はいずれも乱流を意図的につくり
出すものであるため、仮に使い方を誤るようなことがあ
れば、熱伝達係数の僅かな向上と引き換えに大きな圧力
損失が生じ、海水循環ポンプの動力費が増加するなど、
別な面での経済的な負担を増す原因となる。
Conventionally, in consideration of this point, torsion plates, spiral blades, etc. were placed inside the heat exchanger tube to give rotation to the mainstream, or annular members were installed at regular intervals inside the heat exchanger tube to disturb the mainstream. In addition, methods such as providing protrusions on the heat transfer surface and thereby disturbing the boundary layer have been made public. However, all of these components intentionally create turbulent flow, so if they are used incorrectly, a large pressure loss will occur in exchange for a slight improvement in the heat transfer coefficient, which will disrupt seawater circulation. Increased pump power costs, etc.
This may cause an increase in economic burden in other ways.

[発明の目的] 本発明の目的は作動流体側での沸騰熱伝達の促進に併せ
、海水側での圧力損失の増加を伴わない乱流の作り方を
実現して伝熱性能の向上を図り、もって熱交換器の小型
化をより進めることのできる伝熱管を提供しようするも
のである。
[Objective of the Invention] The object of the present invention is to improve heat transfer performance by promoting boiling heat transfer on the working fluid side and creating a turbulent flow without increasing pressure loss on the seawater side. It is an object of the present invention to provide a heat exchanger tube that can further promote miniaturization of a heat exchanger.

[発明の概要] 本発明における特徴の一つは、伝熱管の本体外表面にほ
ぼ均一な大きさの凹凸を有する被覆部を形成することで
ある。この被覆部は粒度12〜60メツシュの金属粒を
吹き付けて一体に構成する。
[Summary of the Invention] One of the features of the present invention is that a covering portion having irregularities of approximately uniform size is formed on the outer surface of the main body of the heat exchanger tube. This coating is integrally constructed by spraying metal particles with a particle size of 12 to 60 mesh.

ざらに、第二の特徴は伝熱管の本体内壁に互いに一定間
隔を保って配置される複数の環状突起を設けることであ
る。この環状突起は管内流体の流れ方向よりみて前方に
起立している起立面と、この起立面の上端から流体の流
れ方向に沿ってなだらかに下降している傾斜面とから構
成され、さらに環状突起は内壁面から0.3〜0.5 
mmの高さに起立し、一方互いの間隔は高さの30〜6
0倍の大きさになるようにしている。
Roughly speaking, the second feature is that a plurality of annular protrusions are provided on the inner wall of the main body of the heat exchanger tube, and are arranged at regular intervals. This annular protrusion is composed of an upright surface that stands up in front when viewed from the flow direction of the fluid in the pipe, and an inclined surface that gently descends from the upper end of this upright surface along the fluid flow direction. is 0.3 to 0.5 from the inner wall surface
stand up to a height of 30 to 6 mm, while the distance between each other is 30 to 6 mm of height.
I'm trying to make it 0 times the size.

[発明の実施例] 以下、本発明の一実施例を第1図および第2図を参照し
て説明する。
[Embodiment of the Invention] An embodiment of the present invention will be described below with reference to FIGS. 1 and 2.

第1図において本発明の伝熱管は本体外表面を粒度の揃
った金属粒で覆った均一な大きさの凹凸を有する被覆部
11を形成し、さらにこの伝熱管の本体内壁に本体長手
方向に互いに一定の間隔を保って配置される複数の環状
突起12を設けるものである。
In FIG. 1, the heat exchanger tube of the present invention has a covering portion 11 having uniformly sized irregularities formed by covering the outer surface of the main body with metal grains of uniform grain size, and furthermore, the inner wall of the main body of the heat exchanger tube has a covering portion 11 that is formed by covering the outer surface of the main body with metal grains of uniform size. A plurality of annular protrusions 12 are provided at regular intervals.

初めに、被覆部11について詳述すると、被覆部11の
構成材料としては粒度の揃った金属粒、例えば高純度の
アルミナ(AJ2203 )粒を用いる。
First, the covering portion 11 will be described in detail. As the constituent material of the covering portion 11, metal grains of uniform particle size, for example, high-purity alumina (AJ2203) grains are used.

もちろん、この材料以外にも同等の熱伝導率と硬度を備
えているものであれば、代りに用いてもよく、選ばれた
金属粒子を伝熱管の本体外表面に吹き付けて一体化する
。この際、金居を選ぶことと同じように大切なことは金
属の粒度を一定の範囲に揃えるということである。本発
明においては粒度は12メツシュよりも細かく、一方6
0メツシュよりも粗い物を選んで使用する。
Of course, any material other than this material may be used as long as it has equivalent thermal conductivity and hardness, and the selected metal particles are sprayed onto the outer surface of the heat exchanger tube body to integrate it. At this time, just as important as choosing the metalwork is to align the grain size of the metal within a certain range. In the present invention, the particle size is finer than 12 mesh, while 6
Select and use something coarser than 0 mesh.

次に、環状突起12については第2図に示されるように
、伝熱管内を流れる流体の流れ方向よりみて前方に直角
に起立している起立面12aと、この起立面12の上端
から流体の流れ方向に沿ってなだらかに下降している傾
斜面12bとから構成されている。また、環状突起12
の高さeは、0.3〜0.5mmに設定し、一方互いの
間隔つまりピッチPは、高さeの30〜60倍の大きさ
に設定されている。
Next, as shown in FIG. 2, the annular protrusion 12 has an upright surface 12a that stands up at right angles to the front when viewed from the flow direction of the fluid flowing inside the heat transfer tube, and a raised surface 12a that stands up at right angles to the front when viewed from the flow direction of the fluid flowing inside the heat transfer tube. It is composed of an inclined surface 12b that slopes gently down along the flow direction. In addition, the annular protrusion 12
The height e is set to 0.3 to 0.5 mm, while the mutual spacing, that is, the pitch P, is set to be 30 to 60 times the height e.

以上の構成による伝熱管の伝熱性能について実験結果を
示す第3図および第4図を参照して説明する。
The heat transfer performance of the heat transfer tube with the above configuration will be explained with reference to FIGS. 3 and 4 showing experimental results.

第3図(a)はアルミナを吹き付けて形成したブラスト
処理管での作動流体としてアンモニアを用いたときの沸
騰熱伝達係数とアルミナグリッドの粒度との関係を示す
特性図である。なお、ここで縦軸の沸騰熱伝達係数の比
とは、粒度12メツシュでの沸騰熱伝達係数を基準とし
てその比率を定めたものである。この図から明らかなよ
うに粒度が12メツシュを越えたところから次第に伝熱
性能が高い値を示すようになり、さらに進んだところで
ピークを迎え、その後下降に転じて60メツシュを過ぎ
ると粒度との関係から極端に伝熱性能が低下する様子が
示されている。この理由を被覆部11を拡大して模式的
に示す第3図(b)を参照して説明すると、粒度が12
メツシュに満たない場合は被覆部11の空所(キャビテ
ィ)の開口半径Rが大きすぎ、気泡発生核として有効に
作用しないが、12メツシュを過ぎると開口半径Rが適
当な大きさとなり、気泡発生核としての働きが充分な水
準で得られ、この後、粒度が一層細かくなると気泡発生
がさらに活発になるが、限度を越えた場合にはキャビテ
ィの開口半径Rが小さく、かつ深さが浅くなるために次
第に気泡発生核として作用しなくなり、60メツシュを
過ぎるとその働きが殆んどなくなるものと考えられてい
る。
FIG. 3(a) is a characteristic diagram showing the relationship between the boiling heat transfer coefficient and the particle size of the alumina grid when ammonia is used as the working fluid in a blasting tube formed by spraying alumina. Note that the ratio of boiling heat transfer coefficients on the vertical axis is determined based on the boiling heat transfer coefficient at a particle size of 12 mesh. As is clear from this figure, when the particle size exceeds 12 mesh, the heat transfer performance gradually shows a higher value, reaches a peak as it progresses further, and then starts to decline, and when it exceeds 60 mesh, the heat transfer performance gradually becomes higher. The relationship shows that the heat transfer performance is extremely degraded. The reason for this will be explained with reference to FIG. 3(b) which schematically shows an enlarged view of the covering portion 11.
If it is less than 12 meshes, the opening radius R of the cavity of the covering part 11 is too large and does not act effectively as a bubble generation nucleus, but after 12 meshes, the opening radius R becomes an appropriate size and bubbles are generated. After a sufficient level of nucleation is obtained, as the particle size becomes finer, bubble generation becomes more active, but if the limit is exceeded, the opening radius R of the cavity becomes smaller and the depth becomes shallower. Therefore, it gradually ceases to act as a bubble generation nucleus, and it is thought that after 60 meshes, its function is almost completely eliminated.

一方、環状突起12を設けた伝熱管の特性1nを得るた
めに圧力損失および熱伝達係数を測定し、ここで得られ
た圧力損失を一定とした平滑管に対する特性値を第4図
に示している。なお、この場合の圧力損失は管内流速を
0.5〜4.0m / Sに変化させることにより、ま
た熱伝達係数は流速を一定(約2.0m/s)とし、熱
負荷を変化させることによりそれぞれ得た値を示す。図
の横軸には環状突起12のピッチPとその高ざeとの比
 P/eを取り、一方縦軸には循環水ポンプの動力(圧
力損失)、熱負荷一定の拘束条件のもとての本発明の伝
熱管の熱伝達係数α′ と平滑管の熱伝達係数αSとの
比 α′/αSをとっている。第4図から明らかなよう
に第2図の矢印方向に流体を流した場合(順方向)、環
状突起12の高さeが大きくなるにつれて熱伝達係数の
比 α′/αSが増加し、環状突起12の高さeが0.
5mmのとき最大値1.47となる。そして、環状突起
12の高さeがさらに大きくなると、熱伝達係数の比 
α′/αSはかえって減少する。一方、流体を第2図の
矢印と反対方向に流した場合(逆方向)には、点線で示
すように熱伝達係数の比 α′/αSはかなり小さい。
On the other hand, in order to obtain the characteristics 1n of the heat transfer tube provided with the annular protrusion 12, the pressure loss and heat transfer coefficient were measured, and the characteristic values for the smooth tube with the pressure loss constant are shown in FIG. There is. In this case, the pressure loss can be determined by changing the flow velocity in the pipe from 0.5 to 4.0 m/s, and the heat transfer coefficient can be determined by changing the heat load while keeping the flow velocity constant (approximately 2.0 m/s). The values obtained are shown below. The horizontal axis of the figure shows the ratio P/e between the pitch P of the annular protrusion 12 and its height e, while the vertical axis shows the power (pressure loss) of the circulating water pump and the thermal load under constant constraint conditions. The ratio of the heat transfer coefficient α' of the heat transfer tube of the present invention to the heat transfer coefficient αS of the smooth tube is α'/αS. As is clear from FIG. 4, when the fluid flows in the direction of the arrow in FIG. 2 (forward direction), as the height e of the annular projection 12 increases, the ratio α'/αS of the heat transfer coefficient increases, and The height e of the protrusion 12 is 0.
When it is 5 mm, the maximum value is 1.47. When the height e of the annular protrusion 12 is further increased, the ratio of the heat transfer coefficient
α'/αS on the contrary decreases. On the other hand, when the fluid flows in the direction opposite to the arrow in FIG. 2 (reverse direction), the ratio α'/αS of the heat transfer coefficients is quite small, as shown by the dotted line.

従って、流体の流れ方向よりみて前方に起立面12aを
置くことが望まれ、又環状突起12の高さeは実用的見
地から0.2〜0.7龍が好ましく、0.3〜o、su
mが一層好ましいものとなる。
Therefore, it is desirable to place the upright surface 12a in front when viewed from the fluid flow direction, and the height e of the annular protrusion 12 is preferably 0.2 to 0.7 degrees from a practical standpoint, and 0.3 to 0. su
m is more preferable.

さらに、一般的な傾向として伝熱管内に高い突起物があ
ると、その根元付近に異物が付着しやすく、またこれを
取り除くのも容易でない。仮にこのような異物の為に伝
熱管の汚れ係数が増加し、熱貫流率が低下するようなこ
とになれば、管内流体側で熱伝達を促進した意味はなく
なってしまう。
Furthermore, as a general tendency, when there is a high protrusion inside the heat exchanger tube, foreign matter tends to adhere to the vicinity of the base of the protrusion, and it is also difficult to remove it. If such foreign matter were to increase the fouling coefficient of the heat transfer tube and reduce the heat transfer coefficient, there would be no point in promoting heat transfer on the fluid side within the tube.

このため伝熱管内面のスポンジボール等による洗浄効果
が上がるように環状突起12の高さeについては0.7
1m以下に設定する。
Therefore, the height e of the annular protrusion 12 is set to 0.7 in order to improve the cleaning effect of sponge balls etc. on the inner surface of the heat exchanger tube.
Set to 1m or less.

また、この環状突起12の高ざeとそのピッチPとの比
 P/eについては、この値が大きくなるにつれて熱伝
達係数の比 α′/αSが次第に増加し、その比 P/
eが45のとき最大値をとる。
Furthermore, as the ratio P/e between the height e of the annular protrusion 12 and its pitch P increases, the heat transfer coefficient ratio α'/αS gradually increases, and the ratio P/e increases.
When e is 45, it takes the maximum value.

そして、比 P/eがさらに大ぎくなると熱伝達係数の
比は次第に減少する。従って、比 P/eとしては20
〜80倍が好ましく、30〜60倍が一層好ましい。
Then, as the ratio P/e becomes even larger, the ratio of heat transfer coefficients gradually decreases. Therefore, the ratio P/e is 20
-80 times is preferable, and 30-60 times is more preferable.

[発明の効果] 以上説明したように本発明は、伝熱管本体外表面に均一
な大きさの凹凸を有する被覆部を、また本体内壁に管内
流体の流体の流れ方向よりみて前方に起立している起立
面と、この起立面の上端から流体の流れ方向に沿ってな
だらかに下降している傾斜而とからなる環状突起を一定
の間隔を置いて設熱性能の向上が図れ、熱交換器の小型
化を一層進められるという優れた効果を奏する。
[Effects of the Invention] As explained above, the present invention has a coating portion having irregularities of a uniform size on the outer surface of the heat exchanger tube body, and a coating portion that stands up on the inner wall of the body toward the front when viewed from the flow direction of the fluid in the tube. The heat installation performance can be improved by placing annular protrusions at regular intervals, which are made up of an upright surface and a slope that gently descends from the upper end of the upright surface along the fluid flow direction. This has the excellent effect of further promoting miniaturization.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による伝熱管の一実施例を示す構成図、
第2図は環状突起の展開斜視図、第3図(a)は本発明
による伝熱管の沸騰熱伝達係数をもとに示される特性図
、第3図(b)は拡大して示される被覆部の概念図、第
4図は本発明による伝熱管の熱伝達係数をもとに示され
る特性図である。 11・・・・・・・・・被覆部 12・・・・・・・・・環状突起 12a・・・・・・起立面 12b・・・・・・傾斜而
FIG. 1 is a configuration diagram showing an embodiment of a heat exchanger tube according to the present invention,
Fig. 2 is a developed perspective view of the annular protrusion, Fig. 3(a) is a characteristic diagram based on the boiling heat transfer coefficient of the heat transfer tube according to the present invention, and Fig. 3(b) is an enlarged view of the coating. FIG. 4 is a characteristic diagram based on the heat transfer coefficient of the heat exchanger tube according to the present invention. 11...... Covering portion 12...... Annular protrusion 12a... Upright surface 12b... Inclined

Claims (3)

【特許請求の範囲】[Claims] (1)伝熱管における本体外表面にほぼ均一な大きさの
凹凸を有する被覆部を形成し、さらに本体内壁に本体長
手方向に互いに一定の間隔を保って配置される複数の環
状突起を設けてなり、前記環状突起は管内流体の流れ方
向よりみて前方に起立している起立面と、この起立面の
上端から流体の流れ方向に沿ってなだらかに下降してい
る傾斜面とから構成されていることを特徴とする伝熱管
(1) A covering portion having irregularities of approximately uniform size is formed on the outer surface of the main body of the heat exchanger tube, and a plurality of annular protrusions are further provided on the inner wall of the main body at regular intervals from each other in the longitudinal direction of the main body. The annular protrusion is composed of an upright surface that stands up in the front when viewed from the flow direction of the fluid in the pipe, and an inclined surface that gently descends from the upper end of this upright surface along the fluid flow direction. A heat exchanger tube characterized by:
(2)被覆部が粒度12〜60メッシュの金属粒で構成
されていることを特徴とする特許請求の範囲第1項記載
の伝熱管。
(2) The heat exchanger tube according to claim 1, wherein the coating portion is composed of metal particles having a particle size of 12 to 60 mesh.
(3)環状突起が内壁面から0.3〜0.5mmの高さ
に起立し、一方互いの間隔が前記環状突起の高さの30
〜60倍の大きさであることを特徴とする特許請求の範
囲第1項記載の伝熱管。
(3) The annular protrusions stand at a height of 0.3 to 0.5 mm from the inner wall surface, and the distance between each other is 30 mm of the height of the annular protrusions.
The heat exchanger tube according to claim 1, wherein the heat exchanger tube is ~60 times larger.
JP13939785A 1985-06-25 1985-06-25 Heat transfer tube Pending JPS62796A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13939785A JPS62796A (en) 1985-06-25 1985-06-25 Heat transfer tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13939785A JPS62796A (en) 1985-06-25 1985-06-25 Heat transfer tube

Publications (1)

Publication Number Publication Date
JPS62796A true JPS62796A (en) 1987-01-06

Family

ID=15244329

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13939785A Pending JPS62796A (en) 1985-06-25 1985-06-25 Heat transfer tube

Country Status (1)

Country Link
JP (1) JPS62796A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06316146A (en) * 1990-03-02 1994-11-15 Xerox Corp Transparent body
JP2003042676A (en) * 2001-07-24 2003-02-13 Japan Steel Works Ltd:The Heating tube with inner grooves for liquid medium and heat exchanger using heating tube

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06316146A (en) * 1990-03-02 1994-11-15 Xerox Corp Transparent body
JP2003042676A (en) * 2001-07-24 2003-02-13 Japan Steel Works Ltd:The Heating tube with inner grooves for liquid medium and heat exchanger using heating tube

Similar Documents

Publication Publication Date Title
CN106885485B (en) Hot end variable cross-section multi-pulsation cold end heat pipe radiator
WO2016015324A1 (en) Streamline wavy fin for finned tube heat exchanger
JPS62796A (en) Heat transfer tube
CN206832107U (en) A kind of spiral helicine pipe structure for cooling
CN206410585U (en) A kind of novel heat exchange pipe
CN101000187A (en) High efficient large fin case tube heat exchanger
CN106091410B (en) A kind of solar heat-preservation water tank
CN207816043U (en) Heat transmission equipment, heat pump water heater system, home-use shower system and bathroom
JPH0320577A (en) Heat-transfer tube for evaporator
CN206535225U (en) A kind of jet tube material distribution device
CN115248960A (en) Refrigerator evaporator continuous fin optimization method and refrigerator evaporator
CN210463753U (en) Cooling system for cooling barrel
CN204923933U (en) Evaporative condenser
CN210274652U (en) Electrode device of plasma equipment and plasma equipment
CN103486648B (en) Automatic temperature-control heat dissipating device
CN207515129U (en) A kind of adaptive preheating ice cold accumulating pond
CN109855451B (en) Steam heat exchanger capable of uniformly distributing flow
CN208458543U (en) New structure water-cooled radiator
CN207570369U (en) A kind of atomization water cooling heat exchanger
CN106595378B (en) High-efficient heat exchanger of tubular
CN218764231U (en) Circulating water cooling device
CN110017701B (en) Heat exchange equipment, heat pump water heater system, household shower system and bathroom
CN207688436U (en) Electric hot water scaler system
JP7038727B2 (en) Wall-mounted air conditioner Indoor unit and wall-mounted air conditioner
CN103884211B (en) Fin tube radiator with changing bump height