JPS6016183A - Regenerative brake controller - Google Patents

Regenerative brake controller

Info

Publication number
JPS6016183A
JPS6016183A JP58121542A JP12154283A JPS6016183A JP S6016183 A JPS6016183 A JP S6016183A JP 58121542 A JP58121542 A JP 58121542A JP 12154283 A JP12154283 A JP 12154283A JP S6016183 A JPS6016183 A JP S6016183A
Authority
JP
Japan
Prior art keywords
switch
chopper
current
brake
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58121542A
Other languages
Japanese (ja)
Other versions
JPH0584121B2 (en
Inventor
Eiji Takatsu
高津 英二
Seiji Akutsu
圷 政治
Ikuo Shimojo
下条 郁雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP58121542A priority Critical patent/JPS6016183A/en
Publication of JPS6016183A publication Critical patent/JPS6016183A/en
Publication of JPH0584121B2 publication Critical patent/JPH0584121B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/10Dynamic electric regenerative braking
    • B60L7/12Dynamic electric regenerative braking for vehicles propelled by dc motors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P3/00Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters
    • H02P3/06Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters for stopping or slowing an individual dynamo-electric motor or dynamo-electric converter
    • H02P3/08Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters for stopping or slowing an individual dynamo-electric motor or dynamo-electric converter for stopping or slowing a dc motor
    • H02P3/14Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters for stopping or slowing an individual dynamo-electric motor or dynamo-electric converter for stopping or slowing a dc motor by regenerative braking
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Stopping Of Electric Motors (AREA)

Abstract

PURPOSE:To reduce a current interruption frequency near the rated current of a switch upon operation of a regenerative brake by starting a control at brake OFF time from the stop of the operation of a chopper. CONSTITUTION:When a brake OFF is instructed and a signal is outputted from a brake command controller 10, this signal is applied to a switch 5. When the switch 5 is opened, the signal is supplied to a switch 6. The amplitude of an armature current of a main motor 1 is controlled by the ratio of the ON period of a chopper 8 to the OFF period. The opening timing of the switch 5 is delayed after the timing of turning the chopper 8 OFF.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、半導体チョッパを用いた直流電動機の回生制
動装置に係り、特に回生制動を解除したときの制御特性
を改善した回生制動制御装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a regenerative braking device for a DC motor using a semiconductor chopper, and particularly to a regenerative braking control device with improved control characteristics when regenerative braking is released.

〔発明の背景〕[Background of the invention]

サイリスタやGTOなどの半導体スイッチング装置の進
歩改良に伴なって、直流電動機の制御にも各種のチ目ツ
バ装置が広く利用されるようになってきた。
With the advancement and improvement of semiconductor switching devices such as thyristors and GTOs, various types of eyelid devices have come to be widely used for controlling DC motors.

このようなチョッパ装置による電気車の回生制動制御装
置の一例を鎖1図に示す。
An example of a regenerative braking control device for an electric vehicle using such a chopper device is shown in Figure 1.

この第1図は主電動機を回生制動状111に制御したと
きの主回路結線と、このときでの制御信号の流れを示し
た図で、この図において、1は主電動機の電機子、2は
主電動機の界磁巻線、3は平滑用のり了りFル、4はダ
イオード%5,6は開閉器、7はパンタグラフ、8はチ
ョッパ、9はチョツバ8に用いられているサイリスタ、
GTOなどのスイッチング素子のゲートを制御するゲー
ト制御部、10はブレーキ操作に応じてブレーキの作動
と解放を指示するブレーキオン・オフ信号を発生するた
めのブレーキ指令制御部である。なお、■はブレーキ指
令制御部10から出力されるブレーキ指令出力信号を、
■は開閉器5から出力され、この開閉器5の動作を確認
する動作確認信号を、そして■は同じく開閉器6の動作
確認信号をそれぞれ衰わし、IAは回生制動状態での電
機子電流を表わす。
This figure 1 shows the main circuit connection and the flow of control signals at this time when the traction motor is controlled to regenerative braking mode 111. In this figure, 1 is the armature of the traction motor, and 2 is the main circuit connection and the flow of control signals at this time. The field winding of the main motor, 3 is a smoothing gate, 4 is a diode, 6 is a switch, 7 is a pantograph, 8 is a chopper, 9 is a thyristor used in the chopper 8,
A gate control section 10 controls the gate of a switching element such as a GTO, and a brake command control section 10 generates a brake on/off signal instructing the activation and release of the brake in response to a brake operation. In addition, ■ is the brake command output signal output from the brake command control unit 10,
■ is output from the switch 5 and outputs an operation confirmation signal to confirm the operation of this switch 5, ■ also attenuates the operation confirmation signal of the switch 6, and IA outputs the armature current in the regenerative braking state. represent.

次に、この装置の動作について説明する。Next, the operation of this device will be explained.

いま、ブレーキハンドルが操作され、ブレーキ動作が指
令されると、これにより信号がブレーキ指令制御部10
に入力され、この指令部10からブレーキ指令出力信号
■が出力される。
Now, when the brake handle is operated and a brake operation is commanded, a signal is sent to the brake command control unit 10.
The command section 10 outputs a brake command output signal {circle around (2)}.

゛ この結果、信号■→開閉器5のオン動作→信号■→
開閉器6のオン動作→信号■→→’−)制御部9のゲー
ト制御信号発生動作開始→チョッパ8の動作開始の順に
制御が逐次進行し、主電動機は回生制動状態になってブ
レーキトルクを発生するようにされる。
゛ As a result, signal ■ → ON operation of switch 5 → signal ■ →
The control progresses sequentially in the following order: ON operation of the switch 6 → signal →→'−) Start of gate control signal generation operation of the control unit 9 → start of operation of the chopper 8, and the main motor enters the regenerative braking state and applies brake torque. caused to occur.

回生制動状態での動作は以下のようになる。The operation in the regenerative braking state is as follows.

ブレーキ動作が指令された状態では、主電動機は負荷側
から強制的に回転させられており、磁気回路に存在する
残留磁気により電機子1は起電力□ を発生している。
When a brake operation is commanded, the main motor is forcibly rotated from the load side, and the armature 1 generates an electromotive force □ due to residual magnetism present in the magnetic circuit.

そこで、いま、チョッパ8がオン期間に入ったとすれば
、電機子1→界磁巻4112→リアクトル3→チョッパ
8→開閉器5→i!機子1からなる短絡回路が形成され
、主電動機の自励発電特性により電機子電流IAが流れ
る。
Therefore, if chopper 8 is now in the ON period, armature 1 → field winding 4112 → reactor 3 → chopper 8 → switch 5 → i! A short circuit consisting of the armature 1 is formed, and an armature current IA flows due to the self-excited power generation characteristics of the main motor.

次に、この電機子電流工人が所定値に達したときを見計
らってチョッパ8をオフに制御する。そうすると、上記
したチョッパ8のオン期間に流れていた電機子電流IA
によってリアクトル3に逆起電圧が発生し、このリアク
トル3の逆起電圧と電機子1の発電電圧との和が電源側
電圧(架M電圧)より高くなるので、アース→開閉器5
→電機子l→界磁巻線2→リアクトル3→ダイオード4
→開閉器6→パンタグラフ7→架線の経路で電機子電流
IAが流れ、電源側に回生電力が送られて主電動機に回
生制動トルクが得られるようになる。
Next, the chopper 8 is controlled to be turned off when the armature current has reached a predetermined value. Then, the armature current IA flowing during the ON period of the chopper 8 mentioned above
As a result, a back electromotive voltage is generated in the reactor 3, and the sum of the back electromotive voltage of the reactor 3 and the generated voltage of the armature 1 becomes higher than the power supply side voltage (overhead M voltage), so the earth → switch 5
→ Armature 1 → Field winding 2 → Reactor 3 → Diode 4
The armature current IA flows through the path of → switch 6 → pantograph 7 → overhead wire, and regenerative power is sent to the power supply side, allowing the main motor to obtain regenerative braking torque.

一方、このチョッパ8のオフ期間における回生状態に入
ると、リアクトル3の逆起電圧は暫時減少し、やがてリ
アクトル3の逆起電圧と電機子1の発電電圧との和が架
線電圧以下になると回生電流は流れなくなり、回生制動
トルクもゼロになる。
On the other hand, when the chopper 8 enters the regeneration state during the off period, the back electromotive force of the reactor 3 decreases for a while, and when the sum of the back electromotive force of the reactor 3 and the generated voltage of the armature 1 becomes less than the overhead line voltage, regeneration begins. Current stops flowing and regenerative braking torque also becomes zero.

そこで、再びチョッパ8をオンしてやれば電機子電流I
Aが増加し、その後、チョッパ8をオフすることにより
再び回生制動を行なうことがでるようになる。
Therefore, if the chopper 8 is turned on again, the armature current I
A increases, and then by turning off the chopper 8, regenerative braking can be performed again.

従って、チョッパ8を所定の周期でオン・オフしてやれ
ば、はぼ連続した回生制動動作を行なわせることができ
、このときの回生制動トルクの大きさは、チョッパ8の
オン期間とオフ期間との割合い、つまり流通率を制御す
ることKより任意に制御することができる。
Therefore, by turning the chopper 8 on and off at a predetermined period, it is possible to perform a nearly continuous regenerative braking operation, and the magnitude of the regenerative braking torque at this time is the difference between the on period and the off period of the chopper 8. It is possible to arbitrarily control the ratio, that is, the distribution rate.

なお、このときのチョッパ8のオン・オフ周期は、スイ
ッチング素子としてGTOを用いたりすることにより相
当に短か< (li11波数でいえば数KHz程度)す
ることができ、この場合にはりアクシル3を別個の機器
とし【備えなくても、電機子1を含む短絡回路内圧存在
するインダクタンス分だけで充分に回生電圧が得られる
ようになり、リアクトル3を不要にすることができる。
In addition, the on/off period of the chopper 8 at this time can be made considerably short (about several KHz in terms of li11 wave number) by using a GTO as a switching element, and in this case, the on/off period of the chopper 8 Even if it is not provided as a separate device, a sufficient regenerative voltage can be obtained only by the inductance existing in the short circuit internal pressure including the armature 1, and the reactor 3 can be made unnecessary.

次に、ブレーキハンドルが戻され、ブレーキ解放が指令
されたときには、ブレーキ指令制御部10からブレーキ
をオフにする信号■が出力され、信号■→開閉器5のオ
フ動作→信号■→開閉器6のオフ動作→信号■→ゲート
制御部9のゲー)制御信号の発生動作停止→チョッパ8
の動作停止1の順に制御動作が移り、回生制動動作が停
止される。
Next, when the brake handle is returned and brake release is commanded, a signal ■ to turn off the brake is output from the brake command control unit 10, and the signal ■ → OFF operation of the switch 5 → the signal ■ → the switch 6 OFF operation → signal ■ → gate control unit 9 gate) Control signal generation operation stop → chopper 8
The control operation moves in the order of operation stop 1, and the regenerative braking operation is stopped.

このときの動作をタイミングチャートで示すと第2図に
示すようになり、時刻t・でブレーキオフが指令されて
信号のが出力され1その後、開閉器5の動作遅れ時間τ
1が経過した時点t1で開閉器5がオフし、同時に信号
■が発生している。そして、同じく開閉器6の動作遅れ
時間τ!が経過した時点t!で開閉器6がオフし、信号
■が発生してチョッパ8が動作停止する。
The operation at this time is shown in a timing chart as shown in FIG. 2. At time t, brake off is commanded and the signal 1 is output. After that, the operation delay time τ of the switch 5
At time t1, when 1 has elapsed, the switch 5 is turned off, and at the same time, the signal ■ is generated. Similarly, the operation delay time τ of the switch 6! The time t! has passed! The switch 6 is turned off, the signal ■ is generated, and the chopper 8 stops operating.

従って、第1図に示した従来の装置では、第2図から明
らかなように、ブレーキオフ時にはいつも開閉器5によ
って電機子電流のしゃ断が行なわれていることになり、
開閉器5の定格電流値に近い電流でのしゃ断ひん度が高
くなって保守、点検作業が増え、かつ、その耐用期間を
永くすることができないという欠点があった。
Therefore, in the conventional device shown in FIG. 1, as is clear from FIG. 2, the armature current is always cut off by the switch 5 when the brake is off.
This has disadvantages in that the frequency of interruption at a current close to the rated current value of the switch 5 increases, increasing maintenance and inspection work, and making it impossible to prolong its service life.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、回生制動動作に伴なう開閉器の電格電
流近傍での電流しゃ断ひん度を少くし、上記した従来技
術の欠点を除くことかできるようKした回生制動制御装
置を提供するにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a regenerative braking control device that reduces the frequency of current interruption near the rated current of a switch due to regenerative braking operation, and eliminates the drawbacks of the prior art described above. There is something to do.

〔発明の概要〕[Summary of the invention]

この目的を達成するため、本発明は、ブレーキオフ時で
の制御がチョッパ装置の動作停止から開始するようにし
た点を特徴とする。
In order to achieve this object, the present invention is characterized in that control when the brake is off starts from the stoppage of the operation of the chopper device.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明による回生制動制御装置の実施例を図面に
ついて説明する。
Embodiments of the regenerative braking control device according to the present invention will be described below with reference to the drawings.

第3図は本発明の一実施例で、鉛1図の従来例と主回路
の構成は回しであるが、チョッパ8のゲート制御部9に
対する制御信号の供給方法が異なり、ゲート制御部9の
動作開始を行なわせるON入力は信号■によって与えら
れるが、ゲート制御部9の動作を停止させる(つまりチ
ョッパ8をオフしたままに保つ)ためのOFF入力は信
号■によって与えられるようになっている。
FIG. 3 shows an embodiment of the present invention. Although the main circuit configuration is the same as that of the conventional example shown in FIG. The ON input for starting the operation is given by the signal ■, but the OFF input for stopping the operation of the gate control section 9 (that is, keeping the chopper 8 off) is given by the signal ■. .

次に、この実施例の動作を第4図のタイミングチャート
で説明する。なお、回生制動動作は第1図の従来例と同
じように得られることはいうまでもない。
Next, the operation of this embodiment will be explained with reference to the timing chart of FIG. It goes without saying that the regenerative braking operation can be obtained in the same manner as in the conventional example shown in FIG.

いま、時刻t。でブレーキオフが指令され、ブレーキ指
令制御部10から信号■が出力されたとする。そうする
と、この信号のは第1図の従来例と同様に開閉器5に与
えられ、開閉器5がオフすると信号■が開閉器6に供給
される。しかしながら、このとぎには、開閉器6がオフ
するので、ゲート制御部9のON入力に対する信号■は
発生されない。
Now, time t. It is assumed that the brake is commanded to turn off and the signal ■ is output from the brake command control section 10. Then, this signal is given to the switch 5 as in the conventional example shown in FIG. 1, and when the switch 5 is turned off, the signal (2) is supplied to the switch 6. However, at this time, the switch 6 is turned off, so the signal (2) in response to the ON input of the gate control section 9 is not generated.

一方、この実施例では、時刻toで信号■が出力される
と、この信号■はゲート制御部9のOFF入力にも供給
され、従って、ゲート制御部9は時刻toで動作を停止
し、チョッパ8は時刻t。以降、ただちにオフ状態に移
行し、電機子1を含む短絡回路はオフされてしまう。
On the other hand, in this embodiment, when the signal ■ is output at time to, this signal ■ is also supplied to the OFF input of the gate control section 9, so that the gate control section 9 stops operating at time to, and the chopper 8 is time t. Thereafter, the armature immediately shifts to the off state, and the short circuit including the armature 1 is turned off.

このため、電機子電流IAは時刻to以後、所定の時定
数で減少し、リアクトル8の逆起電圧と電機子1の発電
電圧との和が架線電圧より僅かに高い状態になったとき
、電機子電流IAはゼロになる。
Therefore, the armature current IA decreases at a predetermined time constant after time to, and when the sum of the back electromotive force of the reactor 8 and the generated voltage of the armature 1 becomes slightly higher than the overhead line voltage, the The child current IA becomes zero.

そこで、いま、チョッパ8がオフしてから電機子電流I
Aがゼロになるまでの時間をτ0とし、この時間τ。が
開閉器5の動作遅れ時間τ1より長くならないようにで
きれば、時点t1で開閉器5がオフしたときには、電機
子電流IAはゼロになっているため、開閉器5は電流し
ゃ断を行なうことなくオフ動作を終了する。
Therefore, now, after the chopper 8 is turned off, the armature current I
Let τ0 be the time until A becomes zero, and this time τ. If it is possible to prevent the switch 5 from becoming longer than the operation delay time τ1 of the switch 5, when the switch 5 is turned off at time t1, the armature current IA is zero, so the switch 5 is turned off without interrupting the current. Finish the operation.

しかして、このときの電機子電流IAの減衰時間τ。は
、主電動機の特性、回生制動時での電機子1の発電電圧
、主回路のインダクタンス分と抵抗分の値などで決まり
、実用上からは上記した条件、即ち、τoくτ1を満す
ことは極め【容易であり、従って、この実施例によれば
、回生制動時での開閉器5による電流しゃ断のびん度を
ほとんどゼpにすることができる。
Therefore, the decay time τ of the armature current IA at this time. is determined by the characteristics of the main motor, the voltage generated by armature 1 during regenerative braking, the inductance and resistance values of the main circuit, etc., and from a practical standpoint, the above conditions, that is, τo and τ1 must be satisfied. Therefore, according to this embodiment, the degree of current interruption by the switch 5 during regenerative braking can be reduced to almost zero.

第5図は第4図をさらに詳細に示した図で、時刻t。以
前は回生制動状態を示し、電機子電流IAはチョッパ8
のオン期間での上昇とオフ期間での下降を周期的に繰り
返しており、この電機子電流IAの大きさはチョッパ8
のオン期間とオフ期間の比によって制御されている。ま
た、この状態でダイオード4な通ってバンクグラ77か
ら架線に流れ込む回生電流はIBで表わされ、この電流
よりはチョッパ8がオフしている期間だけ流れている0 また、ブレーキオフ指令が発せられた時刻t0でチョッ
パ8は動作を停止(オフしたままになる)し、この時点
t0以降、電機子電流IAとIBは同じ値となり、上記
した主電動機の特性などの条件で決まる減衰特性となり
、時間τ。後にゼロになる。
FIG. 5 is a diagram showing FIG. 4 in more detail, at time t. Previously, the regenerative braking state was indicated, and the armature current IA was chopper 8.
The rise in the on period and the fall in the off period are periodically repeated, and the magnitude of this armature current IA is determined by the chopper 8.
is controlled by the ratio of on-period to off-period. In addition, in this state, the regenerative current that flows through the diode 4 and from the bank grapher 77 to the overhead wire is represented by IB, and this current flows only while the chopper 8 is off. At time t0, the chopper 8 stops operating (remains off), and after this time t0, the armature currents IA and IB have the same value, and have a damping characteristic determined by conditions such as the characteristics of the main motor described above. Time τ. Later it becomes zero.

次に、第6図は本発明の他の一実施例で、第3゛図の実
施例と異なる点は、ブレーキオフ指令ーキ指令制御部1
0から出力される信号■を開閉器5には供給せず、直接
開閉器6に供給するようにした点である。なお、ブレー
キオン時での信号については省略しである。
Next, FIG. 6 shows another embodiment of the present invention, which differs from the embodiment shown in FIG.
The point is that the signal (2) outputted from 0 is not supplied to the switch 5, but is directly supplied to the switch 6. Note that the signal when the brake is on is omitted.

従って、この実施例のブレーキオフ時での動作は第7@
に示すようになり、ブレーキオフ時には開閉器5はオフ
動作しないから、この開閉器5のオフ動作は回生制動時
以外の場合だけとなり、オフ動作ひん度を充分に少くす
ることができる。
Therefore, the operation when the brake is off in this embodiment is as follows:
As shown in FIG. 2, since the switch 5 does not turn off when the brake is off, the switch 5 only turns off when the brake is off, and the frequency of the switch 5 turns off can be sufficiently reduced.

また、第5図から明らかなように、この方式の回生制動
装置では、チョッパ8が動作した後の回生電流IBは電
機子電流IAと等しくなる。
Furthermore, as is clear from FIG. 5, in this type of regenerative braking device, the regenerative current IB after the chopper 8 operates is equal to the armature current IA.

従って、この実施例においても、時刻to以後でのwL
機子電流IAの減衰時間t。を開閉器6のオフ動作遅れ
時間τ、より小さくなるようにしておけば、開閉器6が
ブレーキオフ時に電流しゃ断をするのを防止することが
できる。なお、この実施例では、開閉器6が電流しゃ断
を行なうと、つまり回生電流IBがゼロにならないうち
にオフ動作すると、リアクトル3など回路に含まれてい
るインダクタンス分のため、d工/dtによる高電圧が
発生し、チョッパ8に過電圧が印加されてしまう。
Therefore, in this embodiment as well, wL after time to
Decay time t of armature current IA. By making the off-operation delay time τ of the switch 6 smaller, it is possible to prevent the switch 6 from cutting off the current when the brake is turned off. In addition, in this embodiment, when the switch 6 interrupts the current, that is, when it turns off before the regenerative current IB reaches zero, due to the inductance included in the circuit such as the reactor 3, the difference due to d/dt is A high voltage is generated and an overvoltage is applied to the chopper 8.

従って、この実施例では、上記したτoくrlの条件が
充分に保たれるようにする必要がある。
Therefore, in this embodiment, it is necessary to ensure that the above-mentioned condition of τ o - rl is sufficiently maintained.

次に、第8図は主電動機として直流分巻電動機を用い、
界磁チョッパ制御方式を適用した場合の実施例で、図に
おいてSllは界磁制御用のチョッパ、12は同じくそ
のゲート制御部、13は循環電流用のダイオードである
。なお、IFは界磁電流を表わし、その他は第6図の実
施例と同じである。
Next, Fig. 8 uses a DC shunt motor as the main motor,
This is an embodiment in which a field chopper control method is applied, and in the figure, Sll is a chopper for field control, 12 is a gate control section thereof, and 13 is a diode for circulating current. Note that IF represents the field current, and the rest is the same as the embodiment shown in FIG.

この第8図の実施例の動作は次のとおりである。The operation of the embodiment shown in FIG. 8 is as follows.

ブレーキオン時には、ブレ−キ指令制御部1゜→信号■
→開閉器6→信号■→ゲート制御部9.12→チヨツパ
8.11の順に制御が進み、回生制動動作に入る。そし
て、この状態では、チョッパ8のオン期間には、電機子
1→リアクトル3→チョッパ8→開閉器5→電機子1、
の回路で電機子電流IJLが流れ、この期間中電流値を
増加してゆき、チョッパ8のオフ期間には1ア一ス→開
閉器5→電機子1→リアクトル3→ダイオード4→パン
タグラフ6→架線、の回路で回生電流となり、この期間
中は電流値を減少してゆく。
When the brake is on, the brake command control unit 1° → signal ■
Control proceeds in the order of → switch 6 → signal ■ → gate control unit 9.12 → chopper 8.11, and regenerative braking operation begins. In this state, during the ON period of chopper 8, armature 1 → reactor 3 → chopper 8 → switch 5 → armature 1,
Armature current IJL flows in the circuit, and the current value increases during this period, and during the off period of chopper 8, 1 earth → switch 5 → armature 1 → reactor 3 → diode 4 → pantograph 6 → A regenerative current is generated in the overhead line circuit, and the current value decreases during this period.

また、これと並行してチョッパ11も所定の周期でオン
−オフ動作し、界磁電流IFの制御を行なう。このとき
の動作は、チョッパ11がオンしている期間では、架線
→パンタグラフ7→開閉器6→界磁巻線2→チョッパ1
1→アース、の回路によって界磁電流IFの値を増加し
てゆき、チョッパ11がオフしている期間では、界磁巻
線2→ダイオ一ド13→界磁巻線2、の循環回路によっ
て減衰する。
Further, in parallel with this, the chopper 11 is also turned on and off at a predetermined cycle to control the field current IF. During the period when the chopper 11 is on, the operation at this time is as follows: overhead line → pantograph 7 → switch 6 → field winding 2 → chopper 1
The value of the field current IF is increased by the circuit of 1→earth, and during the period when the chopper 11 is off, the value of the field current IF is increased by the circuit of field winding 2→diode 13→field winding 2. Attenuate.

従って1この実施例によれば、チョッパ8と11の両方
の通流率を制御することにより主電動機による回生制動
トルクの大きさを制御することができる。
Therefore, according to this embodiment, by controlling the flow rates of both choppers 8 and 11, it is possible to control the magnitude of regenerative braking torque by the main motor.

次に1ブレ一キオフ時には、ブレーキ指令制御部10か
ら発生したブレーキオフ指令信号■がゲート制御部9.
12と開閉器6に供給され、第6図の実施例の場合と同
様、第7図に示すように、ブレーキオフ指令が発生した
時刻t。以後、電機子電流IAと界磁電流IFが共に減
衰してゆき、開閉器6は電流しゃ断を行なうことなくオ
フ動作し、過電圧を発生することもない。
Next, when the first brake is off, the brake off command signal (■) generated from the brake command control section 10 is sent to the gate control section 9.
12 and the switch 6, and as in the case of the embodiment of FIG. 6, as shown in FIG. 7, the time t when the brake-off command is generated. Thereafter, both the armature current IA and the field current IF are attenuated, and the switch 6 is turned off without cutting off the current, and no overvoltage is generated.

従って、この実施例によっても、開閉器5のオフ動作ひ
ん度を少くすることができる上、開閉器6の電流しゃ断
動作ひん度を少くすることができる。
Therefore, according to this embodiment as well, it is possible to reduce the frequency of the OFF operation of the switch 5, and it is also possible to reduce the frequency of the current cut-off operation of the switch 6.

なお、この第8wJの実施例の場合、界磁箪流工rの大
きざは電機子電流IAの大きさに比してかなり小さくな
っているのが通例であり−この為−開閉器6が界磁電流
IFだけをしゃ断した場合には過電圧か発生する虞れは
あまりなく、開閉器6の寿命に影響を与えることもほと
んどない。従って−この実施例のような界磁チョッパ制
御方式の場合、チョッパ11をブレーキオフ時に制御し
ないように構成してもよく、これKよっても本発明の目
的を充分に達成することができ、かつ梠戊を簡単にする
ことができる。
In the case of this embodiment of the 8th wJ, the size difference of the field current r is usually considerably smaller than the size of the armature current IA, and for this reason, the switch 6 is When only the field current IF is cut off, there is little risk of overvoltage occurring, and the life of the switch 6 is hardly affected. Therefore, in the case of the field chopper control system as in this embodiment, the chopper 11 may be configured not to be controlled when the brake is off, and the object of the present invention can also be sufficiently achieved by this K. It is possible to simplify the traverse.

ここで、以上の実施例における電機子電流IAの減衰時
間τ0の一例を示すと、架線電圧と電機子の発電電圧と
の差の電圧を50〔■〕、短絡回路中のインダクタンス
分を2(mH)、!4m子亀流IAの初期値を500 
(A”lとした場合、この電機子電流IAのdI/dt
は約25000 [: A/S 〕となり、τ。物zo
[:ms〕となる。また、第5図で説明したように、時
刻to以後はIA−IBである。
Here, to show an example of the decay time τ0 of the armature current IA in the above embodiment, the voltage difference between the overhead line voltage and the armature generated voltage is 50 [■], and the inductance in the short circuit is 2 ( mH),! The initial value of 4m child turtle style IA is 500
(If A”l, dI/dt of this armature current IA
is approximately 25000 [: A/S], and τ. Things
[:ms]. Moreover, as explained in FIG. 5, after time to, the state is IA-IB.

従って、上記実施例においては、開閉器5、又は開閉器
6のオフ動作時間が20(ms)以上のものを用いれば
充分に本発明の作用効果を発揮させることができる〇 〔発明の効果〕 以上説明したように、本発明によれば、回生制動制御に
際しての開閉器の開路動作ひん度を少くすることができ
るから、従来技術の欠点を除き、回生制動動作による開
閉器の耐用期間の短縮や保守の増加かなく、かつ開閉器
制御のための回路が簡単になり、継電器などの補助拙器
が少くて済み、ローコスト化と信頼性の向上に役立つ回
生制動制御装置を容易に提供することができる。
Therefore, in the above embodiment, if the off-operation time of the switch 5 or the switch 6 is 20 (ms) or more, the effects of the present invention can be sufficiently exhibited.〇 [Effects of the Invention] As explained above, according to the present invention, it is possible to reduce the frequency of the opening operation of the switch during regenerative braking control, thereby eliminating the drawbacks of the conventional technology and shortening the service life of the switch due to the regenerative braking operation. To easily provide a regenerative braking control device that does not require an increase in maintenance and maintenance, has a simple circuit for controlling a switch, requires fewer auxiliary devices such as relays, and is useful for lowering costs and improving reliability. I can do it.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は回生制動制御装置の従来例を示す主回路結線図
、鎖2図はその動作説明用のタイミングチャー)%I3
図は本発明による回生制動制御1置の一実施例を示す主
回路結線図、箱4図及び第5図はその動作説明用のタイ
ミングチャート−第6図は本発明の他の一実施例を示す
主回路結線図、第7図はその動作説明用のタイミングチ
ャージ、第8図は本発明のさらに別の一実施例を示す主
回路結線図である。 1・・・・・・主電動機の電機子、2・・・・・・主電
動機の界磁巻線、3・・・・・・リアクトル、4・・・
・・・ダイオード、5.6・・・・・・開閉器、7・・
・・・・パンタグラフ、8,11・・・・−・チョッパ
%9−12・・・・・・ゲート制御部、10t1目 2
3図 才2府 才4日 才5回 ム オ6目 オフ目 ム どハ −一一一一一] 才8図
Figure 1 is a main circuit connection diagram showing a conventional example of a regenerative braking control device, and Figure 2 is a timing chart for explaining its operation.
The figure is a main circuit wiring diagram showing one embodiment of regenerative braking control according to the present invention, Box 4 and Figure 5 are timing charts for explaining its operation, and Figure 6 is a diagram showing another embodiment of the present invention. FIG. 7 is a timing charge diagram for explaining its operation, and FIG. 8 is a main circuit diagram showing still another embodiment of the present invention. 1... Armature of the traction motor, 2... Field winding of the traction motor, 3... Reactor, 4...
...Diode, 5.6... Switch, 7...
...Pantograph, 8,11...-Chopper%9-12...Gate control section, 10t1st 2
3rd figure Sai 2fu 4th year old 5th time Muo 6th off eye Mudoha -1111] Year 8th figure

Claims (1)

【特許請求の範囲】 1、 発電状態にある直流電動機の短絡回路をオン・オ
フするスイッチング装置を備え、この短絡回路に含まれ
たインダクタンス分による逆起電力と発電電圧との和に
より回生電圧を発生させ、ダイオードを介して電源側に
回生電流を供給するようにした回生制動装置において、
回生電流通路にある開閉器の回生制動停止時における開
路動作タイミングが上記スイッチング回路のスイッチン
グ動作停止タイミングより後になるように構成したこと
を特徴とする回生制動制御装置。 λ 特許請求の範囲mx項において、上記直流電動機の
界磁巻線が上記短絡回路中に含まれていることを特徴と
する回生制動制御装置。 1 特許請求の範囲第1項において、上記直流電動機が
界磁チョッパ制御装置を備え、上記スイッチング回路の
スイッチング動作停止タイミングで界磁電流を零にする
ように構成されていることな特徴とする回生制動制御装
置。
[Claims] 1. A switching device is provided to turn on and off a short circuit of a DC motor in a generating state, and a regenerative voltage is generated by the sum of a back electromotive force due to an inductance included in this short circuit and a generated voltage. In a regenerative braking device that generates regenerative current and supplies regenerative current to the power supply side via a diode,
1. A regenerative braking control device, characterized in that the timing of an opening operation of a switch in a regenerative current path when regenerative braking is stopped is later than the timing of stopping a switching operation of the switching circuit. λ A regenerative braking control device according to claim mx, characterized in that a field winding of the DC motor is included in the short circuit. 1. The regeneration according to claim 1, wherein the DC motor is equipped with a field chopper control device, and is configured to reduce the field current to zero at the timing of stopping the switching operation of the switching circuit. Braking control device.
JP58121542A 1983-07-06 1983-07-06 Regenerative brake controller Granted JPS6016183A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58121542A JPS6016183A (en) 1983-07-06 1983-07-06 Regenerative brake controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58121542A JPS6016183A (en) 1983-07-06 1983-07-06 Regenerative brake controller

Publications (2)

Publication Number Publication Date
JPS6016183A true JPS6016183A (en) 1985-01-26
JPH0584121B2 JPH0584121B2 (en) 1993-12-01

Family

ID=14813821

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58121542A Granted JPS6016183A (en) 1983-07-06 1983-07-06 Regenerative brake controller

Country Status (1)

Country Link
JP (1) JPS6016183A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5142365A (en) * 1974-10-08 1976-04-09 Sumitomo Chemical Co

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5142365A (en) * 1974-10-08 1976-04-09 Sumitomo Chemical Co

Also Published As

Publication number Publication date
JPH0584121B2 (en) 1993-12-01

Similar Documents

Publication Publication Date Title
US5436540A (en) Protection circuit for a gate turn-off device in an electrical braking system for an electric traction motor vehicle
US4256983A (en) Voltage-to-frequency converter having a constant frequency mode of operation
JPS63154001A (en) Application of scr in expansion blaking
JPH0917294A (en) Two-way dc circuit breaker
US4380724A (en) Shunt field control apparatus and method
JPS6016183A (en) Regenerative brake controller
JPS59178902A (en) Controller for electric rolling stock
US3818296A (en) Regenerative braking control device for an electric car
US4136305A (en) Power converter control apparatus
JP2692909B2 (en) Inverter device for electric car
JP3407159B2 (en) Regenerative inverter device for DC electric railway
Bailey et al. A Modern Chopper Propulsion System or Rapid Transit Application with High Regeneration Capability
GB1587462A (en) Transit vehicle motor effort control apparatus and method
JPS61210802A (en) Regenerative brake control system of ac electric railcar
JP2579909B2 (en) Electric car control device
JPH0514482B2 (en)
JPS62290302A (en) Induction motor-type electric rolling stock controller
JPH0311195B2 (en)
JPH0611164B2 (en) Excitation control device
SU1198719A1 (en) Device for emergency braking of d.c.electric drive
SU849397A2 (en) Device for control of series dc motor
JP2608467B2 (en) Electric vehicle drive control device
RU2076449C1 (en) Direct current electric drive
JPS61224804A (en) Controlling method for electric railcar
JPS6077608A (en) Controller of electric railcar