JPS6016086A - Color demodulating circuit for color television - Google Patents
Color demodulating circuit for color televisionInfo
- Publication number
- JPS6016086A JPS6016086A JP12402183A JP12402183A JPS6016086A JP S6016086 A JPS6016086 A JP S6016086A JP 12402183 A JP12402183 A JP 12402183A JP 12402183 A JP12402183 A JP 12402183A JP S6016086 A JPS6016086 A JP S6016086A
- Authority
- JP
- Japan
- Prior art keywords
- color
- circuit
- demodulation
- data
- color difference
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N9/00—Details of colour television systems
- H04N9/64—Circuits for processing colour signals
- H04N9/66—Circuits for processing colour signals for synchronous demodulators
Landscapes
- Engineering & Computer Science (AREA)
- Multimedia (AREA)
- Signal Processing (AREA)
- Processing Of Color Television Signals (AREA)
Abstract
Description
【発明の詳細な説明】
本発明はカラーテレビジ目ン信号の色復調回路に関する
。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a color demodulation circuit for color television signals.
従来カラーテレビジョン(以下OTVと略称す)信号の
色復調回路は、アナログ的処理により、搬送色信号と色
副搬送波から色差信号を復調出力として得ていた。最近
アナログ信号のデジタル手法による処理がすすみOTV
信号の色復調回路のデジタル化が可能になった。本発明
の目的はデジタル化色復調回路の最適回路を提案するこ
とにある。Conventionally, a color demodulation circuit for a color television (hereinafter abbreviated as OTV) signal obtains a color difference signal as a demodulated output from a carrier color signal and a color subcarrier through analog processing. Recently, the processing of analog signals using digital methods has progressed.
It became possible to digitize the signal color demodulation circuit. An object of the present invention is to propose an optimal circuit for a digitized color demodulation circuit.
第1図に従来のアナログ的処理による色復調回路のブロ
ックダイヤグラムを示し、以下にその動作について簡単
に述べる。同図で1は色副搬送波発生回路であり、2は
移相回路■であり、3は移相回路■であり、4は色復調
回路■、5は色復調回路■、6はマトリクス回路であり
、端子αはバースト入力端子、bは搬送色信号入力端子
、CはR−Y色差信号出力端子、dはB −Y色差信号
出力端子、eはG −Y色差信号出力端子をあられす入
力端子αにバースト信号が印加されると、1色副搬送波
発生回路において、バーストに同位相な色副搬送波(N
Tso方式では約&58MHz ’)が成牛される。そ
の信号は移相回路■および■の入力となり、移相回路1
では色副搬送波を基準にして90°進相の、移相回路2
では180°進相の基準信号をつくる。それらの信号は
各々R−Yの復調軸とB −Yの復調軸であり、それぞ
れ色復調回路4および5の入力信号となる。一方色復調
回路4および5には端子すより、搬送色信号が入力され
、各々の復調軸に従って色差信号R−YおよびB −Y
が出力される。その過程を式で示す。いま搬送色信号を
以下の式(1)とし、R−Yの復調軸を(2)式とし、
B−Yの復調軸を(3)式とする。FIG. 1 shows a block diagram of a conventional color demodulation circuit using analog processing, and its operation will be briefly described below. In the figure, 1 is a color subcarrier generation circuit, 2 is a phase shift circuit ■, 3 is a phase shift circuit ■, 4 is a color demodulation circuit ■, 5 is a color demodulation circuit ■, and 6 is a matrix circuit. Terminal α is the burst input terminal, b is the carrier color signal input terminal, C is the R-Y color difference signal output terminal, d is the B-Y color difference signal output terminal, and e is the G-Y color difference signal output terminal. When a burst signal is applied to terminal α, the one-color subcarrier generation circuit generates a color subcarrier (N
In the Tso method, approximately &58MHz') is used for adult cows. The signal becomes the input of phase shift circuits ■ and ■, and phase shift circuit 1
Now, the phase shift circuit 2 is phase-advanced by 90 degrees with respect to the color subcarrier.
Now, create a reference signal with a 180° phase advance. These signals are the demodulation axis of R-Y and the demodulation axis of B-Y, respectively, and become input signals to color demodulation circuits 4 and 5, respectively. On the other hand, the color demodulation circuits 4 and 5 are input with carrier color signals through terminals, and color difference signals R-Y and B-Y are input according to the respective demodulation axes.
is output. The process is shown in a formula. Now, let the carrier color signal be the following equation (1), and let the R-Y demodulation axis be the equation (2),
The demodulation axis of B-Y is expressed as equation (3).
ER−BY XcasWt十互”” X sin Wt
−= (1)KI K2
魚wt ・・・・・・(2)
sin w t −・・・(8)
(1)式でに1は赤信号振幅圧縮比で通常1.14をと
る。K2は青信号振幅圧縮比で通常2.03をとる。ER-BY XcasWt””X sin Wt
-= (1) KI K2 fish wt (2) sin w t - (8) In equation (1), 1 is the red signal amplitude compression ratio and usually takes 1.14. K2 is a green signal amplitude compression ratio and usually takes a value of 2.03.
Wは色副搬送波の角周波数である。W is the angular frequency of the color subcarrier.
色差信号R−Yは以下の式により復調される。The color difference signal RY is demodulated using the following equation.
= ” (”’ ” + ”” cosZwt+” ”
5in2u+ t )2 KI KI K2
ここで低域通過フィルタにより高域成分を減衰させると
1 1itR−BY
K1
となりこれは色差信号R−Yの1/2振幅と等価である
。= ” (”' ” + ”” cosZwt+” ”
5in2u+t)2 KI KI K2 Here, when the high-frequency component is attenuated by a low-pass filter, it becomes 1 1itR-BY K1, which is equivalent to 1/2 the amplitude of the color difference signal RY.
色差信号B −Yを得るには、(4)式のC08wt
の代わりに5inu+t を適用し同様にしてDB−B
Y
2 K2
を得る。これは色差信号B −Yの1/2振幅と等価で
ある。To obtain the color difference signal B - Y, C08wt in equation (4)
DB-B in the same way by applying 5inu+t instead of
Obtain Y 2 K2. This is equivalent to 1/2 the amplitude of the color difference signal B-Y.
このようにして得られたR −Y及びB −Y色差信号
から(5)式に従ってG −Y色差信号を成虫ずるG−
Y=−(0,51(It−Y)+(Li2(B−y))
・・・・・・(6)
以上が2軸方式の色復調回路であるが、要するに各々の
軸において乗算をおこない復調している。本発明は単一
復調回路で2軸の復調をおこなうことに特徴がある。From the R -Y and B -Y color difference signals obtained in this manner, the G -
Y=-(0,51(It-Y)+(Li2(B-y))
(6) The above is a two-axis type color demodulation circuit, and in short, demodulation is performed by performing multiplication on each axis. The present invention is characterized in that two-axis demodulation is performed using a single demodulation circuit.
第2図は本発明になる色復調回路である。FIG. 2 shows a color demodulation circuit according to the present invention.
同図で1′は色副搬送波発生回路であり、2′は乗数テ
ーブルであり、4′は乗算回路であり、6′はマトリク
ス回路であり、11はデータレジスタ■であり、12は
データレジスタ■であり、13はD / A変換回路■
であり、14はD / h変換回路■であり、15はA
/ D変換回路であり、−16はクロック発生回路で
ある。端子α′はバースト入力端子、b′は搬送色信号
入力端子、C′はR−Y色差信号出力端子 dlはB
−Y色差信号出力端子 、/はG −Y色差信号出力端
子をあられす。尚従来回路と同じ機能をあられす回路及
び端子は同一符号としダッシュを添付して識別している
。In the figure, 1' is a color subcarrier generation circuit, 2' is a multiplier table, 4' is a multiplication circuit, 6' is a matrix circuit, 11 is a data register, and 12 is a data register. ■, and 13 is a D/A conversion circuit■
, 14 is the D/h conversion circuit ■, and 15 is the A
/ is a D conversion circuit, and -16 is a clock generation circuit. Terminal α' is the burst input terminal, b' is the carrier color signal input terminal, C' is the R-Y color difference signal output terminal, and dl is the B
-Y color difference signal output terminal, / represents the G -Y color difference signal output terminal. Note that circuits and terminals that have the same functions as conventional circuits are identified by the same symbols and a dash.
入力端子α′にバースト信号が印加されると色副搬送波
発生回路1′において、バーストに同位相な色H振送波
が成虫される。その色副搬送波は、16クロツク発生回
路に導かれる。クロック発生回路16では、色副搬送波
に同期して、その−周期をある時間に分割し、その時間
に対応したR−YおよびB −Y復調軸の振幅データを
2′乗数テーブルが最初R−Yデータを、次にB −Y
データを出力するよう制御する。従来方式では、色副搬
送波を90°若しくは180°移相させて、復調軸の基
準となるべき信号を得ていたが、本来、色副搬送波と復
調軸の基準となるべき信号とは、位相情報のみ異なる信
号であるので、色副搬送波の位相により一義的に復調軸
の基準となるべき信号は決定することができる。この点
を考慮すれば、色副搬送波を時分割し、それに対応した
復調軸のデータは決めることができ、前述の(2)式と
(8)式に示す復調軸データは、乗数テーブルとして例
えばROM (R81L(l 0n1y Memory
) 等に格納しておくことが可能である。第3図に色
副搬送波とR−YおよびB−Yの2軸の位相関係を示す
。この図に示す位相関係は常に一定であるので例えば時
刻口の時の2軸のデータは−i的に決めることができる
。尚同図では、波形は正弦波状に表しているが、実用上
は、矩形波であっても構わない。When a burst signal is applied to the input terminal α', a color H transmitted wave having the same phase as the burst is generated in the color subcarrier generating circuit 1'. The color subcarrier is routed to a 16 clock generation circuit. In synchronization with the color subcarrier, the clock generation circuit 16 divides the -period into a certain time, and calculates the amplitude data of the R-Y and B-Y demodulation axes corresponding to the time by using the 2' multiplier table as the first R- Y data, then B -Y
Control the output of data. In the conventional method, the color subcarrier is phase-shifted by 90° or 180° to obtain the signal that should be the reference for the demodulation axis, but originally, the signal that should be the reference for the demodulation axis and the color subcarrier are phase-shifted. Since the signals differ only in information, the signal to be used as the reference for the demodulation axis can be uniquely determined based on the phase of the color subcarrier. Considering this point, the color subcarrier can be time-divided and the corresponding demodulation axis data can be determined, and the demodulation axis data shown in equations (2) and (8) above can be used as a multiplier table, for example. ROM (R81L(l 0n1y Memory
) etc. FIG. 3 shows the phase relationship between the color subcarrier and the two axes RY and BY. Since the phase relationship shown in this figure is always constant, for example, the data on the two axes at the time of the hour can be determined as -i. Although the waveform is shown as a sine wave in the figure, it may be a rectangular wave in practice.
さて、色副搬送波のある時刻での2軸のデータは4′乗
算回路の一方入力となる。4′乗算回路の他方入力は、
端子b′に入力された搬送色信号が16クロツク発生回
路からの色副搬送波の時分割されたタイミングと同一タ
イミングでA/D変換されたデータである。4′乗算回
路ではそのデータをデジタル的に乗算する。そしてその
結果は、R−ymm細軸関しての乗算結果は11データ
レジスタに、B−Y軸に関しての乗算結果は12データ
レジスタに格納される。その制御は、はじめR−Yデー
タ、次にB −Yデータの順に格納されるよう16クロ
ツク発生回路によりなされる。Now, the two-axis data of the color subcarrier at a certain time becomes one input of the 4' multiplier circuit. The other input of the 4′ multiplier circuit is
The carrier chrominance signal input to terminal b' is A/D converted data at the same timing as the time-divided chrominance subcarrier from the 16 clock generation circuit. The 4' multiplication circuit digitally multiplies the data. As for the results, the multiplication results regarding the R-ymm fine axis are stored in the 11th data register, and the multiplication results regarding the B-Y axis are stored in the 12th data register. The control is performed by a 16-clock generating circuit so that the RY data is stored first, and then the B-Y data is stored in this order.
そして、次に同位相のクロックにより、データレジスタ
■と■から同時にD / A回路にデータが入力され、
D / A変換後にアナログ信号となる。復調出力R−
Yと、B Yは、6′マトリクス回路入力となり、従来
方式と同じ手段により、G Y色差信号出力が生成され
る。Then, data is simultaneously input to the D/A circuit from data registers ■ and ■ using clocks of the same phase.
After D/A conversion, it becomes an analog signal. Demodulation output R-
Y and B Y become inputs to the 6' matrix circuit, and G Y color difference signal outputs are generated by the same means as in the conventional system.
本発明の特徴とするところは、第2図に示す4′乗算回
路が、第1図では4と5復調回路の2回路必要であるの
に対して、1回路のみで良いという点にあり、乗算回路
への乗数入力データと、データレジスタの入力制御とを
同じタイミングでおこなうことにより可能になる。また
データレジスタからの出力信号は、RYおよびB −Y
色差信号データの両方がそろったタイミングにおいて、
同一タイ、ミングで出力すれば、R−YとB −Y色差
信号間の出力位相誤差は見がけ上なくなる。The feature of the present invention is that the 4' multiplication circuit shown in FIG. 2 requires only one circuit, whereas in FIG. This is possible by controlling the multiplier input data to the multiplier circuit and the input to the data register at the same timing. Also, the output signals from the data register are RY and B-Y
At the timing when both color difference signal data are complete,
If they are output at the same timing, there will be no apparent output phase error between the R-Y and B-Y color difference signals.
このようにして、クロック発生回路での制御を工夫する
ことにより、乗算回路が1回路ですむことになり回路素
子数の低減が可能となる。In this way, by devising control in the clock generation circuit, only one multiplication circuit is required, making it possible to reduce the number of circuit elements.
第1図は従来の色復調回路図で、1は色副搬送波発生回
路、2は移相回路、3は移相回路、4は色復調回路、5
は色復調回路、6はマトリクス回路、端子αはバースト
入力端子、端子すは搬送色信号入力端子、端子c、d、
gは各々R−Y、B−Y、G−Y色差信号出力端子を表
す。
第2図は本発明の色復調回路図で、1′は色副搬送波発
生回路、2′は乗数テーブル、4′は乗算回路、6′は
マトリクス回路、11はデータレジスタ1.12はデー
タレジスタ2.13はD/A変換回路1.14はD/ム
変換回路2.15はA / D変換回路、16はクロッ
ク発生回路、端子α′はバースト入力端子、b′は搬送
色信号入力端子1./ 、d/ 、、/は各々R−Y、
B−Y。
G −Y色差信号出力端子を示す。
第3図は色副搬送波と、R−Y、B−Y復調軸との位相
関係を示す図。
以 上
出願人 株式会社諏訪精工舎
代理人 弁理士 最上 務
剤3図
6′
502−Figure 1 is a conventional color demodulation circuit diagram, where 1 is a color subcarrier generation circuit, 2 is a phase shift circuit, 3 is a phase shift circuit, 4 is a color demodulation circuit, and 5 is a color demodulation circuit.
6 is a color demodulation circuit, 6 is a matrix circuit, terminal α is a burst input terminal, terminal is a carrier color signal input terminal, terminals c, d,
g represents R-Y, B-Y, and G-Y color difference signal output terminals, respectively. FIG. 2 is a color demodulation circuit diagram of the present invention, in which 1' is a color subcarrier generation circuit, 2' is a multiplier table, 4' is a multiplication circuit, 6' is a matrix circuit, 11 is a data register, and 12 is a data register. 2.13 is a D/A conversion circuit 1.14 is a D/MU conversion circuit 2.15 is an A/D conversion circuit, 16 is a clock generation circuit, terminal α' is a burst input terminal, and b' is a carrier color signal input terminal. 1. / , d/ , , / are respectively RY,
B-Y. G-Y color difference signal output terminal is shown. FIG. 3 is a diagram showing the phase relationship between color subcarriers and the RY and BY demodulation axes. Applicant Suwa Seikosha Co., Ltd. Agent Patent Attorney Mogami Mujiku 3 Figure 6' 502-
Claims (1)
Y軸とB −Y軸の色復調を同一復調回路(乗算回路)
により時分割処理にておこない、後続するデータレジス
タに、時分割的にデータを格納し、そのデータレジスタ
からの出力は同一タイミングでおこなうことを特徴とす
るカラーテレビジョン用色復調回路。In the color demodulation circuit of a color television receiver, R-
Same demodulation circuit (multiplying circuit) for Y-axis and B-Y-axis color demodulation
A color demodulation circuit for a color television, characterized in that data is stored in subsequent data registers in a time-division manner, and output from the data registers is performed at the same timing.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12402183A JPS6016086A (en) | 1983-07-07 | 1983-07-07 | Color demodulating circuit for color television |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12402183A JPS6016086A (en) | 1983-07-07 | 1983-07-07 | Color demodulating circuit for color television |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS6016086A true JPS6016086A (en) | 1985-01-26 |
Family
ID=14875063
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP12402183A Pending JPS6016086A (en) | 1983-07-07 | 1983-07-07 | Color demodulating circuit for color television |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6016086A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0263690A2 (en) * | 1986-10-08 | 1988-04-13 | Sharp Kabushiki Kaisha | A distributed feedback semiconductor laser device |
EP1081965A1 (en) * | 1999-03-08 | 2001-03-07 | Matsushita Electric Industrial Co., Ltd. | Color demodulating device |
-
1983
- 1983-07-07 JP JP12402183A patent/JPS6016086A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0263690A2 (en) * | 1986-10-08 | 1988-04-13 | Sharp Kabushiki Kaisha | A distributed feedback semiconductor laser device |
EP1081965A1 (en) * | 1999-03-08 | 2001-03-07 | Matsushita Electric Industrial Co., Ltd. | Color demodulating device |
EP1081965A4 (en) * | 1999-03-08 | 2006-04-05 | Matsushita Electric Ind Co Ltd | Color demodulating device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR0161678B1 (en) | Sampling frequency converter | |
JPS61224693A (en) | Digital chrominance signal processing circuit | |
JPS6016086A (en) | Color demodulating circuit for color television | |
MY102145A (en) | Digital color demodulator. | |
JPS58129890A (en) | Adaptive type luminance signal and chroma signal separation filter | |
JPS6012887A (en) | Color demodulation circuit system for color television | |
US4698667A (en) | Method to reestablish a predetermined phase relationship of a chrominance TV signal with respect to a reference | |
JPH01238395A (en) | Color television signal decoder | |
JPS6120482A (en) | Color saturation and hue adjusting circuit | |
JP2535543B2 (en) | Digital IQ demodulation system | |
JP2545844B2 (en) | Color encoding device | |
GB2182818A (en) | Burst evaluating circuit | |
JP2570030B2 (en) | Color signal demodulator | |
JPH0314387B2 (en) | ||
JPS6354891A (en) | Digital color demodulator | |
JPH04227189A (en) | Color signal demodulating data selector | |
KR960014237B1 (en) | Chrominance changing circuit in a digital t.v. set | |
JPS63169894A (en) | Ntsc demodulating circuit | |
JPH0730914A (en) | Digital color signal processor | |
JPS61184078A (en) | Color encoder circuit | |
JPH0946721A (en) | Phase correction device for pal system chrominance signal | |
JPH09154160A (en) | Scanning line number conversion circuit | |
JPH01273493A (en) | Digital color signal processing circuit | |
JPS58220591A (en) | Color signal demodulator | |
JPS63151188A (en) | Color demodulation circuit for video reproducing device |