JPS60160680A - Surface light-emission type dfb laser - Google Patents

Surface light-emission type dfb laser

Info

Publication number
JPS60160680A
JPS60160680A JP1516684A JP1516684A JPS60160680A JP S60160680 A JPS60160680 A JP S60160680A JP 1516684 A JP1516684 A JP 1516684A JP 1516684 A JP1516684 A JP 1516684A JP S60160680 A JPS60160680 A JP S60160680A
Authority
JP
Japan
Prior art keywords
laser
surface light
reflectivity
lambda
dfb laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1516684A
Other languages
Japanese (ja)
Inventor
Hitoshi Nakamura
均 中村
Shigekazu Minagawa
皆川 重量
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP1516684A priority Critical patent/JPS60160680A/en
Publication of JPS60160680A publication Critical patent/JPS60160680A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/183Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
    • H01S5/18308Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL] having a special structure for lateral current or light confinement
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/183Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
    • H01S5/18361Structure of the reflectors, e.g. hybrid mirrors

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To stabilize an oscillation wavelength, and to reduce threshold current density by adopting DFB structure for a surface light-emission type laser. CONSTITUTION:When two substances having na, nb refractive indices are inserted alternately between two substances having n1, n2 refractive indices and the thickness da, db of the na, nb layers is represented severally by da=lambda/4na and db=lambda/4nb, reflectivity to vertical incident beams is represented by R1b= [{n1.(nb/na)<m>-n2}/{n1.(nb/ na)<m>+n2}]<2> (where m is the number of na and nb layers and lambda is a wavelength in a vacuum). Consequently, reflectivity R1b can be set properly by fitly selecting na, nb and m in the structure. That is, an oscillation wavelength is determined stably by the length of one period of a section having the periodic structure of a refractive index in a surface light-emission DFB laser having this structure as a reflection section, and the reflectivity of a resonator having an effect on threshold current density is improved largely, thus enabling oscillation at a low threshold.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、基板表面に垂直に出力光が出射するいわゆる
面発光型のレーザの改良に関し、とくにDFB構造を取
り入れることによシ、その特性、主にしきい電流値密度
1発振波長の安定性ぞ向上させんとするものである。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to the improvement of a so-called surface-emitting type laser in which output light is emitted perpendicularly to the surface of a substrate, and in particular, by incorporating a DFB structure, its characteristics, The main objective is to improve the threshold current value density and the stability of one oscillation wavelength.

〔発明の背景〕[Background of the invention]

面発光レーザは、基板表面と垂直に出射するレーザであ
り、以下のような応用が期待されている1、([電通学
会論文集: 0QE81−120.p49、面発光レー
ザの発振条件」参照)。
A surface-emitting laser is a laser that emits light perpendicular to the substrate surface, and is expected to have the following applications1. .

■ 単一モード短共振器レーザ ■ 大放射面積、狭山射角レーザ ■ 2次元レーザアレイ ■ モノリシック光集積回路 従来、面発光レーザのファプリベロー光共振器 ゛の反
射面には、エピタキシャル結晶表面と基板面あるいは両
エピタキクヤル結晶表面を利用していた。レーザでは、
光増巾のだめの共振器の両側での反射率の大小が直接し
きい電流値密度の大小に関係する。端面発光レーザでは
、反射面に結晶の壁間面を用いることにより反射率をか
せいでいる。
■ Single-mode short-cavity laser ■ Large radiation area, Sayama beam angle laser ■ Two-dimensional laser array ■ Monolithic optical integrated circuit Conventional surface-emitting laser fabric bellows optical resonator The reflective surface of ゛ has an epitaxial crystal surface and a substrate surface. Alternatively, both epitaxial crystal surfaces were used. With laser,
The magnitude of the reflectance on both sides of the resonator of the optical intensifier is directly related to the magnitude of the threshold current value density. In edge-emitting lasers, reflectance is increased by using crystal wall surfaces as reflective surfaces.

上述したとおり、面発光レーザではエピタキシャル層と
空気界面、基板とエピタキシャル層界面、基板と空気界
面を反射面としておシ、端面発光レーザに比べ十分な反
射率が得られない。その結果、室温での発振が得に〈<
、シきい電流値密度は大きな値となる。
As described above, in a surface emitting laser, the interface between the epitaxial layer and the air, the interface between the substrate and the epitaxial layer, and the interface between the substrate and the air are used as reflective surfaces, and a sufficient reflectance cannot be obtained compared to an edge emitting laser. As a result, oscillation at room temperature is particularly
, the threshold current value density becomes a large value.

また、その発振波長は、活性層を形成する材料のバンド
ギャップにより決定され、高変調時には発振波長が不安
定になる。
Further, the oscillation wavelength is determined by the bandgap of the material forming the active layer, and the oscillation wavelength becomes unstable at high modulation.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、面発光型レーザに、DFB構造を取り
入れることにより、発振波長を安定化させ、さらにしき
い値電流密度を減少させることにある。
An object of the present invention is to stabilize the oscillation wavelength and further reduce the threshold current density by incorporating a DFB structure into a surface emitting laser.

〔発明の概要〕[Summary of the invention]

端面発光型レーザでは、発振波長の安定化の1つの手段
としてDFB構造が採用されている。具体的には、活性
層、またはその近傍に光導波路にそって屈折率の異なる
材料で波形の凹凸を周期的に形成し、光の反射を行なわ
せるものである。
In edge-emitting lasers, a DFB structure is employed as one means of stabilizing the oscillation wavelength. Specifically, wave-shaped unevenness is periodically formed using materials having different refractive indexes along the optical waveguide in or near the active layer to reflect light.

本発明は、面発光型レーザの前述した発振波長、共振器
での反射率に関する欠点を、DFB構造を取り入れるこ
とにより解決せんとするものである。
The present invention aims to solve the above-mentioned drawbacks of the surface emitting laser regarding the oscillation wavelength and the reflectance in the resonator by incorporating a DFB structure.

具体的構造は、上述の端面発光WDFBレーザとは大き
く異なり、反射部に屈折率を変化させた箪導体薄膜を先
導波の方向と垂直に周期的に形成する。1周期の長さは
、λ/ 2 nであり、λは真空中での波長を、nは半
導体fli膜の有効屈折率である。屈折率の変化のさせ
方は、サイン関数的であることが望ましいが、以下に述
べる方法でもよい。
The specific structure is significantly different from the above-mentioned edge-emitting WDFB laser, in which a rectangular conductor thin film with a changed refractive index is periodically formed in the reflective section perpendicular to the direction of the leading wave. The length of one period is λ/ 2 n, where λ is the wavelength in vacuum and n is the effective refractive index of the semiconductor fli film. The method of changing the refractive index is preferably sinusoidal, but the method described below may also be used.

屈折率の異なる半導体薄膜(屈折率na Hnb )を
それぞれの厚さλ/4n1λ/ 4 n hっケタ層を
1組とし、この組を周期的に形成するものである。第1
a図は、屈折率nl 、nlの2物質を、第1b図は、
その間に屈折率na、Qhの2物質を交互に入れた場合
の模式図である。natnb層の厚さd、、dhは、そ
れぞれd、=λ/4n。
A set of semiconductor thin films having different refractive indexes (refractive index na Hnb ) each having a thickness of λ/4n1λ/4nh is formed periodically. 1st
Figure a shows two substances with refractive index nl and nl, and figure 1b shows
It is a schematic diagram when two substances with refractive indexes na and Qh are alternately inserted between them. The thicknesses d, dh of the natnb layer are d,=λ/4n, respectively.

d4=λ/4n1である。垂直入射光に対する反射率は
、両図においてそれぞれ FL+−=((nt nt)/(nt+nt) )”R
1b=((n I 11 (nb/n−) ’−n*)
/ (nt @(n−/n−)”十nt))” ” : n a層nb層の数 第1b図の構造では、Hllh、mを適当に選ぶことに
より、反射率Ribを適当に設定することができる。す
なわち、本構造を反射部に持つ面発光DFBレーザでは
、発振波長は、屈折率の周期14tt造を持つ部分の1
周期の長さで安定に決まり、また、しきい値電流密度に
影響を与える共振器の反射率は、通常の面発光レーザ(
第1a図において、naが空気の場合に相当)に比べ大
きく改善されるため、低しきい値での発振が可能になる
d4=λ/4n1. The reflectance for vertically incident light is FL+-=((nt nt)/(nt+nt))”R in both figures, respectively.
1b=((n I 11 (nb/n-) '-n*)
/ (nt @(n-/n-)"10 nt))"": number of na layers and nb layers In the structure shown in Figure 1b, reflectance Rib can be set appropriately by appropriately selecting Hllh and m. In other words, in a surface-emitting DFB laser having this structure in the reflection part, the oscillation wavelength is 1 of the part with the period 14tt structure of the refractive index.
The reflectance of the resonator, which is stably determined by the period length and also affects the threshold current density, is
In FIG. 1a, this is greatly improved compared to the case where na is air), making it possible to oscillate at a low threshold.

〔発明の実施例〕[Embodiments of the invention]

以F1本発明の一実施例を第2図により説明する。第2
図は、本発明の面発光レーザの断面図である。11はn
−GaAs基板(n = lXl0” cm−”膜厚a
=2ooμm)、12.13は光反射層でおり、それぞ
れGaAs (n = lXl0” cm−” d=5
80人)、Gao、+ λ/4−11As(n=lX1
0”’、 d =660人)を3層ずつ形成しである。
Hereinafter, one embodiment of the F1 invention will be described with reference to FIG. Second
The figure is a cross-sectional view of the surface emitting laser of the present invention. 11 is n
-GaAs substrate (n = lXl0"cm-" film thickness a
= 2oo μm), 12.13 is a light reflecting layer, each made of GaAs (n = lXl0"cm-" d = 5
80 people), Gao, + λ/4-11As (n=lX1
0"', d = 660 people) were formed in three layers each.

14.16はGao・4A41.a Asクラッド層(
層14はn = I Xl 0” cm−”、d=1 
μrn、層16はp= I X 1018cm−”、d
=iμm)である。15はGao、oA4.+Al!活
性層(n = 5X10”cm−’、 d = 0.1
 tt m )であり、17はGao−tA4sAs反
射防止膜(p=IXIO”crn−3、d=660人)
である。18はGaAs (n= 5X10”crrr
”、 d=1.5μm)光吸収層である。19゜20は
それぞれn、I)電極、21は電流狭窄のための5iO
z酸化膜である。
14.16 is Gao・4A41. a As cladding layer (
Layer 14 has n = IXl 0"cm-", d = 1
μrn, layer 16 p = I x 1018 cm-”, d
= iμm). 15 is Gao, oA4. +Al! Active layer (n = 5X10"cm-', d = 0.1
tt m), and 17 is a Gao-tA4sAs antireflection film (p=IXIO”crn-3, d=660 people)
It is. 18 is GaAs (n= 5X10”crrr
", d = 1.5 μm) light absorption layer. 19° and 20 are n and I) electrodes, and 21 is 5iO for current confinement.
z It is an oxide film.

電極19.20間に順バイアスを加えると、り乏ツド層
14.16間に挾まれた活性層15で再結合発光を起こ
す。活性1舗15の横方向での発振は光吸収層18によ
るゲインロスのため起こらず、光反射層13、反射防止
膜17間の縦方向で発振する。
When a forward bias is applied between the electrodes 19 and 20, recombination light emission occurs in the active layer 15 sandwiched between the depleted layers 14 and 16. Oscillation in the horizontal direction of the active layer 15 does not occur due to gain loss due to the light absorption layer 18, but oscillation occurs in the vertical direction between the light reflection layer 13 and the antireflection film 17.

本素子の製作プロセスは以下のとおりである。The manufacturing process of this device is as follows.

■ GaAs基板上へのMOCvD法による結晶成長、
トリメチルガリウム、トリメチルアルミニウム、アルシ
ン、ジメチル亜鉛、セレン化水素を原料に、成長温度6
50cで行なった。
■ Crystal growth on GaAs substrate by MOCvD method,
Using trimethylgallium, trimethylaluminum, arsine, dimethylzinc, and hydrogen selenide as raw materials, growth temperature 6
I did it at 50c.

■ メサエッチ(第2図18)、 ■ 液相エピタキシー法によるGaAs埋め込み成長、 成長温度sooc ■ 5iOz酸化膜形成、電極形成 本素子は、しきい値電流密度a、 s kA/cm”で
室温連続発振した。発振波長は、660nmであった。
■ Mesa etch (Fig. 2 18), ■ GaAs buried growth by liquid phase epitaxy, growth temperature SOOC, ■ 5iOz oxide film formation, electrode formation. The oscillation wavelength was 660 nm.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、面発光型レーザの発振波長を安定化さ
せ、しきい値電流密度を減らさせることができる。
According to the present invention, the oscillation wavelength of a surface emitting laser can be stabilized and the threshold current density can be reduced.

【図面の簡単な説明】[Brief explanation of drawings]

第la図は屈折率G異なる2物質の反射特性を示す模式
図、第1b図は第1a図の間にさらに多層膜を導入した
場合の反射率特性を示す模式図、第2図は本発明の一実
施例になるG a A lk s 面発光型DFBレー
ザの構造を示す断面図である。 11−n−GaAs基板、12 ・・・n GaAa反
射膜、13− n −Gao−+Ato、oA8反射膜
、14−n−Gao−aA4.aAsクラッド層、15
−n−。 Gao−os A41.oa As活性層、16− p
GaO,4A4.6ASクラッド層、17 ・・・pG
a6.tA4+、o As反射防止膜、18・・・G 
a A s光吸収層、19・・・n−電極、20・・・
p−電極、21・・・8i0.酸化膜。
Figure 1A is a schematic diagram showing the reflection characteristics of two substances with different refractive indexes G, Figure 1B is a diagram showing the reflectance characteristics when a multilayer film is further introduced between Figure 1A, and Figure 2 is a diagram showing the reflectance characteristics of the present invention. 1 is a cross-sectional view showing the structure of a GaAlks surface-emitting DFB laser according to an embodiment of the present invention. 11-n-GaAs substrate, 12-n-GaAa reflective film, 13-n-Gao-+Ato, oA8 reflective film, 14-n-Gao-aA4. aAs cladding layer, 15
-n-. Gao-os A41. oaAs active layer, 16-p
GaO, 4A4.6AS cladding layer, 17...pG
a6. tA4+, o As antireflection film, 18...G
a As light absorption layer, 19...n-electrode, 20...
p-electrode, 21...8i0. Oxide film.

Claims (1)

【特許請求の範囲】 1、 面発光型半導体レーザにおいて、屈折率に関して
膜厚λ/2n(λ:真空中での波長、n:膜の屈折率)
の周期を持つ半導体薄膜をレーザ光取り出し面の反対側
の面に形成して光の反射を行なわせる構造をもつことを
特徴とする面発光型DFBレーザ。 2、特許請求の範囲第1項に記載の面発光型DFBレー
ザの周期構造として、屈折率の異なる半導体O#膜を1
組とし、それらを重ね合わせる構造をもつことを特徴と
する面発光型DFBレーザ。
[Claims] 1. In a surface emitting semiconductor laser, the film thickness λ/2n (λ: wavelength in vacuum, n: refractive index of the film) with respect to the refractive index.
1. A surface-emitting DFB laser characterized by having a structure in which a semiconductor thin film having a period of 2 is formed on a surface opposite to a laser light extraction surface to reflect light. 2. As the periodic structure of the surface-emitting DFB laser according to claim 1, one semiconductor O# film having different refractive index is used.
A surface-emitting DFB laser characterized by having a structure in which a pair of pairs are stacked on top of each other.
JP1516684A 1984-02-01 1984-02-01 Surface light-emission type dfb laser Pending JPS60160680A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1516684A JPS60160680A (en) 1984-02-01 1984-02-01 Surface light-emission type dfb laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1516684A JPS60160680A (en) 1984-02-01 1984-02-01 Surface light-emission type dfb laser

Publications (1)

Publication Number Publication Date
JPS60160680A true JPS60160680A (en) 1985-08-22

Family

ID=11881212

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1516684A Pending JPS60160680A (en) 1984-02-01 1984-02-01 Surface light-emission type dfb laser

Country Status (1)

Country Link
JP (1) JPS60160680A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0333090A2 (en) * 1988-03-17 1989-09-20 Alcatel SEL Aktiengesellschaft Semiconductor laser device for the generation of a periodic refractive index distribution and/or periodic gain distribution

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0333090A2 (en) * 1988-03-17 1989-09-20 Alcatel SEL Aktiengesellschaft Semiconductor laser device for the generation of a periodic refractive index distribution and/or periodic gain distribution

Similar Documents

Publication Publication Date Title
US4464762A (en) Monolithically integrated distributed Bragg reflector laser
US5469458A (en) Surface-emitting semiconductor device
JPH0468798B2 (en)
JPS60160680A (en) Surface light-emission type dfb laser
JPS6232680A (en) Integrated type semiconductor laser
JPS6114787A (en) Distributed feedback type semiconductor laser
JPS61134094A (en) Semiconductor laser
JPH02180085A (en) Semiconductor laser element and manufacture thereof
KR20040034351A (en) Semiconductor laser and element for optical communication
JP3127635B2 (en) Semiconductor laser
JPH065984A (en) Semiconductor laser and manufacture thereof
JPS5992588A (en) Mono-axial mode semiconductor laser
JPH11330540A (en) Superluminescent diode
JPS6393187A (en) Distributed feedback semiconductor laser
JP2912717B2 (en) Semiconductor laser device
JPH03136388A (en) Semiconductor optical amplifier
JPS63211784A (en) Quantum well type semiconductor laser
JPH0227782A (en) Semiconductor light emitting element
JPS63278290A (en) Semiconductor laser and its use
JPS6066489A (en) Distributed feedback and distributed bragg reflector type semiconductor laser
JPH0964458A (en) Semiconductor laser
JP2500619B2 (en) Surface emitting element
JPS59218786A (en) Single axial mode semiconductor laser
Gurevich et al. Monolithic-Hybrid Integration of a Diode Laser with a Deposited Waveguide
JPH02137286A (en) Semiconductor laser