JPS60160214A - Rotation y-cut strip crystal resonator and its frequency temperature characteristic adjusting method - Google Patents

Rotation y-cut strip crystal resonator and its frequency temperature characteristic adjusting method

Info

Publication number
JPS60160214A
JPS60160214A JP1488184A JP1488184A JPS60160214A JP S60160214 A JPS60160214 A JP S60160214A JP 1488184 A JP1488184 A JP 1488184A JP 1488184 A JP1488184 A JP 1488184A JP S60160214 A JPS60160214 A JP S60160214A
Authority
JP
Japan
Prior art keywords
inflection point
temperature
strip
vibration
cut
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1488184A
Other languages
Japanese (ja)
Inventor
Hiroshi Shimizu
洋 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP1488184A priority Critical patent/JPS60160214A/en
Publication of JPS60160214A publication Critical patent/JPS60160214A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02007Details of bulk acoustic wave devices
    • H03H9/02015Characteristics of piezoelectric layers, e.g. cutting angles
    • H03H9/02023Characteristics of piezoelectric layers, e.g. cutting angles consisting of quartz

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)

Abstract

PURPOSE:To bring a primary temperature coefficient at an inflection point to zero or any other desired value by combining properly a cut azimuth and said ratio near the AT-cut to provide the inflection point of the frequency temperature characteristic curve near room temperature without providing a slope to a strip side face. CONSTITUTION:A slope is given to the side face of a substrate by utilizing positively the coupling between the thickness-shear vibration being the main vibration and the width-shear vibration being the sub-vibration and selecting properly the side ratio gamma=w/h (where; w is the width of a strip in Z' direction and h is the thickness in Y' direction) of the said substrate and the cut azimuth angle theta to the Z axis based on an inflection point temperature moving curve where the primary temperature coefficient at the inflection point of the frequency temperature characteristic curve of the substrate decided definitely from the relation of both is zero or any desired value except zero. The inflection point temperature is decided definitely by the cut azimuth angle theta and the adjustable characteristic is only the primary temperature coefficient at the inflection point changed by the side ratio (gamma).

Description

【発明の詳細な説明】 本発明はストリップ型水晶振動子、殊にストリップ側面
に傾斜面を設ける等の格別の加工々程を必要としない回
転Yカット・ストリップ水晶撮動子に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a strip type quartz crystal resonator, and particularly to a rotary Y-cut strip quartz crystal sensor that does not require special machining steps such as providing an inclined surface on the side surface of the strip.

超小型化への要求が強いが周波数温度特性に優れたAT
板の如き厚みすべり振動子は所望の特性全書んとする場
合素子寸法がその輪郭によって規制される為小型化が困
難であった。
AT with excellent frequency-temperature characteristics despite strong demand for ultra-miniaturization
It has been difficult to miniaturize a thickness-shear resonator such as a plate because the dimensions of the element are restricted by its contour when all desired characteristics are to be achieved.

この問題に対処する為従来から輪郭の一辺を縮小してス
トリップ化することが提案されており、例えばロイヤー
(J、J、Rloyer)は1973年第27回フリク
エンシー・コントロール・シンボジウム(Fe2)に於
いてX軸方向に長辺を有し辺比γ=w/h(wは幅、h
は厚さ)が3程度のATカットリストリップ水晶振動子
について検討し主振動(厚みすべり振動)と副振動(幅
すべり振動)との結合がその周波数温度特性に著しい影
41會与える旨報告している。
In order to deal with this problem, it has been proposed to reduce one side of the contour and make it into a strip. has a long side in the X-axis direction, and the side ratio γ=w/h (w is the width, h
investigated an AT cut strip crystal resonator with a thickness of about 3, and reported that the coupling between the main vibration (thickness shear vibration) and the secondary vibration (width shear vibration) has a significant impact on its frequency-temperature characteristics. ing.

又、ミンドリy (R1,D、Mindlin )は第
24回FC8に於いて既に上述の如き主振動と副振動の
結合を緩和する[はストリップ側面に適度な傾斜を与え
ればよく前記辺比γが3の整数倍の振動子に於いては無
限AT板とはy同等の特性が保存されると述べている。
In addition, Mindlin (R1, D, Mindlin) has already been proposed in the 24th FC8 to alleviate the coupling between the main vibration and the sub-vibration as described above. It is stated that in a vibrator with an integral multiple of 3, characteristics equivalent to y are preserved as in an infinite AT plate.

更に尾上等は特公昭56−36814に於いて前比’i
0.5乃至6としてもストリップ側面に適当な傾斜(2
乃至16度)を与えれば周波数温度特性の良好な小型撮
動子が得られることを明らかにしている。
Furthermore, Onoue et al.
Even if it is 0.5 to 6, an appropriate slope (2
It has been revealed that a small camera element with good frequency-temperature characteristics can be obtained by applying a temperature of 16 degrees to 16 degrees.

しかしながら上述の如く主振動と副振動との結合を緩和
する為ス) IJツブ側面に特定の傾斜を付す工程はか
なりの工数を要するのみならず加工精度上の問題があり
、前記辺比γが3の整数倍の値をはずれる場合には結合
の影響が大きくなる為良好な温度特性が得られなくなる
という欠陥がありた。
However, as mentioned above, in order to alleviate the coupling between the main vibration and the sub-vibration, the process of attaching a specific slope to the side surface of the IJ knob not only requires a considerable number of man-hours but also poses a problem in processing accuracy. If the value deviates from an integer multiple of 3, the influence of bonding increases, resulting in a defect that good temperature characteristics cannot be obtained.

本発明は上述の如き従来のストリップ型水晶振動子の欠
陥を除去する為になされたものであって、ストリップ側
面に傾斜を付与しても温度が変化すると主振動たる厚み
すべり振動と副振動たる幅すべり振動の結合が生ずるこ
とに注目し、逆に前記主副側振動の結合を積極的に利用
しATカット近傍に於ける切断方位θと前記辺比γとを
適切に組み合わせることによってストリップ側面に傾斜
を付与することなしに常温近辺に周波数温度特性曲線の
変曲点を与え該変曲ツブ水晶振動子を提供することを目
的とする。
The present invention was made in order to eliminate the above-mentioned defects of the conventional strip type crystal resonator, and even if the side surface of the strip is sloped, when the temperature changes, the main vibration is the thickness shear vibration, and the secondary vibration is the thickness shear vibration. Focusing on the fact that the coupling of width shear vibrations occurs, on the contrary, by actively utilizing the coupling of the main and subside vibrations and appropriately combining the cutting direction θ near the AT cut and the side ratio γ, the strip side surface It is an object of the present invention to provide an inflection-tube crystal resonator that provides an inflection point of a frequency-temperature characteristic curve near room temperature without imparting a slope to the frequency-temperature characteristic curve.

以下、本発明を理論解析と実験の結果とに基づいて詳細
に説明する。
Hereinafter, the present invention will be explained in detail based on theoretical analysis and experimental results.

第1図は本発明に係る回転Yカット水晶基板を用いたス
トリップ型振動子の外観図であってX軸方向に長辺を有
しX軸のまわりに2軸から角度θだけ回軸したカット角
を与えストリップの主面に励振電極Eを付したものであ
る。
FIG. 1 is an external view of a strip-type vibrator using a rotating Y-cut crystal substrate according to the present invention, which has a long side in the X-axis direction and is cut by rotating an angle θ from two axes around the X-axis. The strip has corners and excitation electrodes E are attached to the main surface of the strip.

斯る振動子に於いては素板の圧電反作用、電極付加効果
或はベベル加工等に基づくエネルギ閉じ込めが問題にな
るが振動子としての特性の大要は変位分布が長辺(X軸
)方向に一様であると仮定して理論解析全行った。
In such a vibrator, energy trapping due to piezoelectric reaction of the base plate, electrode addition effect, bevel processing, etc. is a problem, but the main characteristic of the vibrator is that the displacement distribution is in the long side (X axis) direction. All theoretical analyzes were carried out assuming that it was uniform.

先ず素子寸法を第2図に示す如くとり圧電性を無視した
場合X軸方向に伝播しない厚みねじれ振動の変位Uを試
験解 U=exp(−j(ζy+ξz ) + j ωt l
−(11で与える。
First, if the element dimensions are taken as shown in Fig. 2 and piezoelectricity is ignored, the displacement U of the thickness torsional vibration that does not propagate in the
-(Given in 11.

ここでζ、ξは夫々y軸及び2軸方向の波数ωは角周波
数である。
Here, ζ and ξ are wave numbers in the y-axis and two-axis directions, respectively, and ω is the angular frequency.

又、歪Sは、 5s=aU/9z 、8a=3U/ay−・・・・・(
21応力Tは水晶の弾性定数t=cijとして運動方程
式は水晶の密度を才とすれば ア Ts/ z+ 7’6/ y=−#ω2U −−(41
で与えられる。
Also, the strain S is 5s=aU/9z, 8a=3U/ay-...(
21 Stress T is the elastic constant of crystal t = cij, and the equation of motion is given by the density of crystal: Ts/z+ 7'6/y=-#ω2U --(41
is given by

そこで前記+11 、 (21及び(3)式ヲ(4)式
に代入すると ア Cssξ2+2Cs6ζξ十Cssζ2−#ω2=Q 
・・=・(51(5)式から角周波数ωと2軸方向の波
数ξの任意の組合せに対して厚さくy軸)方向の波数が
ζ1及びζ2の2個求まる。
Therefore, by substituting the above +11, (21 and equation (3) into equation (4), we get Cssξ2+2Cs6ζξ0Cssζ2−#ω2=Q
... = (51 From equation (5), two wave numbers in the thick y-axis direction, ζ1 and ζ2, can be found for any combination of the angular frequency ω and the wave number ξ in the two-axis directions.

± ここで主面y−↓hでの境界条件T6=0から5in(
ζ1−ζ2)h=o、m’(i7整1’& 0 、1 
、2 、−−−−−−とすれば (ζ1−ζ2)h=mπ ・・・・・・・・・・・・ 
(6)前記(5)式と(6)式とから2軸方向に伝播す
る波動の分散方程式 %式%) ここで規準化周波数Ω=ωh / J Cs s/−j
)+ ・川・・(7)が得られる。
± Here, the boundary condition at main surface y-↓h is T6=0 to 5 inches (
ζ1-ζ2) h=o, m' (i7 set 1'& 0, 1
, 2 , −−−−−−, then (ζ1−ζ2)h=mπ ・・・・・・・・・・・・
(6) From the above equations (5) and (6), the dispersion equation for waves propagating in two axial directions (% formula %) where normalized frequency Ω=ωh / J Cs s/-j
)+ ・River...(7) is obtained.

さ°て、前記m=oの場合、前記(6)式からζl=ζ
2=−(Css /C611)ξである。
Now, in the case of m=o, from equation (6) above, ζl=ζ
2=-(Css/C611)ξ.

このとき 71gm=Cs68s+Ca5Sa=−j(
Cseξ+Caaζ)U =−j(Cssξ−Cseξ)U=0 となる。
At this time, 71gm=Cs68s+Ca5Sa=-j(
Cseξ+Caaζ)U=−j(Cssξ−Cseξ)U=0.

即ち、次敬零の非分散な波は撮動千円のいたる所でT6
=0”k満足しその波面はZ方向に垂直ではなく角度α
=(an ’ (C56/ Css )だけ傾イテイる
In other words, the non-dispersive wave of the following zero is T6 everywhere in the photographic area.
= 0”k is satisfied, and the wavefront is not perpendicular to the Z direction but at an angle α
= (an' (C56/Css)).

又、m=1の場合、2軸方向の波斂ξ=Oのときζ=±
ω/s/Ca61アとなりこのωが無限板に於ける厚み
すべり振動の共振周波数に相当する。
Also, in the case of m=1, when the wave angle in the two-axis direction ξ=O, ζ=±
ω/s/Ca61a, and this ω corresponds to the resonant frequency of thickness shear vibration in an infinite plate.

さて、前記第2図に示した素子断面についてそのX軸方
向に沿った面が主面であると考え辺比rを考える。即ち
AT板系ではrA7 ===w/h +D′r板系では
r D 7 ”” h/Wとして境界条件を満足させる
とすれば2軸の正負方向に伝播する波を考慮してねじれ
振動の変位(Jy表す前記式(1)は+jωt) ここでn = 2 m + 2であり 数である。 ・・・・・・・・・・・・(8)そこで側
面に傾斜αを与えた場合の該面での境界条件、 Ts’ = 7’5 cosα−7’6sinα (但
しz′=士C)を満足する近似解全求める為変分法を用
いるとラグランジアンLは /di z ’=c l=172 (7’s’IJJ 、 dy/d+Z”’
−C ・・・・・・・・・(9) ラグランジアン の極小条件は /B、=0(但しp=i〜n)でありその数ω全書る仁
とができる。ωがめられれば前記(9)式から定数B、
ヲ算出し得ることが理解されよう。
Now, regarding the element cross section shown in FIG. 2, the side ratio r will be considered assuming that the surface along the X-axis direction is the main surface. In other words, if the boundary conditions are satisfied as rA7 ===w/h +D'r plate system rD7 ``'' h/W for the AT plate system, then torsional vibration will occur considering the waves propagating in the positive and negative directions of the two axes. displacement (the above formula (1) representing Jy is +jωt) where n = 2 m + 2 and is a number.・・・・・・・・・・・・(8) Then, the boundary condition on the side surface when the slope α is given, Ts' = 7'5 cos α−7'6 sin α (however, z' = ), the Lagrangian L is /d z '=c l=172 (7's'IJJ, dy/d+Z''
-C (9) The minimum condition of the Lagrangian is /B, = 0 (however, p = i to n), and the number ω can be written as jin. If ω is determined, the constant B,
It will be understood that wo can be calculated.

以上の計算を行った結果辺比r−1.側面傾斜角α=0
の場合ATカットとしてめた共振周波数とDTカットと
して計算したそれとの差は10ppm程度であり上述の
理論解析の正当性は一応確認された。伺、本計算に於け
る弾性定数等には清水等の定数を使用した。
As a result of the above calculation, the side ratio r-1. Side inclination angle α=0
In this case, the difference between the resonance frequency calculated as AT cut and that calculated as DT cut was about 10 ppm, and the validity of the above theoretical analysis was confirmed. The constants of Shimizu et al. were used for the elastic constants, etc. in this calculation.

さて、以上の解析の結果を基にA Tカット基板を用い
た場合の周波数スペクトラムを描いてみると第3図の如
くなり、本図に於ける主撮動(−次の厚みすべり振動)
と副振動(幅すべり振ItlI)との結合部分を拡大す
ると第4図、(al 、 (blの如くなる。
Now, if we draw the frequency spectrum when using an AT-cut board based on the results of the above analysis, it will be as shown in Figure 3.
If you enlarge the coupling part between this and the secondary vibration (width shear vibration ItlI), it will look like (al, (bl) in Fig. 4).

本図(atは主撮動と参人の副振動との関係金側面傾斜
角α全パラメータとして計算した図、同a (b)はi
次の副振動との関係を示す図である。
This figure (at is the figure calculated as all parameters of the relationship between the main motion and the auxiliary vibration of the mountain side angle α, and the same a (b) is i
It is a figure which shows the relationship with the next sub-vibration.

即ち、ス) IJツブ側面に傾斜αを与えた場合には主
振動と副振動との結合が弱まりα=jan’(C6g 
/C6g )よ5°′ft与えると結合は完全に生じな
くなり縮退する。
In other words, if the slope α is given to the side surface of the IJ tube, the coupling between the main vibration and the secondary vibration becomes weaker, and α=jan'(C6g
/C6g) when 5°'ft is applied, the bond is completely stopped and degenerates.

一方、前記ス) 17ツノ側面の傾斜αが零の場合前記
第4図に示す如く主振動と奇数次モードの副振動との結
合が大きい仲とから主撮動の一次の温度係数は第5図に
示す如く変化rKよって大幅に変化する。この曲線は前
記分散方程式(7)と残りの境界条件が弾性定数C1J
の関数であり更にこの弾性定数が切断方位角θ及び温度
tの関数であることから容易に計算し得るので説明を簡
素化する為詳細全省略する。又、図示を省略したが切断
方位角0を変化させると本図の −カーブは縦軸方向に
はY平行に移動することが判明した。
On the other hand, when the inclination α of the side surface of the horn is zero, as shown in FIG. As shown in the figure, it changes significantly depending on the change rK. This curve has the dispersion equation (7) and the remaining boundary conditions as elastic constant C1J.
Furthermore, since this elastic constant is a function of the cutting azimuth θ and the temperature t, it can be easily calculated, so the details will be omitted to simplify the explanation. Although not shown, it has been found that when the cutting azimuth angle 0 is changed, the - curve in this figure moves parallel to Y in the vertical axis direction.

問、本図は前述したロイヤーの実験結果と極めて良く一
致しているから上述の理論解析の正しいことが一層明確
となった。
Q: This figure agrees extremely well with Royer's experimental results mentioned above, making it even clearer that the above theoretical analysis is correct.

さて、以上の解析結果からストリップ側面の傾斜がα=
jan ’ (Css /Ces )ノ場合cは主振m
の一次温度係数は辺比rに無関係にはy零となり無限A
T板に近い特性が得られるようにも思われるが前記ta
a ”(Cas/Cs+i )=αには第6図に示す如
く温度に対する依存性が極めて大きい為側面傾斜角αを
例えば20℃に於けるそれ(約5°)に合わせて設定し
ても温度が20℃からずれると前記主副両振動の結合が
生じ第7図に示す如く辺比rによってその周波数温度特
性は大幅に変動することが判った。因みに第7図の解析
結果は前述の尾上等による実験の結果とよく対応すると
共に従来不可解であるとされていた辺比の小さい回転Y
カット系水晶基板の温度特性が辺比rによって変動する
理由が完全に理論的に解明されたものと言えよう。
Now, from the above analysis results, the slope of the strip side is α=
In the case of jan' (Css /Ces), c is the main vibration m
The first-order temperature coefficient of y becomes zero regardless of the side ratio r, and becomes infinite A
Although it seems that characteristics close to those of the T plate can be obtained, the above ta
a''(Cas/Cs+i)=α has an extremely large dependence on temperature as shown in Figure 6, so even if the side inclination angle α is set to match that at 20°C (approximately 5°), the temperature will not change. It was found that when deviates from 20°C, the coupling of both the main and sub-oscillations occurs, and its frequency-temperature characteristics vary greatly depending on the side ratio r, as shown in Figure 7.Incidentally, the analysis results in Figure 7 are based on the aforementioned Onoue Rotation Y with a small side ratio, which corresponds well with the experimental results of et al. and was previously thought to be incomprehensible.
It can be said that the reason why the temperature characteristics of cut crystal substrates vary depending on the side ratio r has been completely theoretically elucidated.

ところで上述の解析結果からス) IJツブ側面に傾斜
を与えても温度が変化すれば王副両撮動の結合が生じ任
意の辺比で無限AT板に近似した温度特性を得ることは
事実上不可能であることが判った。一方、上述の解析結
果から一次の温度係数が例えば零となる辺比rは前記第
5図に関する説明のとうり切断方位角θに依存する。
By the way, from the above analysis results, even if the side surface of the IJ tube is tilted, if the temperature changes, the combination of the two sides will occur, and it is virtually impossible to obtain temperature characteristics similar to an infinite AT plate with any side ratio. It turned out to be impossible. On the other hand, from the above analysis results, the side ratio r at which the first-order temperature coefficient becomes zero, for example, depends on the cutting azimuth θ, as explained with reference to FIG. 5 above.

又、無限AT板に於いては周知の如く切断方位角θによ
って変曲点に於ける一次の温度係数は変化するが変曲点
は殆んど変動しない。
Furthermore, in the case of an infinite AT plate, as is well known, the first-order temperature coefficient at the point of inflection changes depending on the cutting azimuth θ, but the point of inflection hardly changes.

一方、ストリップ状基板に於いてはその側面傾斜角αを
固定した場合その変曲点温度は辺比rによっては殆んど
不変であるが変曲点に於ける一次の温度係数は第7図に
示す如く大幅に変動することが実験の結果確認された。
On the other hand, in the case of a strip-shaped substrate, when the side inclination angle α is fixed, the temperature at the inflection point is almost unchanged depending on the side ratio r, but the first-order temperature coefficient at the inflection point is shown in Figure 7. As a result of the experiment, it was confirmed that there was a large fluctuation as shown in the figure.

この現象は前記側面傾斜角αが零の場合にも同様に現わ
れる。
This phenomenon similarly occurs when the side surface inclination angle α is zero.

然らばストリップ側面の傾斜角αを最も加工の容易な零
度に選んでも変曲点に於ける一次の温度係数を所望の値
に設定する前記θとrとの組み合わせが得られそうであ
る。尚、ロイヤーは既に前記θとrとの組み合わせ全適
切に選んで変曲点を制御することについである程度の実
験結果を開示しているが本発明はこれを体系的な理論解
析に基づいて現実の製品に適用すべくそこで前記第4図
に示した主振動と奇数次の副振動とが縮退する辺比の近
傍では前記第5図から明らかな如く一次の温度係数が正
負逆転すること及び第8図に示す回転Yカット無限板の
一次の温度係数がA′rカットの切断角であるθ=35
°15′ヲ境に正負逆転するという周知の知見とを利用
して変曲点に於ける一次の温度係数が零及び±ippm
/’Cの場合の切断方位角θと辺比rとの組み合わせに
ついて変曲点温度をパラメータとして計算した結果を第
9図に示す。
Therefore, even if the inclination angle α of the strip side surface is selected to be 0 degrees, which is the easiest to process, it is likely that a combination of θ and r can be obtained that sets the first-order temperature coefficient at the inflection point to a desired value. Note that Royer has already disclosed some experimental results regarding controlling the inflection point by appropriately selecting the combinations of θ and r, but the present invention is based on a systematic theoretical analysis. In order to apply this to products of The first-order temperature coefficient of the rotating Y-cut infinite plate shown in Figure 8 is the cutting angle of A'r cut, θ = 35
Using the well-known knowledge that the polarity reverses at the 15' degree boundary, the first-order temperature coefficient at the inflection point is zero and ±ippm.
FIG. 9 shows the results of calculations using the inflection point temperature as a parameter for the combination of the cutting azimuth θ and the side ratio r in the case of /'C.

本図は主振動と1次及び3次の副振動が結合する場合に
ついての計算結果であり辺比rが増大するに従って結合
する副振動は高次のものの比重が大きくなるものである
This figure shows calculation results for the case where the main vibration and the first-order and third-order sub-vibrations are combined, and as the side ratio r increases, the specific gravity of the high-order sub-vibrations increases.

次に本理論解析の精度を確認する為−次の温度係数零の
場合の矩形断面ストリップ及びこれを更にコンベックス
加工した基板について実験した結果を第10図上に夫々
・−・及び×−×にて示す。
Next, in order to confirm the accuracy of this theoretical analysis, the results of an experiment performed on a rectangular cross-sectional strip in the case of the following temperature coefficient of zero and a board obtained by further convex processing of this strip are shown in Figure 10, respectively. Shown in

同、本実験は適当な切断方位角θの試験辺を用意し前記
第7図の結果に基づき辺比rを調整することによって一
次の温度係数を実質的に零に近接せしめるべく理論が与
える辺比よりや\大きめのそれを有する基板金少しずつ
研摩し上述のデータを得た。コンベックス加工について
も同様である。
Similarly, in this experiment, we prepared a test side with an appropriate cutting azimuth θ, and adjusted the side ratio r based on the results shown in Fig. 7 to make the first-order temperature coefficient substantially close to zero. The above data was obtained by polishing the gold substrate, which has a slightly larger diameter than the ratio, little by little. The same applies to convex processing.

以上の理論曲線と実験データとVi第9図からも明らか
な如く極めて良好に一致しているので本発明の基礎たる
上述の理論解析の正当性は完全に実証されたと称しても
よい。
As is clear from FIG. 9, the theoretical curve and the experimental data match extremely well, so it can be said that the validity of the above-mentioned theoretical analysis, which is the basis of the present invention, has been completely verified.

ところで本発明に係るストリップ型振動千金製造する場
合変曲点温度は切断方位角θによって一義的に決定し調
整可能な特性は辺比rによって変化する変曲点に於ける
一次の温度係数のみである。而してこの辺比rは前記第
10図の実験結果からも明らかな如く様々な要因、例え
ばストリップのエツジの面の取り方、側面のわずかな傾
斜、マウントの方式等々によって幾分の影響をまぬがれ
ないことが理解されよう。従って辺比rは第10図の実
験結果を勘案すればベベル戊コンベックス加工金施した
場合を含めてバラツキの3σをとれば一次の温度係数零
の場合の理論値に対し±10%程度の幅があろう。
By the way, in the case of manufacturing the strip type vibrating steel according to the present invention, the inflection point temperature is uniquely determined by the cutting azimuth θ, and the adjustable characteristics are only the first-order temperature coefficient at the inflection point that changes depending on the side ratio r. be. As is clear from the experimental results shown in Figure 10, this side ratio r is somewhat influenced by various factors, such as the way the edges of the strip are chamfered, the slight slope of the sides, the method of mounting, etc. It will be understood that there is no. Therefore, considering the experimental results shown in Figure 10, the side ratio r is about ±10% of the theoretical value when the first-order temperature coefficient is zero, if the 3σ of the variation is taken into account, including the case of bevel convex processing. There will be a range.

これは−次の温度特性を零以外の値に設定した場合もは
ソ同様であると考えて大過なかろう。
It would not be a big mistake to think that this is the same when the - next temperature characteristic is set to a value other than zero.

第11図は主振動と3次及び5次の副振動の結合全利用
した場合の辺比rと切断方位角θとの組合わせについて
の計算結果を示す図であるがこの場合の辺比rのバラツ
キの幅も前述の場合と同程度と考えてよいであろう。
Figure 11 is a diagram showing the calculation results for the combination of the side ratio r and the cutting azimuth θ when the combination of the main vibration and the third and fifth order sub-vibrations is fully utilized.In this case, the side ratio r The width of the variation can be considered to be about the same as in the case described above.

伺、量産時の水晶基板加工技術を勘案するにストリップ
側面の傾斜角αを完全に零とすることは事実上不可能で
あるから該角度αの±30’程度の切断誤差は当然に発
生する。従って他の要件を満足する場合にはこの程度の
側面傾斜が存在することを以って本発明の技術的範囲外
と称することは許されない。
However, considering the crystal substrate processing technology during mass production, it is virtually impossible to make the inclination angle α of the strip side completely zero, so a cutting error of about ±30' of the angle α naturally occurs. . Therefore, if other requirements are satisfied, the presence of this degree of side inclination should not be considered outside the technical scope of the present invention.

本発明は以上説明した如き理論全基礎としその確認実験
を経てなされたものであるから従来た 説明不能であり上回転Yカット水晶の温度特性上の挙*
hk完全に解明しこれに基づいて変曲点温度及び該点に
於ける一次の温度特性を任意に制御し得るので温度特性
が極めて良好な小型振動子、殊に中波帯で使用する振動
子を超小型に製造する上で著しい効果を発揮する。伺、
本発明に係る振動子はフィルタeエレメントに適用可能
なことはいうまでもなく本明細書中に使用する「振動子
」なる文言はこれら電気−機械変換用素子全てに適用す
べきものを意味することはいうまでもない。
The present invention has been made based on the theory as explained above and through experiments to confirm it, so it is impossible to explain conventionally, and the temperature characteristics of the top-rotating Y-cut crystal *
A small resonator with extremely good temperature characteristics, especially a resonator used in the medium wave band, because the inflection point temperature and the primary temperature characteristics at that point can be controlled arbitrarily based on the fully elucidated hk. It is extremely effective in manufacturing ultra-compact products. Visit,
It goes without saying that the vibrator according to the present invention can be applied to the filter e-element, and the word "vibrator" used in this specification means that it should be applied to all of these electro-mechanical conversion elements. Needless to say.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係るストリップ水晶振動子の構成を示
す斜視図、第2図は本発明の基礎となる解析の為のパラ
メータを説明する図、第3図は前記解析の結果得られた
各種振動の周波数スペクトラム図、第4図はその部分拡
大図であって+a)は主振動と一次の副振動との結合の
状態を(b)は三次の副振動との関係を示す図、第5図
はス) IJツブの辺比と一次の温度係数との関係の理
論解析結果を示す図、第6図はストリップ側面傾斜角α
の温度依存性を示す理論解析図、第7図は周波数温度特
性と辺比との関係の理論解析結果を示す図、第8図は回
転Yカット水晶無限板に於ける切断方位角と一次の温度
特性を示す図、第9図は主振動と1次及び3次の副振動
の結合を利用した場合の変曲点温度に於ける一次の温度
係数を零及び±ippm/℃とする辺比rと切断方位角
θとの組み合わせを示す理論解析図、第10図は変曲点
温度に於ける一次温度係数を零に合わせた矩形及びコン
ベックス振動子についてそれらの辺比rと切断方位角θ
との組み合わせを示す実験結果の図、第11図は主振動
と3次及び5次の副振動の結合を利用する場合の変曲点
温度に於ける一次の温度係数を零及び±1 p p m
 / ’Cとする辺比rと切断方位角0との組み合わせ
を示す理論解析図である。 特許出願人 清 水 洋
FIG. 1 is a perspective view showing the configuration of a strip crystal resonator according to the present invention, FIG. 2 is a diagram explaining parameters for analysis that is the basis of the present invention, and FIG. 3 is a diagram showing the results of the above analysis. Frequency spectrum diagrams of various vibrations, Fig. 4 is a partially enlarged view thereof, +a) shows the state of coupling between the main vibration and the primary sub-vibration, and (b) shows the relationship with the tertiary sub-vibration. Figure 5 shows the theoretical analysis results of the relationship between the side ratio of the IJ tube and the first-order temperature coefficient, and Figure 6 shows the strip side inclination angle α.
Figure 7 is a diagram showing the theoretical analysis results of the relationship between frequency temperature characteristics and side ratio. Figure 8 is a diagram showing the cutting azimuth and the first order of the rotating Y-cut crystal infinite plate. A diagram showing temperature characteristics, Figure 9 shows the side ratio where the first-order temperature coefficient at the inflection point temperature is zero and ±ippm/℃ when using the combination of the main vibration and the first-order and third-order sub-vibrations. A theoretical analysis diagram showing the combination of r and cutting azimuth θ, Figure 10 shows the side ratio r and cutting azimuth θ for rectangular and convex oscillators whose primary temperature coefficient at the inflection point temperature is set to zero.
Figure 11 shows the experimental results showing the combination of the main vibration and the third-order and fifth-order sub-vibrations, and the first-order temperature coefficient at the inflection point temperature is zero and ±1 p p m
It is a theoretical analysis diagram showing a combination of a side ratio r and a cutting azimuth angle of 0, which is /'C. Patent applicant Hiroshi Shimizu

Claims (2)

【特許請求の範囲】[Claims] (1)X軸方向に長辺を有するストリップ状回転Yカッ
ト水晶基板に於いて、主撮動たる厚みすべり振動と副振
動たる幅すべり撮動との結合を積極的に利用し前記基板
の辺比γ−w/h7′ (Wはストリップ一方向幅、hはY′方向厚さ)とZ軸
に対する切断方位角θとをこれら両者の関係から一義的
に決定する基板の周波数温度特性曲線の変曲点に於ける
一次の温度係数が零或は零以外の所望の値をとる変曲点
温度移動曲線に基づいて適宜選択することによって前記
基板の側面に傾斜を与えることなしに変曲点温度を任意
に設定するようにしたことを特徴とする回転Yカット・
ストリップ水晶振動子。
(1) In a strip-shaped rotating Y-cut crystal substrate having a long side in the X-axis direction, the combination of the thickness shear vibration as the main vibration and the width shear vibration as the secondary vibration is actively utilized to The frequency-temperature characteristic curve of the substrate that uniquely determines the ratio γ-w/h7' (W is the strip width in one direction, h is the thickness in the Y' direction) and the cutting azimuth θ with respect to the Z-axis from the relationship between these two. By appropriately selecting an inflection point based on an inflection point temperature movement curve in which the first-order temperature coefficient at the inflection point takes a desired value of zero or other than zero, the inflection point can be set without giving an inclination to the side surface of the substrate. Rotating Y-cut, characterized by the ability to set the temperature arbitrarily.
Strip crystal.
(2)前記切断方位角θの誤差に起因する所望の温度に
於ける一次の温度係数の変動を前記ストリップの辺比γ
を調整することによって補償することを特徴とする特許
請求の範囲(1)記載の回転Yカット・ストリップ水晶
振動子の温度特性調整方法。
(2) The variation in the first-order temperature coefficient at a desired temperature due to the error in the cutting azimuth angle θ is calculated using the side ratio γ of the strip.
A method for adjusting temperature characteristics of a rotating Y-cut strip crystal resonator according to claim (1), wherein compensation is performed by adjusting.
JP1488184A 1984-01-30 1984-01-30 Rotation y-cut strip crystal resonator and its frequency temperature characteristic adjusting method Pending JPS60160214A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1488184A JPS60160214A (en) 1984-01-30 1984-01-30 Rotation y-cut strip crystal resonator and its frequency temperature characteristic adjusting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1488184A JPS60160214A (en) 1984-01-30 1984-01-30 Rotation y-cut strip crystal resonator and its frequency temperature characteristic adjusting method

Publications (1)

Publication Number Publication Date
JPS60160214A true JPS60160214A (en) 1985-08-21

Family

ID=11873351

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1488184A Pending JPS60160214A (en) 1984-01-30 1984-01-30 Rotation y-cut strip crystal resonator and its frequency temperature characteristic adjusting method

Country Status (1)

Country Link
JP (1) JPS60160214A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63200608A (en) * 1987-02-04 1988-08-18 ヘレウス・ゼンゾール・ゲーエムベーハー Crystal of temperature-sensitive crystal oscillator

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS533178A (en) * 1976-06-30 1978-01-12 Seiko Instr & Electronics Ltd Crystal vibrator
JPS5575321A (en) * 1978-12-01 1980-06-06 Seiko Instr & Electronics Ltd Composite oscillator
JPS5636814A (en) * 1979-09-03 1981-04-10 Yushin Seiki Kogyo Kk Composite switch for vehicle

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS533178A (en) * 1976-06-30 1978-01-12 Seiko Instr & Electronics Ltd Crystal vibrator
JPS5575321A (en) * 1978-12-01 1980-06-06 Seiko Instr & Electronics Ltd Composite oscillator
JPS5636814A (en) * 1979-09-03 1981-04-10 Yushin Seiki Kogyo Kk Composite switch for vehicle

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63200608A (en) * 1987-02-04 1988-08-18 ヘレウス・ゼンゾール・ゲーエムベーハー Crystal of temperature-sensitive crystal oscillator

Similar Documents

Publication Publication Date Title
EP0844461B1 (en) Vibrator, vibratory gyroscope, and vibrator adjusting method
US5929555A (en) Piezoelectric resonator and method for fabricating the same
JPH0514442B2 (en)
US4076987A (en) Multiple resonator or filter vibrating in a coupled mode
JPS60160214A (en) Rotation y-cut strip crystal resonator and its frequency temperature characteristic adjusting method
JP3255502B2 (en) Highly stable surface acoustic wave device
JPS58190115A (en) Piezoelectric oscillator
JPH1051262A (en) Piezoelectric vibrator and its production
US4602182A (en) X33 cut quartz for temperature compensated SAW devices
JP3194442B2 (en) SC-cut crystal unit
US6744182B2 (en) Piezoelectric quartz plate and method of cutting same
JP2958004B2 (en) Device using domain-inverted LiNbO 3 substrate
JP3231055B2 (en) SC-cut crystal unit
JPH10221087A (en) Vibrator, vibration-type gyroscope, its manufacture, method for excitation of vibrator and method for detection of vibration of vibrator
JPS6064516A (en) Combined crystal resonator
JPS5912810Y2 (en) piezoelectric vibrator
JPH0243364B2 (en)
JPS6068712A (en) Highly coupled piezoelectric vibrator
JPH11340777A (en) Piezoelectric oscillating element
JPS6025312A (en) Piezoelectric vibrator
JP2003023339A (en) Quartz vibrator
JPS61222312A (en) Surface acoustic wave device
JPH032991Y2 (en)
JPS6382113A (en) Surface acoustic wave element
JPS59182617A (en) Lithium tantalate oscillator