JP2958004B2 - Device using domain-inverted LiNbO 3 substrate - Google Patents

Device using domain-inverted LiNbO 3 substrate

Info

Publication number
JP2958004B2
JP2958004B2 JP61206608A JP20660886A JP2958004B2 JP 2958004 B2 JP2958004 B2 JP 2958004B2 JP 61206608 A JP61206608 A JP 61206608A JP 20660886 A JP20660886 A JP 20660886A JP 2958004 B2 JP2958004 B2 JP 2958004B2
Authority
JP
Japan
Prior art keywords
substrate
domain
linbo3
inverted
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP61206608A
Other languages
Japanese (ja)
Other versions
JPS6471207A (en
Inventor
洋 清水
僖良 中村
晴康 安藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP61206608A priority Critical patent/JP2958004B2/en
Publication of JPS6471207A publication Critical patent/JPS6471207A/en
Application granted granted Critical
Publication of JP2958004B2 publication Critical patent/JP2958004B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は圧電デバイス,殊に電気機械結合係数が大き
くしかも圧電単結晶内部に分極反転領域を有するLiNbO3
基板の各種デバイスへの応用に関する。 (従来技術) 水晶等の圧電単結晶はその結晶内部に分極反転領域を
形成することは不可能であり圧電セラミック等も基板内
に分極の方向が相互に反転した層を均一な二層として形
成することは極めて困難であること周知の通りである。 この為ポーリングが一方向に揃ったこれに圧電体を用
いるデバイス,励えば厚み振動子は奇数次オーバートー
ン振動しか励振できず,屈曲振動子はポーリングを逆に
した圧電体の貼り合わせ或は分割電極によらねば実現不
可能であり更にねじり振動は,水晶等単結晶では極めて
困難又圧電セラミクスを用いる場合には基板の貼り合わ
せを要する為製造がめんどうな上基板貼着に起因する振
動子としてのQの低下,アクチュエータとしての動作の
ヒステリシスの発生及び高温下での使用困難等の欠陥が
あった。 (発明の目的) 本発明は上述した如き従来の圧電材料では実質的に実
現不可能或は構造上幾多の困難な操作を敢えて行いその
結果不満足な性能しか得られなかった各種デバイスの欠
陥を一挙に解決すべくなされたものであって偶数次オー
バートーン振動の励振可能な厚み振動子,貼着も分割電
極も不要な屈曲,輪郭或はねじり変位を生ぜしめる振動
子又はアクチュエータ等の各種デバイスを提供すること
を目的とする。 (発明の概要) 上述の目的を達成する為,本発明に於いては、LiNbO3
単結晶基板のZ′面に深さがほぼnλ/2(但しn=1、
2、3、・・であって基板の全厚みに対しmλ/2、m=
1、2、3・・、m>n、λは所望の波長)の分極反転
層あるいは自発分極層を形成すると共に前記基板の面に
電極を付すことによってm次オーバートーン厚み振動の
強い励振を可能としたものである。 また、LiNbO3単結晶基板のZ′面に深さが基板厚さの
ほぼ1/2の分極反転層を形成すると共に前記基板の面に
電極を付すことによって屈曲変位或いは分極方向への縦
変位を生じるようにしたものである。 また、LiNbO3単結晶基板の回転Y板のY′面に所定の
深さの分極反転層を形成し、この基板からそのY′面内
においてZ′軸とほぼ45度をなす方向に切り出したもの
に電極を付したことにより、ねじれ変位を生じるように
したものである。 (実施例) 以下本発明を図面に示す実施例に基づいて詳細に説明
する。 実施例の説明に先立って本発明の理解を容易にする為
本発明に係る各種デバイスが利用する分極反転領域を有
するLiNbO3圧電基板の製法について簡単に説明する。 本願発明者は光デバイスの分野で問題となっていたTi
熱拡散LiNbO3光導波路がその製造条件によっては分極反
転を生じるという現象を研究している中でLiNbO3基板+
C面にTiを1000Å程度蒸着しこれを空気或は水蒸気を含
むArガス中で基板のキュリー点温度より若干低い温度に
て数時間熱処理すると+C面に深さ12〜15μm程度の自
発分極の反転する分極反転した層が形成されることを発
見した。 更にTi熱拡散によらずとも単にLiNbO3基板を空気或い
は水蒸気を含むArガス中でそのキュリー点温度より若干
低い温度(約1,110℃)中で数時間熱処理すると処理時
間によって基板々厚の1/2まで分極反転層が形成される
ことを見出した。 又,この現象は+C軸が基板々面から傾いた,例えば
回転Y板にも発生することが確認された。 本発明に係るデバイスは上述の如くして製造したLiNb
O3基板を利用したものであり,以下デバイスの種類毎に
その応用例を説明する。 (1) 厚み振動子 第1図は本発明に係る厚み振動子の動作を説明する図
であって(a)に示したような通常の水晶等圧電基板1
では図に示す如きモードの振動,即ち2倍のオーバート
ーン振動は,発生電荷の正負(矢印)を勘案すれば明ら
かな如く電極2,2が同符号となる故発生し得ない。 一方,同図(b)に示す如くポーリングPsが基板の厚
さの中央を境に互いに反転しているLiNbO3基板3にあっ
ては電極2,2に於ける発生電荷の符号が表裏相異なる
故,実線の如き波動が生じ従って2倍オーバートーン振
動が励起されることになる。 これを一般化して考えると基板の厚さ方向全体にm・
λ/2,分極反転層にn・λ/2(但しλは所望の振動の波
長,m,n=1,2,3,…,m>n)なる波動を生ぜしめるものと
しmを奇数に選べば奇数オーバートーン振動が,又mを
偶数に選べば偶数次オーバートーンが励起されることに
なるのでmの値及び分極反転層の深さを適当に選べばい
かなる次数のオーバートーン振動をも得ることが可能で
あることが理解されよう。 このような振動の解析は各層をメイソン(Mason)の
等価回路で表し,機械端子を縦続接続し電気端子を直列
に接続した回路を用いて行うことが可能であるが,概略
の見積りを行う上では弱結合近似で充分である。 即ち,n次オーバートーン振動の変位をU及び実効的電
気機械結合係数Keは, U=coskn y(但しkn t=nπ、tは基板全厚さ) ……(1) Ke2=(An・kt(但しktは厚み振動の電気機械結合
係数、Anは係数) ……(2) 従ってAn 2=2(1+cosKn t−2cosKn tI2/(πn)
(但しtIは分極反転層の深さ) 第2図(a)は前記係数Anの値をt/tI=2について又
同図(b)はt/tI=40について計算したもので分極反転
層の厚さtIに約半波長(λ/2)又はその奇数倍の定在波
が立つような高次モードが強く励振されることが判る。
殊に分極の境界が基板々厚の中央(t/tI=2)の場合に
は2次,6次,10次,……の高次オーバートーンのみが励
振され板厚が半分の振動子と等価に動作することが理解
できよう。 尚,第3図はLiNbO3Z板であってTi熱拡散によってt/t
I=40としたものの共振レスポンスの実験結果を示すも
のであり,低次では通常の振動子と同様奇数次モードが
励振され,次数が高くなると分極反転層に約半波長の定
在波が立つような高次モードが極めて強く励振されるこ
とが判る。従って従来一般の振動子では不可能であった
超高次オーバートーン発振子として使用しうる可能性が
ある。 又、第4図は128゜回転Y板(t/tI=2)の共振レス
ポンスを測定した結果を示すもので前記第2図(a)の
計算結果と良好な一致を示す。 以上説明した如く本発明に係る分極反転層を有するLi
NbO3基板を用いた厚み振動子は従来不可能であった偶数
次のオーバートーン振動の励振も可能であるのみならず
極めて高い次数のオーバートーン振動を実現しうる可能
性がある。 (2) 屈曲或は縦振動子及びアクチュエータ 従来の屈曲振動子は一般に2毎の圧電基板をそのポー
リングを逆にして接着剤で貼り合わせるものであった為
接着層の存在に起因する共振周波数のバラツキ或はQの
向上困難といった問題があり,これをアクチュエータと
して使用すると動作にヒステリシスを伴うのみならず高
温下での使用が困難であるという欠陥があったこと前述
の通りである。 然るにこれらの問題は分極反転層を有するLiNbO3基板
を用いればいずれも容易に解消される。 第5図は本発明に係る屈曲振動子の構成を示す図であ
ってLiNbO3基板4の板厚の1/2を極正反転させ表裏に電
極2,2を付しこれに交番電界を印加すれば屈曲振動する
ことについては説明の必要はあるまい。 尚,屈曲振動子として使用するLiNbO3基板4はその励
振強度が横効果電気機械結合係数に比例するところから
最良のカット角を選ぶべきである。 第6図は回転Y板についてワーナ(Warner)等の定数
を用い電気機械結合係数K′23の回転角依存性を計算し
たもので130゜乃至150゜回転Y板が適していることを示
す。 又,第7図は128゜回転Y板を用いて試作した屈曲振
動子の特性を示す実験結果の図であって容量比Co/C1が1
2程度と屈曲振動子としてはかなり小さな値を示すので
低周波フィルタを構成する場合には好都合であろう。 尚,上記の試作屈曲振動子は単一全面電極を用いたも
のであるがこれを第8図に示す如く基板4の長手Z′方
向の約70%程度の部分電極5,5とすれば更に容量比を下
げることができよう。 又,第9図(a)及び(b)は夫々分極反転領域を有
するLiNbO3基板を用いた縦振動子及び輪郭振動子の例を
示す図であってこれらはいずれも対になる3組の面のい
ずれかに電極を付せばよいことは自明であろう。 以上説明した屈曲振動子或は縦振動子はその電極に印
加する電界を直流としてON/OFFすれば夫々回転或は直進
運動するアクチュエータとなることはいうまでもない。 而してこのようなアクチュエータは圧電基板を接着す
る必要がないので安価となるのみならず接着層の存在に
起因する動作のヒステリシスも発生せず高温下での使用
にも耐えるから精密微細駆動部に使用する上で極めて効
果的である。 (3) ねじり振動子及び光偏向デバイス 分極反転層を有するLiNbO3基板として回転Yの面内45
゜回転板を利用すればねじり振動子を得ることができ
る。 例えば第10図(a)に示す如く128゜回転Y板をその
主面内で既ね45゜回転した基板6の主面に全面電極7,7
を貼着すれば(同図(b)参照)主面がその厚さ方向に
歪むねじり振動子となる。 第11図(a),(b)はその特性を示す実験結果の図
であって周波数の低い部分に弱い屈曲振動が発生するが
ねじり振動は強く励起していることがわかる。 このようなねじり振動子は従来圧電セラミックの貼り
合わせによって構成していたチャンネル・フィルタ用ト
ランスジューサを代替することが可能であり貼り合わせ
に起因する周波数のバラツキ,Qの劣悪を大幅に改善する
ことができる。 又,前記電極7を鏡面仕上げしておけば光挺子の如き
光偏向デバイスとして利用することも可能である。 (発明の効果) 本発明は以上説明した如く構成するものであるから従
来一般の圧電共振子を以っては実現不可能であった偶数
次オーバートーン厚み振動子を提供し,従来貼り上わせ
構造に起因し周波数のバラツキが大きくQが劣悪であっ
た屈曲或はねじり振動子の特性を改善し更に屈曲或は縦
変位を利用するアクチュエータに於いて動作のヒステリ
シスを除去し高温下での使用を可能とするものである
故,斯るデバイスのコスト低減,特性の向上並びにその
使用条件の自由度拡張に著しい効果を発揮する。
The present invention relates to a piezoelectric device, in particular, LiNbO 3 having a large electromechanical coupling coefficient and having a domain-inverted region inside a piezoelectric single crystal.
Related to the application of substrates to various devices. (Prior art) It is impossible for a piezoelectric single crystal such as quartz to form a domain-inverted region inside the crystal, and a piezoelectric ceramic or the like is also formed in a substrate as two uniform layers in which the directions of polarization are mutually inverted. Is very difficult to do. For this reason, a device that uses a piezoelectric body in which the poling is aligned in one direction, if excited, the thickness vibrator can excite only odd-order overtone vibrations, and the bending vibrator can bond or split a piezoelectric body with reversed poling. It is impossible to realize with electrodes, and torsional vibration is extremely difficult with single crystal such as quartz. Also, when piezoelectric ceramics is used, it is necessary to bond substrates. , The occurrence of hysteresis in operation as an actuator, and the difficulty in use at high temperatures. (Objects of the Invention) The present invention addresses the defects of various devices which are substantially impossible to realize with the conventional piezoelectric materials as described above, or are designed to perform a number of difficult operations, resulting in unsatisfactory performance. Various devices such as vibrators or actuators that can generate bending, contour, or torsional displacements that do not require sticking or split electrodes and that can excite even-order overtone vibrations. The purpose is to provide. (Summary of the Invention) In order to achieve the above object, in the present invention, LiNbO3
The depth is approximately nλ / 2 (where n = 1,
2, 3,... Where mλ / 2, m =
, M> n, .lambda. Is a desired wavelength) to form a domain-inverted layer or a spontaneously-polarized layer and attach an electrode to the surface of the substrate, thereby providing strong excitation of m-th order overtone thickness vibration. It was made possible. Further, by forming a domain-inverted layer having a depth of about 基板 of the thickness of the substrate on the Z ′ plane of the LiNbO3 single crystal substrate and attaching electrodes to the surface of the substrate, bending displacement or longitudinal displacement in the polarization direction can be prevented. It is intended to occur. In addition, a domain-inverted layer having a predetermined depth is formed on the Y 'plane of a rotating Y plate of a LiNbO3 single crystal substrate, and cut out from this substrate in a direction substantially 45 degrees from the Z' axis in the Y 'plane. The torsion displacement is caused by attaching the electrodes to the torsion. (Examples) Hereinafter, the present invention will be described in detail based on examples shown in the drawings. Prior to the description of the embodiments, a method of manufacturing a LiNbO 3 piezoelectric substrate having a domain-inverted region used by various devices according to the present invention will be briefly described to facilitate understanding of the present invention. The present inventor has proposed Ti which has been a problem in the field of optical devices.
While studying the phenomenon that the thermal diffusion LiNbO 3 optical waveguide causes polarization reversal depending on the manufacturing conditions, the LiNbO 3 substrate +
When Ti is vapor deposited on the C-plane for about 1000 し and heat-treated for several hours at a temperature slightly lower than the Curie temperature of the substrate in air or Ar gas containing water vapor, the spontaneous polarization inversion of the depth of about 12 to 15μm on the + C-plane It was discovered that a domain-inverted layer was formed. Furthermore, even if the TiN diffusion is not performed, the LiNbO 3 substrate is simply heat-treated for several hours in an Ar gas containing air or water vapor at a temperature slightly lower than its Curie point (about 1,110 ° C.), and depending on the processing time, the thickness of each substrate becomes 1 / It has been found that up to 2 domain-inverted layers are formed. Further, it was confirmed that this phenomenon also occurred in a rotating Y plate in which the + C axis was inclined from the substrates. The device according to the present invention is LiNb manufactured as described above.
It uses an O 3 substrate, and its application examples are described below for each device type. (1) Thickness vibrator FIG. 1 is a view for explaining the operation of the thickness vibrator according to the present invention.
In this case, the vibration in the mode as shown in the figure, that is, twice the overtone vibration, cannot be generated because the electrodes 2 and 2 have the same sign when the positive and negative signs (arrows) of the generated charges are taken into consideration. On the other hand, in the LiNbO 3 substrate 3 in which the poling Ps is inverted with respect to the center of the thickness of the substrate as shown in FIG. 4B, the signs of the charges generated at the electrodes 2 and 2 are different from each other. Therefore, a wave as shown by the solid line is generated, and double overtone vibration is excited. When this is generalized and considered, m ·
λ / 2, a wave of n · λ / 2 (where λ is a desired vibration wavelength, m, n = 1, 2, 3,..., m> n) is generated in the domain-inverted layer, and m is an odd number. Choosing an odd-numbered overtone oscillation will cause excitation of an even-numbered overtone, and selecting m even-numbered will cause an even-ordered overtone. Therefore, if the value of m and the depth of the domain-inverted layer are appropriately selected, any overtone oscillation of any order can be obtained. It will be appreciated that it is possible to obtain. Such vibration analysis can be performed using a circuit in which each layer is represented by a Mason equivalent circuit and the mechanical terminals are cascaded and the electrical terminals are connected in series. Then, weak coupling approximation is sufficient. I.e., n order overtone U and effective electromechanical coupling coefficient Ke displacement of the vibration is, U = cosk n y (where k n t = nπ, t is the substrate total thickness) ...... (1) Ke 2 = ( A n · k t ) 2 (k t is the electromechanical coupling coefficient of thickness vibration, An is a coefficient) …… (2) Therefore, An 2 = 2 (1 + cosK n t− 2 cosK n t I ) 2 / (πn )
2 (where t I is the depth of the domain-inverted layer) FIG. 2 (a) shows the value of the coefficient An calculated for t / t I = 2 and FIG. 2 (b) shows the value calculated for t / t I = 40. It can be seen that a high order mode in which a standing wave of about a half wavelength (λ / 2) or an odd multiple thereof stands in the thickness t I of the domain-inverted layer is strongly excited.
Especially when the boundary of polarization is the center of the thickness of the substrates (t / t I = 2), only the second, sixth, tenth,... It can be understood that the operation is equivalent to. FIG. 3 shows a LiNbO 3 Z plate, which has a t / t
This shows the experimental results of the resonance response when I = 40. In the low order, the odd-order mode is excited as in the case of a normal oscillator, and when the order increases, a standing wave of about half wavelength stands in the domain-inverted layer. It can be seen that such a higher mode is excited very strongly. Therefore, there is a possibility that it can be used as an ultra-high-order overtone oscillator, which was impossible with a conventional general oscillator. FIG. 4 shows the result of measuring the resonance response of a 128 ° rotated Y plate (t / t I = 2), which shows a good agreement with the calculation result of FIG. 2 (a). As described above, Li having a domain-inverted layer according to the present invention
The thickness vibrator using the NbO 3 substrate not only can excite even-order overtone vibration, which has been impossible in the past, but also has the possibility of realizing extremely high-order overtone vibration. (2) Flexural or longitudinal vibrator and actuator Conventional flexural vibrators generally bond every two piezoelectric substrates with an adhesive by reversing the poling, so that the resonance frequency due to the presence of the adhesive layer is reduced. As described above, there is a problem that there is a variation or a difficulty in improving Q, and when this is used as an actuator, there is a defect that not only operation is accompanied by hysteresis but also it is difficult to use at high temperature. However, these problems can be easily solved by using a LiNbO 3 substrate having a domain-inverted layer. FIG. 5 is a view showing the structure of the bending oscillator according to the present invention, in which a half of the thickness of the LiNbO 3 substrate 4 is inverted in a positive and negative direction, electrodes 2 and 2 are provided on the front and back sides, and an alternating electric field is applied thereto. There is no need to explain about bending vibration. The best cut angle should be selected for the LiNbO 3 substrate 4 used as a bending oscillator because its excitation intensity is proportional to the transverse effect electromechanical coupling coefficient. Figure 6 shows that Warner (Warner) such as a rotary angle of 130 ° the dependency that calculated to 150 ° rotation Y plate constant of the electromechanical coupling coefficient K '23 using the are suitable for rotational Y plate. FIG. 7 is a diagram of experimental results showing the characteristics of a flexural vibrator prototyped using a 128 ° rotation Y plate, wherein the capacity ratio Co / C 1 is 1;
This is a very small value of about 2 for a bending oscillator, which is convenient when a low-frequency filter is configured. The above-mentioned trial bending oscillator uses a single full-surface electrode. However, as shown in FIG. The capacity ratio could be reduced. FIGS. 9 (a) and 9 (b) show examples of a longitudinal oscillator and a contour oscillator using a LiNbO 3 substrate having a domain-inverted region, respectively. It will be obvious that electrodes may be applied to any of the surfaces. It goes without saying that the above-described bending vibrator or vertical vibrator becomes an actuator that rotates or moves straight when the electric field applied to its electrode is turned ON / OFF with DC applied. Such an actuator does not need to bond a piezoelectric substrate, so it is not only inexpensive, but also does not generate hysteresis of operation due to the presence of an adhesive layer and can withstand use at high temperatures. It is extremely effective when used for (3) Torsional vibrator and optical deflection device As a LiNbO 3 substrate having a domain-inverted layer, the in-plane rotation 45
れ ば A torsional vibrator can be obtained by using a rotating plate. For example, as shown in FIG. 10 (a), the entire surface electrodes 7, 7 are formed on the main surface of the substrate 6 which has already been rotated by 128 [deg.] Within its main surface by a 128 [deg.] Rotation.
Is adhered (see FIG. 3B), the main surface becomes a torsional vibrator distorted in the thickness direction. FIGS. 11 (a) and 11 (b) are diagrams of experimental results showing the characteristics. It can be seen that a weak bending vibration is generated in a low frequency portion, but a torsional vibration is strongly excited. Such a torsional vibrator can replace the channel filter transducer, which has conventionally been constructed by bonding piezoelectric ceramics, and can greatly reduce the frequency variation and Q quality caused by bonding. it can. If the electrode 7 is mirror-finished, it can be used as a light deflecting device such as an optical roller. (Effects of the Invention) Since the present invention is configured as described above, an even-order overtone thickness vibrator which cannot be realized with a conventional general piezoelectric resonator is provided, and is conventionally attached. Improves the characteristics of flexural or torsional vibrators that have large frequency variations due to their structure and poor Q, and further removes hysteresis of operation in actuators that utilize flexural or longitudinal displacement, and uses them at high temperatures. Therefore, the present invention exerts a remarkable effect on cost reduction, improvement of characteristics, and expansion of the degree of freedom of use conditions of such a device.

【図面の簡単な説明】 第1図(a)及び(b)は本発明に係る厚み振動子の動
作を説明する図,第2図(a)及び(b)はその特性解
析結果を示す計算結果の図,第3図及び第4図は夫々本
発明に係る異った厚み振動子特性の実験結果を示す図,
第5図は本発明に係る屈曲振動子の構成を示す図,第6
図はその最適切断角を求める為の計算結果を示す図,第
7図はその一実験結果を示す特性図,第8図は本発明に
係る屈曲振動子の他の実施例を示す斜視図,第9図
(a)及び(b)は夫々本発明に係る縦振動子及び輪郭
振動子用基板の構成を示す斜視図,第10図(a)は本発
明に係るねじり振動子の切断角を示す図,同図(b)は
そのA−A断面図,第11図(a)及び(b)はその実験
結果を示す特性図である。 3,4及び6……分極反転領域を有するLiNbO3基板,2,5及
び7……電極。
BRIEF DESCRIPTION OF THE DRAWINGS FIGS. 1 (a) and (b) are diagrams for explaining the operation of the thickness vibrator according to the present invention, and FIGS. 2 (a) and (b) are calculations showing the results of characteristic analysis thereof FIGS. 3 and 4 are diagrams showing experimental results of different thickness oscillator characteristics according to the present invention, respectively.
FIG. 5 is a view showing the configuration of a bending oscillator according to the present invention, and FIG.
FIG. 7 is a diagram showing a calculation result for obtaining the optimum cutting angle, FIG. 7 is a characteristic diagram showing one experimental result, FIG. 8 is a perspective view showing another embodiment of the bending oscillator according to the present invention, 9 (a) and 9 (b) are perspective views showing the configuration of the substrate for the longitudinal vibrator and the contour vibrator according to the present invention, respectively, and FIG. 10 (a) shows the cutting angle of the torsional vibrator according to the present invention. FIG. 11B is a sectional view taken along the line AA of FIG. 11, and FIGS. 11A and 11B are characteristic diagrams showing the results of the experiment. 3, 4, and 6: LiNbO 3 substrate having domain-inverted regions, 2, 5, and 7: electrodes.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 安藤 晴康 宮城県仙台市荒巻字青葉(番地なし) 東北大学工学部通信工学科内 (56)参考文献 特開 昭60−66483(JP,A) 特公 昭52−34196(JP,B2) 特公 昭54−18385(JP,B2) 電子通信学会技術研究報告 US86− 18L L▲下1▼NbO▲下3▼単結晶 における分極反転層の成形とその互電値 と動子への応用」(1986),P39−44   ────────────────────────────────────────────────── ─── Continuation of front page    (72) Inventor Haruyasu Ando               Aoba, Aramaki, Sendai City, Miyagi Prefecture (No address)               Department of Communication Engineering, Faculty of Engineering, Tohoku University                (56) References JP-A-60-66483 (JP, A)                 Japanese Patent Publication No. 52-34196 (JP, B2)                 Japanese Patent Publication No. 54-18385 (JP, B2)                 IEICE Technical Report US86-               18L L Bottom 1 NbO Bottom 3 Single crystal               Of domain-inverted layer and its mutual electric value               And its application to children ”(1986), P39-44

Claims (1)

(57)【特許請求の範囲】 1.LiNbO3基板を空気あるいは水蒸気を含む不活性ガス
中で前記基板材料のキュリー点温度よりわずかに低い温
度で所定の時間熱処理し、LiNbO3単結晶基板のZ′面に
深さがほぼnλ/2(但しn=1、2、3、・・であって
基板の全厚みに対しmλ/2、m=1、2、3・・、m>
n、λは所望の波長)の分極反転層あるいは自発分極層
を形成すると共に前記基板の面に電極を付すことによっ
てm次オーバートーン厚み振動の強い励振を可能とした
ことを特徴とする分極反転領域を有するLiNbO3基板を利
用したデバイス。 2.前記mの値を偶数に選ぶことによって偶数次オーバ
ートーン厚み振動の強い励振を可能にしたことを特徴と
した特許請求の範囲(1)記載のデバイス。 3.LiNbO3基板を空気あるいは水蒸気を含む不活性ガス
中で前記基板材料のキュリー点温度よりわずかに低い温
度で所定の時間熱処理し、LiNbO3単結晶基板のZ′面に
深さが基板厚さのほぼ1/2の分極反転層を形成すると共
に前記基板の面に電極を付すことによって屈曲変位ある
いは分極方向への縦変位を生じるようにしたことを特徴
とする分極反転領域を有するLiNbO3基板を利用したデバ
イス。 4.LiNbO3基板を空気あるいは水蒸気を含む不活性ガス
中で前記基板材料のキュリー点温度よりわずかに低い温
度で所定の時間熱処理し、LiNbO3単結晶基板の回転Y板
のY′面に所定の深さの分極反転層を形成し、この基板
からそのY′面内においてZ′軸とほぼ45度をなす方向
に切り出したものに電極を付したことにより、ねじれ変
位を生じるようにしたことを特徴とした分極反転領域を
有するLiNbO3基板を利用したデバイス。
(57) [Claims] The LiNbO3 substrate is heat-treated in an inert gas containing air or water vapor at a temperature slightly lower than the Curie point temperature of the substrate material for a predetermined time, and the LiNbO3 single crystal substrate has a depth of approximately nλ / 2 (where nλ / 2). n = 1, 2, 3,... and mλ / 2, m = 1, 2, 3,.
(n and λ are desired wavelengths) by forming a domain-inverted layer or a spontaneously-polarized layer and attaching an electrode to the surface of the substrate to enable strong excitation of the m-th overtone thickness vibration. Device using a LiNbO3 substrate with a region. 2. 2. The device according to claim 1, wherein the value of m is selected to be an even number, thereby enabling strong excitation of even-order overtone thickness vibration. 3. The LiNbO3 substrate is heat-treated in an inert gas containing air or water vapor at a temperature slightly lower than the Curie point temperature of the substrate material for a predetermined time, and the depth of the LiNbO3 single crystal substrate is approximately 1 A device using a LiNbO3 substrate having a domain-inverted region, wherein a domain-inverted region is formed and a longitudinal displacement in a polarization direction is caused by applying an electrode to the surface of the substrate and forming an electrode on the surface of the substrate. . 4. A LiNbO3 substrate is heat-treated in an inert gas containing air or water vapor at a temperature slightly lower than the Curie point temperature of the substrate material for a predetermined time, and a LiNbO3 single crystal substrate having a predetermined depth is formed on the Y ′ plane of the rotating Y plate. A domain-inverted layer was formed, and a torsion displacement was caused by attaching an electrode to a substrate cut out from the substrate in a direction substantially at 45 degrees to the Z 'axis in the Y' plane thereof. Device using a LiNbO3 substrate with domain-inverted regions.
JP61206608A 1986-09-02 1986-09-02 Device using domain-inverted LiNbO 3 substrate Expired - Fee Related JP2958004B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61206608A JP2958004B2 (en) 1986-09-02 1986-09-02 Device using domain-inverted LiNbO 3 substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61206608A JP2958004B2 (en) 1986-09-02 1986-09-02 Device using domain-inverted LiNbO 3 substrate

Publications (2)

Publication Number Publication Date
JPS6471207A JPS6471207A (en) 1989-03-16
JP2958004B2 true JP2958004B2 (en) 1999-10-06

Family

ID=16526204

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61206608A Expired - Fee Related JP2958004B2 (en) 1986-09-02 1986-09-02 Device using domain-inverted LiNbO 3 substrate

Country Status (1)

Country Link
JP (1) JP2958004B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160149208A (en) * 2014-05-09 2016-12-27 신에쓰 가가꾸 고교 가부시끼가이샤 Piezoelectric oxide single crystal substrate

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2881251B2 (en) * 1990-04-25 1999-04-12 株式会社村田製作所 Piezoelectric resonator

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1062144A (en) * 1975-09-09 1979-09-11 Gerard J. C. A. Pauluis Interconnection arrangement for a dual temperature isotope exchange process
CA1075647A (en) * 1977-06-20 1980-04-15 Joseph L. Abbott Collapsible container structure and method of making same
JPS6066483A (en) * 1983-09-22 1985-04-16 Hiroshi Shimizu Piezoelectric conversion element utilizing ferrodielectric single crystal
JPS61197905A (en) * 1985-02-27 1986-09-02 Mitsubishi Heavy Ind Ltd Rotary cup burner

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
電子通信学会技術研究報告 US86−18L L▲下1▼NbO▲下3▼単結晶における分極反転層の成形とその互電値と動子への応用」(1986),P39−44

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160149208A (en) * 2014-05-09 2016-12-27 신에쓰 가가꾸 고교 가부시끼가이샤 Piezoelectric oxide single crystal substrate

Also Published As

Publication number Publication date
JPS6471207A (en) 1989-03-16

Similar Documents

Publication Publication Date Title
JP2790177B2 (en) Electrostrictive resonance element
EP1047189B1 (en) Piezoelectric resonator
EP0802628B1 (en) Piezoelectric resonator and method for fabricating the same
JP2018506930A5 (en)
JPS5863214A (en) Surface acoustic wave element
JPH10233645A (en) Surface acoustic wave device
JP6025850B2 (en) Electro-acoustic transducer with periodic ferroelectric polarization formed on a micromachined vertical structure
US20030006679A1 (en) Width-extensional Mode piezoelectric crystal resonator
US3591813A (en) Lithium niobate transducers
JPH07206600A (en) Laminated ferroelectric substance and method for joining the same
JP2958004B2 (en) Device using domain-inverted LiNbO 3 substrate
JPH04109709A (en) Surface acoustic wave element
JP2565346B2 (en) LiNbO Lower 3 / LiTaO Lower 3 Single Crystal Piezoelectric Substrate Having Polarization Reversal Region and Manufacturing Method Thereof
Plessky et al. 3 rd type of FBARs?
Nakamura et al. Local domain inversion in ferroelectric crystals and its application to piezoelectric devices
JPH0214608A (en) Piezoelectric resonator
JPH1051262A (en) Piezoelectric vibrator and its production
JP2002044785A (en) Piezo-resonator
Nakamura Piezoelectric applications of ferroelectric single crystals
Nakamura et al. Electromechanical coupling factor of KNbO/sub 3/single crystal
JP2615019B2 (en) Method for producing LiNbO single crystal piezoelectric substrate having domain-inverted region
JP3395298B2 (en) Surface wave device
JPH0697527A (en) Twist displacement device
Sugimoto et al. Even-order thickness-shear mode resonators using X-cut LiTaO/sub 3/plates realized by a direct bonding technique
JP3172943B2 (en) Piezoelectric vibratory gyro using energy trapped vibration mode

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees