JPS60160180A - Master plate for solar cell board - Google Patents

Master plate for solar cell board

Info

Publication number
JPS60160180A
JPS60160180A JP59015357A JP1535784A JPS60160180A JP S60160180 A JPS60160180 A JP S60160180A JP 59015357 A JP59015357 A JP 59015357A JP 1535784 A JP1535784 A JP 1535784A JP S60160180 A JPS60160180 A JP S60160180A
Authority
JP
Japan
Prior art keywords
solar cell
plating
stainless steel
plate
rolling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59015357A
Other languages
Japanese (ja)
Inventor
Satoru Narutani
成谷 哲
Sadao Hasuno
貞夫 蓮野
Takamasa Nakakouji
尚匡 中小路
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP59015357A priority Critical patent/JPS60160180A/en
Publication of JPS60160180A publication Critical patent/JPS60160180A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Photovoltaic Devices (AREA)

Abstract

PURPOSE:To obtain the preferable surface conditions at low cost by performing skin-pass rolling after forming a plated layer with a stainless steel thin plate as a core plate. CONSTITUTION:An Ni and/or Cr plated layer is formed on a stainless steel thin plate as a core plate. Consequently, when using it for a solar cell, the cell characteristics can be maintained to be stable for a long term. However, regarding Al, Ag or Cu, the elements cause diffusion in an amorphous layer during usage as a cell and there is possibility of deterioration of the cell characteristics. Meanwhile, Ni and Cr do not cause such phenomenon. Next, the core plate on which the above plated layer is formed is subjected to skin-pass rolling to form a smooth surface. Thus the preferable surface conditions for a parent material for solar cell board can be obtained at low cost.

Description

【発明の詳細な説明】 (技術分野) 太陽電池の基板材料として、ステンレス鋼薄板の表面性
状の改善に関しこの明細書で述べる技術内容は、該表面
性状を、太陽電池の受光面に供されるアモルファス層に
対するすぐれた適合を成就させることについての開発成
果を提案しようとするものである。
[Detailed Description of the Invention] (Technical Field) The technical content described in this specification relates to improving the surface quality of a stainless steel thin plate as a substrate material for a solar cell. This paper attempts to propose development results for achieving excellent adaptation to amorphous layers.

(技術的背景) 太陽電池はその機械的支持の役割を果す基板上に0.1
〜1μ■厚のアモルファス層を形成する。
(Technical background) A solar cell has a 0.1
Form an amorphous layer ~1 μm thick.

このアモルファス層の膜厚が非常に薄いため、電池製造
の信頼性や電池特性としての太陽光の電気的エネルギー
への変換効率の面において基板材料の影響を強く受【プ
、このため基板材料の選択は製造方式とも強い関連を持
つ経済性を含めて重要である。
Because the film thickness of this amorphous layer is extremely thin, it is strongly influenced by the substrate material in terms of battery manufacturing reliability and battery characteristics such as the conversion efficiency of sunlight into electrical energy. Selection is important, including economic efficiency, which is strongly related to manufacturing method.

従来、太陽電池の基板材料として石英ガラスやソーダラ
イムガラスおよびステンレス鋼などが使われてきた。
Conventionally, materials such as quartz glass, soda lime glass, and stainless steel have been used as substrate materials for solar cells.

ガラス系材料は基板自体が光透過性を持つため電池表面
の保護の役割を同時に果すという利点はあるがガラスの
宿命とも言える破損し易い欠点が免れ難い上、とくに無
アルカリである石英ガラスは、高価であり、太陽電池製
造に際してロール・ツー・ロールの量産性の高い方式を
採用できないという問題点がある。
Glass-based materials have the advantage of simultaneously protecting the battery surface because the substrate itself has optical transparency, but they also suffer from the disadvantage of being easily damaged, which is the fate of glass.In particular, silica glass is alkali-free. There is a problem that it is expensive and that a roll-to-roll method with high mass production efficiency cannot be adopted when manufacturing solar cells.

これに対しステンレス鋼は機械的強度が^くて強靭なた
め0.8IIm程度以下の薄い板を使うことができ、ま
た可撓性を有することからコイル状の材料を用いた量産
が可能であり、さらに曲面構造を持つ太陽電池としても
有利に適合するなどの点で優れている。
On the other hand, stainless steel has high mechanical strength and toughness, so thin plates of about 0.8 IIm or less can be used, and since it is flexible, it can be mass-produced using coiled materials. Furthermore, it is excellent in that it is advantageously suitable for use as a solar cell with a curved structure.

しかし、通常、圧延されたステンレス鋼の表面には圧延
時に発生するオイル・ビット、スクラッチなどの欠陥が
多数あり、これをそのままの状態で太陽電池の基板材料
として用いるとアモルファス層の膜厚が薄いために、そ
の形成に不均一を生じ易くまた場合によっては欠陥周辺
で電気的短絡を起こし、電池としての機能を果さなくな
ることさえある。
However, the surface of rolled stainless steel usually has many defects such as oil bits and scratches that occur during rolling, and if this is used as a substrate material for solar cells, the amorphous layer will be thin. Therefore, they tend to be non-uniform in their formation, and in some cases, electrical short circuits may occur around defects, and they may even fail to function as a battery.

このため一般的には、#1000〜#1500程度まで
数段階の手数をかけて砥粒研摩し、電解研摩を施すこと
によって表面粗さを調整しているのが現状である。しか
し、このような方法では工程操作が複雑で処理にも長時
間を要する上、加工コストが高価となりステンレス鋼自
体安価であっても最終的な価格は非常に高いものになっ
てしまう。
For this reason, the current situation is that the surface roughness is generally adjusted by performing several steps of abrasive polishing to about #1000 to #1500, followed by electrolytic polishing. However, in such a method, the process operation is complicated and the treatment takes a long time, and the processing cost is high, and even though stainless steel itself is cheap, the final price is very high.

太陽電池が既存の発電方法に伍して電力用として普及す
るためには現状から大幅なコスト・ダウンが必要であり
、上記の現状を打開し得る安価で材質特性のすぐれた基
板材料が要求されている。
In order for solar cells to become popular as a power source on par with existing power generation methods, it is necessary to significantly reduce costs from the current situation, and there is a need for substrate materials that are inexpensive and have excellent material properties that can overcome the current situation. ing.

(従来技術上の問題) 最近に至り、上記のような事情に鑑みステンレス鋼の表
面研摩法に関して、中性塩水溶液を電解液に用いた電解
作用による基板素地面の陽極溶解に加えた砥粒擦過を行
って基板表面を鏡面研摩する製造方法が開発された(特
開昭55−71077号公報参照)。
(Problems with the Prior Art) Recently, in view of the above-mentioned circumstances, regarding the surface polishing method of stainless steel, abrasive grains added to the anodic dissolution of the base surface of the substrate by electrolytic action using a neutral salt aqueous solution as the electrolyte have been developed. A manufacturing method has been developed in which the surface of the substrate is mirror polished by scratching (see Japanese Patent Laid-Open No. 71077/1983).

この場合、従来の機械的研摩と電解研摩を複合させて同
時に行うものであるため、操作時間を大幅に短縮するこ
とができるように開示されてはいるがしかし、その目的
とするところは従来法と同一であり、ステンレス鋼自身
の歩留りの低下とともに加工コストは依然として高いレ
ベルにあり、上記の懸案の本質的な解決とはならない。
In this case, conventional mechanical polishing and electrolytic polishing are combined and performed at the same time, so it is disclosed that the operation time can be significantly shortened. The yield of stainless steel itself is decreasing and the processing cost remains at a high level, which does not essentially solve the above-mentioned concerns.

(発明の課題) ところで太陽電池用の基板材料として具備すべき好まし
い特性としては (1)表面粗さが小さくかつ細かなビット状欠陥もでき
るだけ少ないこと、 (2)基板表面からアモルファス層へ電池特性を劣化さ
せる不純物拡散が少ないこと、 (3)耐食性、耐熱性にすぐれ太陽電池としての一長期
間の使用に対し耐久性を有すること、(4)熱伝導性が
すぐれていること、 (5)高強度でかつ可撓性を持つロール・ツー・ロール
方式による電池の量産が可能であること、 (6)安価であること、 と要約することができる。
(Problem to be solved by the invention) By the way, the desirable characteristics that a substrate material for solar cells should have are (1) small surface roughness and as few small bit-like defects as possible, and (2) cell properties that are transferred from the substrate surface to the amorphous layer. (3) It has excellent corrosion resistance and heat resistance and is durable for long-term use as a solar cell; (4) It has excellent thermal conductivity; (5) It can be summarized as follows: (6) It is possible to mass-produce batteries using a roll-to-roll method with high strength and flexibility, and (6) It is inexpensive.

(発明の目的) 太陽電池の基板材料として電池特性および信頼性の観点
から最も基本になる表面粗さが小さく、アモルファス層
への不純物拡散がなく耐久性にも優れて1掲の諸要請が
すべて有利に充足される安価な基板材料を与えることが
この発明の目的である。
(Objective of the invention) As a substrate material for solar cells, the most basic from the viewpoint of cell characteristics and reliability is low surface roughness, no impurity diffusion into the amorphous layer, excellent durability, and meets all the requirements listed in item 1. It is an object of the invention to provide an advantageously satisfying and inexpensive substrate material.

(発明の構成) この発明はステンレス鋼薄板よりなる基板の少くとも片
面に被成しためっき層をそなえ、該めっき層が、めっき
処理後のスキンバス圧延による平滑表面を有することか
ら成る、太111i1f池基板用母板であり、その実施
態様としてめっき層がNi及び/又はCrめっきである
ことがのぞましい。
(Structure of the Invention) This invention comprises a substrate made of a thin stainless steel plate, at least one side of which is provided with a plating layer, and the plating layer has a smooth surface formed by skin bath rolling after plating treatment. This is a base plate for a pond substrate, and as an embodiment thereof, it is desirable that the plating layer is Ni and/or Cr plating.

この発明は、これまでにも太陽電池の基板材料として使
用されているステンレス鋼が安価で有利であることに立
脚し、発明の課題の項で述べたような太陽電池基板材料
の具備すべき要件が満たされる表面性状の改善によりす
ぐれた特徴を1指するところにおいて基板材料の薄板に
つきステンレス鋼薄板に限定する。このステンレス鋼薄
板は所定の板厚まで冷間圧延し、必要に応じて焼鈍、さ
らにはスキンバス圧延してこの発明に従うめっき処理用
原板とする。
This invention is based on the fact that stainless steel, which has been used as a substrate material for solar cells, is inexpensive and advantageous, and the requirements for a solar cell substrate material as described in the problem of the invention section are as follows. The thin plate of the substrate material is limited to a thin stainless steel plate because of the excellent feature of improved surface quality that satisfies the above requirements. This stainless steel thin plate is cold rolled to a predetermined thickness, annealed if necessary, and further skin bath rolled to obtain an original plate for plating according to the present invention.

このめっき処理前後のステンレス鋼の表面状況とめっき
後さらにスキンバス圧延を施した時の改善効果について
、5US430ステンレス鋼冷延焼鈍根(板厚0.20
mm >をめっき用原板とした場合の例について以下に
詳述する。
The surface condition of stainless steel before and after this plating treatment and the improvement effect when further skin bath rolling is applied after plating were investigated.
An example in which mm > is used as a plating original plate will be described in detail below.

試料区分は次のとおりである。The sample classification is as follows.

(A):めつき前の原板 (B):原板をホメザリンと水酸化カリウム水溶液で電
解脱脂した後1μ刊厚のニッケルめっき(めっき液: 
Ni 804 ・6H20+NiCA2・6H20+ホ
ウ酸) (C):同様に1μ刊厚のクロムめっき(めっき液:C
rO3+H2804) (D): 0,5μ刊厚のニッケルめっき後0.2μm
厚のり[Jムめつきくめっき液:(B)。
(A): Original plate before plating (B): After electrolytically degreasing the original plate with homezaline and potassium hydroxide aqueous solution, 1 μm thick nickel plating (plating solution:
Ni 804 ・6H20 + NiCA2 ・6H20 + boric acid) (C): Similarly, 1μ thick chromium plating (plating solution: C
rO3+H2804) (D): 0.2μm after 0.5μ thick nickel plating
Thick paste [J Mumetsuki plating solution: (B).

(C)に同じ) (E)、(F)、(G): (B)、(C)、(D)そ
れぞれに# 1000まで砥粒研摩したロールを使用し
て1%の圧延率でスキンバス圧延多試料の表面を500
倍の倍率をもって走査電子顕微鏡で観察した結果を第1
図に示した。各写真の下段にはそれぞれの場合について
測定した表面粗さの値Ra 、 RIaXを併記した。
(Same as (C)) (E), (F), (G): (B), (C), (D) were each skinned at a rolling rate of 1% using rolls polished to #1000. The surface of the bus-rolled multi-sample was
The results of observation using a scanning electron microscope at twice the magnification are shown in the first
Shown in the figure. At the bottom of each photo, the surface roughness values Ra and RIaX measured for each case are also listed.

(A>によれば、巨視的には美麗な表面を持つ5US4
30の原板も高倍率で観察するとその表面は圧延ロール
の研削になる凹凸が転写されたことによって生じた圧延
方向と平行に走る浅い溝、圧延時の潤滑材によるオイル
・ビットや酸洗に起因した直径2〜3μm以下の多数の
ビットそして表面の微小割れ、および押込み疵など、数
多くの表面欠陥が存在していることがわかる。
(According to A>, 5US4 has a macroscopically beautiful surface.
When observing the original plate No. 30 at high magnification, the surface shows shallow grooves running parallel to the rolling direction caused by the transfer of the unevenness caused by the grinding of the rolling rolls, and oil bits and pickling caused by the lubricant during rolling. It can be seen that there are many surface defects such as a large number of bits with a diameter of 2 to 3 μm or less, microcracks on the surface, and indentation flaws.

これらの欠陥は前述したように電池!FJ造時、アモル
ファス層が極めて薄いため種々の問題を引起こし電池と
しての信頼性を著しく低下させる原因になる。この場合
原板(A)の表面粗さは平均粗さRa1最大高さRII
laxの値でそれぞれ0.134μI11,1,091
μmであった。
These defects are caused by the battery as mentioned above! During FJ manufacturing, the amorphous layer is extremely thin, which causes various problems and significantly reduces reliability as a battery. In this case, the surface roughness of the original plate (A) is average roughness Ra1 maximum height RII
The value of lax is 0.134μI11, 1,091 respectively
It was μm.

この原板につき上記三種類のめっきを施した各試料(B
)、(C)、(D)の表面状態の変化を見ると、原板で
見られた微小なビット状の表面欠陥は電着物によって埋
められ改善が見られ、Ra。
Each sample (B
), (C), and (D), the minute bit-like surface defects seen on the original plate were filled with electrodeposit and an improvement was seen, and the Ra.

Rwaxの値はそれぞれ(B ) 0.102μs 、
0.954us (C) 0,066μa+ 、0,6
7Jczm ([)) 0.085μm、0.717μ
mであった。しかし比較的大きめの表面欠陥については
欠陥部のブロファ′イルはなだらかになるもののその輪
郭は依然として観察される。
The values of Rwax are (B) 0.102μs,
0.954us (C) 0,066μa+, 0.6
7Jczm ([)) 0.085μm, 0.717μm
It was m. However, for relatively large surface defects, although the profile of the defect becomes gentler, its outline can still be observed.

これらにめっき後スキンバス圧延を施した8試11(E
)、(F)、(G)の表面状況は著しく向上する。すな
わちめっき後でも残存していた電着物に覆われた表面欠
陥部の輪郭はならされその痕跡をとどめなくなる。Ra
 、 Rmaxはそれぞれ(E) 0.057μn+ 
、0.440μm (F) 0.028μm 。
8 trials 11 (E
), (F), and (G) are significantly improved. In other words, the contours of surface defects covered with electrodeposit that remained even after plating are smoothed out and no trace remains. Ra
, Rmax is (E) 0.057μn+
, 0.440 μm (F) 0.028 μm.

0.291μm (G) 0.023μm 、0.28
3.cz+++と著しくすぐれた値を示すようになる。
0.291μm (G) 0.023μm, 0.28
3. It comes to show an extremely excellent value of cz+++.

以上のようにステンレス鋼薄板を芯板として、めっき層
を形成した後、スキンバス圧延を施すことによって、工
程操作が複雑で加工コストも高い研摩法を適用せずとも
太陽電池基板用母板として好ましい表面状態が安価に得
られることが明らかである。
As described above, by forming a plating layer using a stainless steel thin plate as a core plate and then applying skin bath rolling, it can be used as a mother plate for solar cell substrates without applying the polishing method, which has complicated process operations and high processing costs. It is clear that favorable surface conditions can be obtained at low cost.

基板表面をNi及び/又はOrのめっき層とするとき、
太陽電池としての使用に際し、長期間にわたり電池特性
を安定に維持することができる。
When the substrate surface is plated with Ni and/or Or,
When used as a solar cell, battery characteristics can be maintained stably for a long period of time.

しかしAl1.Aa又はCuなどは、電池として使用中
にこれらの元素がアモルファス層へ拡散を起し、電池特
性を劣化させるうれいがあるのに対しNi 、Crには
このような拡散現像は観察されず、この点で有利である
However, Al1. When using Aa or Cu, these elements diffuse into the amorphous layer during use as a battery, potentially deteriorating the battery characteristics, whereas such diffusion development is not observed with Ni and Cr. It is advantageous in this respect.

めっき層の厚みは太陽電池基板用母板として必要な表面
状態が得られれば薄い程好ましいが、めっき原板の表面
状況と経済性とのバランスを考慮して選択する必要があ
る。
The thickness of the plating layer is preferably as thin as possible as long as the surface condition required as a mother plate for a solar cell substrate can be obtained, but it must be selected in consideration of the balance between the surface condition of the plated original plate and economic efficiency.

通常、ステンレス鋼の場合、Rmaxで高々2〜5μ−
以下であることを考慮するとめっき厚は15μm以下の
範囲、とくに10μm以下で十分である。
Normally, in the case of stainless steel, Rmax is at most 2 to 5 μ-
Considering the following, it is sufficient for the plating thickness to be in the range of 15 μm or less, particularly 10 μm or less.

スキンパス圧延についてはステンレス鋼の製造に通常使
用されているスキンバス圧延機を用いて行えばよく、こ
の圧延機に用いるロールの表面は# 1000〜#15
00程度の研摩を施すこと、圧延率は0.1〜5%の範
囲で行うことがそれぞれ好ましい。
Skin pass rolling may be carried out using a skin bath rolling mill commonly used in the manufacture of stainless steel, and the surface of the rolls used in this rolling mill is #1000 to #15.
It is preferable to perform polishing of about 0.00 and rolling rate at a rolling rate of 0.1 to 5%.

またスキンパス圧延は潤滑材を用いる湿式スキンパス圧
延でも、aSII滑材を用いない乾式スキンパス圧延で
もその両者とも適用ができる。
Further, skin pass rolling can be applied to both wet skin pass rolling using a lubricant and dry skin pass rolling not using an aSII lubricant.

以上のべたところにおいてめっき操作は一般に使われて
いる連続電気めっき装置を利用することができる。また
ステンレス鋼製造に通常使用されるスキンパス圧延機を
用いる低順で、生産性の高い連続的な方法により、太陽
電池の基板用母板の表面状態の改善が可能である。
For the plating operations described above, commonly used continuous electroplating equipment can be used. Furthermore, it is possible to improve the surface condition of a mother plate for a solar cell substrate by a low-order, highly productive continuous method using a skin-pass rolling mill commonly used in stainless steel production.

(実施例) S U S −304,S U S 430.およびS
US 410Lの3.5〜4.0mmmm厚板延板い表
1に記載した加工履歴を与えた。
(Example) SUS-304, SUS 430. and S
A 3.5-4.0 mm thick plate of US 410L was given the processing history shown in Table 1.

すなわち(i)冷間圧延によって所定の芯板冷延厚とし
た後、<ii>(1)は冷延のまま(2)。
That is, (i) after cold rolling the core plate to a predetermined cold-rolled thickness, <ii> (1) remains as cold-rolled (2).

(3)、および(6)については光輝焼鈍、(4)、(
5)については大気焼鈍さらにスキンパス圧延を行い、
めっき用原板とし、(iii )これらにつきホトメザ
リン+水酸化カリウム水溶液中で陽極電解脱脂を経て、
表中に示されているめっき種類およびめっき厚の電気め
っき(使用めっき浴組成については既述したところと同
じ)を行い、’(iV)その後、それぞれにつき#10
00まで表面研摩したロールを用いて0.2〜5%の種
々な圧延率でスキンパス圧延((1)、(2)、(4)
は湿式スキンパス圧延、(3)、(5)、(6)は乾式
スキンパス圧延)を行う最終仕上げ処理を施した。
For (3) and (6), bright annealing, (4), (
For 5), air annealing and skin pass rolling were performed.
(iii) These are subjected to anodic electrolytic degreasing in a photometherin + potassium hydroxide aqueous solution,
Electroplating was performed with the plating type and plating thickness shown in the table (the plating bath composition used was the same as described above), and then #10
Skin pass rolling ((1), (2), (4)
The final finishing treatment was performed by performing wet skin pass rolling in (3), dry skin pass rolling (3), (5), and (6).

以上の処理により表に示すように表面粗さは芯板に比較
して著しく改善され、また芯板で観察された諸種のピッ
ト林表面欠陥も無くすこ、とができた。
As shown in the table, the above treatment significantly improved the surface roughness compared to the core board, and also eliminated the various pit forest surface defects observed on the core board.

(発明の効果) この発明はステンレス鋼を芯板として用い、めっきおよ
びスキンパス圧延を結合して処理した太陽電池基板用母
板としてすぐれた表面状態を安価に与えることができ最
近のニーズに適合する。
(Effects of the Invention) This invention uses stainless steel as a core plate and combines plating and skin pass rolling to provide an excellent surface condition at a low cost as a mother plate for solar cell substrates, meeting recent needs. .

【図面の簡単な説明】[Brief explanation of the drawing]

この発明による基板相別と処理前の芯板につき表面状態
を示す走査電子顕微鏡写真(倍率500倍)である。
FIG. 2 is a scanning electron micrograph (magnification: 500 times) showing the surface condition of the core plate before substrate phase and treatment according to the present invention. FIG.

Claims (1)

【特許請求の範囲】 1、ステンレス鋼薄板よりなる芯板の少くとも片面に被
成しためつき層をそなえ、該めっき層が、めつ゛き処理
後のスキンパス圧延による平滑表面を有することから成
る、太陽電池基板用母板。 2、めっき層がNi及び/又はCrめつきである1記載
の母板。
[Claims] 1. A core plate made of a thin stainless steel plate is provided with a plating layer formed on at least one side thereof, and the plating layer has a smooth surface obtained by skin pass rolling after the plating treatment. Motherboard for solar cell substrates. 2. The base plate according to 1, wherein the plating layer is Ni and/or Cr plating.
JP59015357A 1984-01-31 1984-01-31 Master plate for solar cell board Pending JPS60160180A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59015357A JPS60160180A (en) 1984-01-31 1984-01-31 Master plate for solar cell board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59015357A JPS60160180A (en) 1984-01-31 1984-01-31 Master plate for solar cell board

Publications (1)

Publication Number Publication Date
JPS60160180A true JPS60160180A (en) 1985-08-21

Family

ID=11886544

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59015357A Pending JPS60160180A (en) 1984-01-31 1984-01-31 Master plate for solar cell board

Country Status (1)

Country Link
JP (1) JPS60160180A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62143481A (en) * 1985-12-18 1987-06-26 Nisshin Steel Co Ltd Amorphous silicon solar cell substrate

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62143481A (en) * 1985-12-18 1987-06-26 Nisshin Steel Co Ltd Amorphous silicon solar cell substrate
JPH0564870B2 (en) * 1985-12-18 1993-09-16 Nisshin Steel Co Ltd

Similar Documents

Publication Publication Date Title
US2484118A (en) Method of bonding aluminum to steel
CN106311747B (en) Lithium ion battery flexible package aluminum plastic film aluminium foil and its production technology
CN100577889C (en) A kind of thin belt continuous casting crystal roller surface electroplating method and electroplate liquid thereof
CN108950613A (en) A kind of preparation method of tin plate and the application of thus obtained tin plate
CN109778246B (en) Electrolytic copper foil manufacturing equipment
CN109207805B (en) Preparation method of aluminum alloy strip for curtain wall
CN108179376B (en) A kind of quickly compound alumetizing process
CN101142333A (en) Process for producing aluminum material for electrolytic capacitor electrode, aluminum material for electrolytic capacitor electrode, process for producing electrolytic capacitor electrode material, a
JPS60160180A (en) Master plate for solar cell board
CN115161733B (en) Surface treatment structure of aluminum alloy and preparation method thereof
JPS60234380A (en) Substrate for solar cell
JPS60160179A (en) Master plate for solar cell board
JPS6218771A (en) Material plate for solar cell base
JPS613472A (en) Substrate of solar cell
Dubpernell Chromium plating
JP3092929B2 (en) Ni, Cu coated stainless steel sheet and method for producing the same
JPS62107094A (en) Manufacture of nickel plated material
JP2002143903A (en) METHOD FOR PRODUCING Ni DIFFUSION PLATED STEEL SHEET AND THE STEEL SHEET
JP2000282290A (en) MANUFACTURE OF Ni PLATED STAINLESS STEEL SHEET HAVING EXCELLENT GLOSSINESS AND REDUCED CONTACT RESISTANCE
JPS6167794A (en) Manufacture of steel sheet for coating having superior corrosion resistance and high sharpness
JPS6223180A (en) Manufacture of mother board for solar cell base
CN109881233B (en) Preparation method of aluminum alloy curtain wall plate
JPS6222490A (en) Base plate for solar cell substrate and its manufacture
TWI758563B (en) Aluminum laminate and method for producing the same
JP2002129377A (en) Method for manufacturing sn-ni alloy plated stainless steel-sheet with low contact resistance and superior surface luster