JP3092929B2 - Ni, Cu coated stainless steel sheet and method for producing the same - Google Patents

Ni, Cu coated stainless steel sheet and method for producing the same

Info

Publication number
JP3092929B2
JP3092929B2 JP02163472A JP16347290A JP3092929B2 JP 3092929 B2 JP3092929 B2 JP 3092929B2 JP 02163472 A JP02163472 A JP 02163472A JP 16347290 A JP16347290 A JP 16347290A JP 3092929 B2 JP3092929 B2 JP 3092929B2
Authority
JP
Japan
Prior art keywords
stainless steel
plating
layer
diffusion layer
annealing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP02163472A
Other languages
Japanese (ja)
Other versions
JPH0452295A (en
Inventor
裕文 杉川
Original Assignee
片山特殊工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 片山特殊工業株式会社 filed Critical 片山特殊工業株式会社
Priority to JP02163472A priority Critical patent/JP3092929B2/en
Publication of JPH0452295A publication Critical patent/JPH0452295A/en
Application granted granted Critical
Publication of JP3092929B2 publication Critical patent/JP3092929B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Electroplating Methods And Accessories (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明はNi,Cu被覆ステンレス鋼板およびその製造方
法に関し、詳しくは、一次電池用ボタン電池の負極板
(封口板)等に用いられるステンレス鋼板の一方面をNi
で被覆すると共に他方面をCuで被覆するものにおいて、
特に、鋼素地とNiおよび鋼素地とCuとを夫々強固に結合
させて密着性を高め、耐食性および加工性の向上を図る
と共に、NiおよびCuの厚さを薄くすることを可能とし
て、コストダウンを図るものである。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a Ni, Cu-coated stainless steel sheet and a method for producing the same, and more particularly, to a stainless steel sheet used for a negative electrode plate (sealing plate) of a button battery for a primary battery. Ni direction
In the one coated with Cu on the other side,
In particular, the steel base and Ni and the steel base and Cu are firmly bonded to each other to enhance adhesion, improve corrosion resistance and workability, and reduce the thickness of Ni and Cu, thereby reducing costs. It is intended.

従来の技術 従来、この種の鋼素地の両面をNiとCuで被覆する方法
として、一般に、圧延クラッド法が用いられている。該
圧延クラッド法では予め製造したNi箔およびCu箔を鋼素
地の両側に供給して、これらを圧延して一体に密着させ
ているが、必要とするNiおよびCuの厚みが薄い為に圧延
・焼鈍を何度も繰り返し、Cu箔を略40μm前後、Ni箔を
略16μm前後の所要厚さにまで減少させて、Ni被覆層お
よびCu被覆層を得ている。
2. Description of the Related Art Conventionally, as a method of coating both sides of a steel base of this kind with Ni and Cu, a roll cladding method is generally used. In the roll cladding method, Ni foil and Cu foil produced in advance are supplied to both sides of a steel substrate, and these are rolled and adhered together. Annealing is repeated many times, and the thickness of the Cu foil is reduced to approximately 40 μm and the thickness of the Ni foil is reduced to approximately 16 μm to obtain the Ni coating layer and the Cu coating layer.

発明が解決しようとする課題 しかしながら、上記圧延クラッド法では、Ni箔および
Cu箔を前以て製造しておく必要があり、かつ、圧延を何
度も繰り返すために歩留まりが悪くなり、コスト高にな
る欠点がある。また、Ni箔およびCu箔を製造する際、あ
る程度の厚みを必要とするため、NiおよびCuの必要量が
多くなり、この点からもコスト高になる欠点がある。
Problems to be Solved by the Invention However, in the rolled cladding method, Ni foil and
There is a disadvantage that the Cu foil needs to be manufactured in advance, and the rolling is repeated many times, thereby lowering the yield and increasing the cost. Also, when manufacturing Ni foil and Cu foil, a certain thickness is required, so that the required amount of Ni and Cu is increased, and from this point, there is a disadvantage that the cost is increased.

上記した問題を有する圧延クラッド法に代えて、メッ
キ方法により鋼素地の両面をNiとCuで被覆する方法も提
供されている。即ち、鋼素地の一方面にNiメッキ層、他
方面にCuメッキ層を形成するものであるが、該方法によ
り製造した場合、ステンレス鋼素地とメッキ層との密着
性が良好でない欠点を有している。密着性が良好でない
場合、加工を施すと、その形状によっては例えば180度
折り曲げ加工した場合には、ステンレス鋼板の変形にNi
メッキ層およびCuメッキ層が追従することが出来ず、剥
離が生じることがある。また、Niメッキ層は硬くて脆い
ため、剥離を免れた部分にもクラックが発生しやすい。
さらに、メッキの付着量を増やしてもピンホールの発生
を回避することが出来ない。
Instead of the rolling clad method having the above-mentioned problem, a method of coating both surfaces of a steel substrate with Ni and Cu by a plating method has also been provided. That is, a Ni plating layer is formed on one surface of the steel substrate, and a Cu plating layer is formed on the other surface.However, when manufactured by this method, there is a disadvantage that the adhesion between the stainless steel substrate and the plating layer is not good. ing. If the adhesion is not good, if processing is performed, depending on its shape, for example, if it is bent at 180 degrees, the deformation of the stainless steel sheet will be Ni
The plating layer and the Cu plating layer cannot follow each other, and peeling may occur. In addition, since the Ni plating layer is hard and brittle, cracks are liable to occur even in portions where separation is avoided.
Furthermore, even if the amount of plating is increased, the occurrence of pinholes cannot be avoided.

上記した種々の理由より、ステンレス鋼素地表面に直
接Niメッキ層およびCuメッキ層を設けたNi,Cu被覆ステ
ンレス鋼板は加工性、耐食性の点で問題があった。
For the above various reasons, the Ni, Cu coated stainless steel sheet provided with the Ni plating layer and the Cu plating layer directly on the surface of the stainless steel substrate has a problem in workability and corrosion resistance.

本発明は上記した問題を解決するためになされたもの
で、ステンレス鋼素地とNiメッキ層およびCuメッキ層と
の密着性を高め、耐食性および加工性の向上を図ると共
に、前記圧延クラッド法と比較して必要なNi量およびCu
量を減少し、かつ、作業工程の削減を図ることにより、
大幅なコストダウンを図ることを目的としている。
The present invention has been made in order to solve the above-described problems, and enhances the adhesion between a stainless steel substrate and a Ni plating layer and a Cu plating layer, thereby improving corrosion resistance and workability, and comparing with the rolling clad method. Required Ni amount and Cu
By reducing the amount and reducing the number of work processes,
The aim is to significantly reduce costs.

課題を解決するための手段 本発明は、上記目的を達成するため、連続的に、ステ
ンレス鋼板の一方面にNiメッキ、他方面にCuメッキを施
した後、非酸化性雰囲気ガス中で光輝焼鈍を行い、Niと
鋼素地との拡散層およびCuと鋼素地との拡散層を形成し
た後に調質圧延を行うことを特徴とし、治金的に結合し
た拡散層の形成によりステンレス鋼素地に対するNiメッ
キ層およびCuメッキ層の密着性を高め、耐食性および加
工性に優れたNi,Cu被覆ステンレス鋼板およびその製造
方法を提供するものである。
Means for Solving the Problems In order to achieve the above object, the present invention is to continuously apply Ni plating on one surface of a stainless steel plate and Cu plating on the other surface, and then perform bright annealing in a non-oxidizing atmosphere gas. After forming a diffusion layer of Ni and a steel base and a diffusion layer of Cu and a steel base, temper rolling is performed, and a metallurgically bonded diffusion layer is formed on the stainless steel base to form a diffusion layer. An object of the present invention is to provide a Ni, Cu-coated stainless steel sheet which has improved adhesion between a plating layer and a Cu plating layer and has excellent corrosion resistance and workability, and a method for producing the same.

詳しくは、ステンレス鋼素地の表裏一方面にNi金属メ
ッキ層、他方面にCu金属メッキ層を備えると共に、これ
らステンレス鋼素地とNi金属メッキ層の間にステンレス
鋼とNiの拡散層、ステンレス鋼素地とCu金属メッキ層の
間にステンレス鋼とCuの拡散層あるいはステンレス鋼と
NiとCuの拡散層を備えていることを特徴とするNi,Cu被
覆ステンレス鋼板を提供するものである。
Specifically, a stainless steel substrate is provided with a Ni metal plating layer on one side and a Cu metal plating layer on the other side, and a diffusion layer of stainless steel and Ni, a stainless steel substrate, between the stainless steel substrate and the Ni metal plating layer. Between stainless steel and Cu diffusion layer or stainless steel
An object of the present invention is to provide a Ni, Cu-coated stainless steel sheet comprising a diffusion layer of Ni and Cu.

また、本発明は、ステンレス鋼素地の表裏一方面にNi
ストライクメッキを介してNi本メッキを施すと共に、他
方面にNiもしくはCuストライクメッキを介してCu本メッ
キを施し、ステンレス鋼素地の一方面にNiメッキ層を、
他方面にCuメッキ層を設け、 ついで、非酸化性雰囲気ガス中で光輝焼鈍を行って、
ステンレス鋼とNiとの拡散層、ステンレス鋼とCuとの拡
散層、およびNiストライクメッキの表面にCu本メッキを
した場合にはステンレス鋼とNiとCuとの拡散層を形成
し、 ついで、調質圧延を行うことを特徴とするNi,Cu被覆
ステンレス鋼板の製造方法を提供するものである。
Further, the present invention provides a stainless steel
Ni plating through strike plating and Ni plating through Ni or Cu strike plating on the other side, Ni plating layer on one side of stainless steel base,
Provide a Cu plating layer on the other surface, and then perform bright annealing in a non-oxidizing atmosphere gas,
A diffusion layer of stainless steel and Ni, a diffusion layer of stainless steel and Cu, and a diffusion layer of stainless steel, Ni and Cu are formed when the main nickel plating is performed on the surface of Ni strike plating. It is intended to provide a method for producing a Ni, Cu-coated stainless steel sheet, characterized by performing temper rolling.

上記したNi,Cu被覆ステンレス鋼板およびその製造方
法において、ステンレス鋼素地の表裏一方面に設けるNi
金属メッキ層の厚さは0.5〜6.0μm、他方面に設けるCu
金属メッキ層の厚さは2〜20μmとすると共に、調質圧
延を経て成形する全体の板厚を0.05mm〜0.8mmとし、か
つ、上記ステンレス鋼とNiの拡散層、ステンレス鋼とCu
の拡散層、およびステンレス鋼とNiとCuの拡散層からな
る各拡散層の厚さが0.1〜5.0μmとなるように、焼鈍条
件を連続焼鈍時間0.5〜15分、焼鈍温度600℃〜900℃、H
25%〜75%でN295%〜25%のガス非酸化性雰囲気中で焼
鈍処理を行っている。
In the above-described Ni, Cu-coated stainless steel sheet and the method of manufacturing the same, the Ni provided on one of the front and back surfaces of the stainless steel substrate
The thickness of the metal plating layer is 0.5 to 6.0 μm, and the Cu
The thickness of the metal plating layer is 2 to 20 μm, the overall thickness formed through temper rolling is 0.05 mm to 0.8 mm, and the diffusion layer of stainless steel and Ni, stainless steel and Cu
So that the thickness of each diffusion layer composed of a diffusion layer of stainless steel and Ni and Cu is 0.1 to 5.0 μm, and the annealing conditions are continuous annealing time of 0.5 to 15 minutes and annealing temperature of 600 ° C. to 900 ° C. , H
It is performed an annealing processing in N 2 95% to 25% of the gas non-oxidizing atmosphere at a 25% to 75%.

さらに、上記NiおよびCuメッキ層を形成して後、焼鈍
・調質圧延を任意の回数行い、最後の調質圧延後に、再
度、Niメッキ層にNiメッキおよびCuメッキ層にCuメッキ
を施して、調質圧延時等に表面に付着しやすい異物を埋
め込むために、最表層にメッキ層を形成することが好ま
しい。
Furthermore, after forming the Ni and Cu plating layers, annealing and temper rolling are performed an arbitrary number of times, and after the final temper rolling, again, the Ni plating layer is subjected to Ni plating and the Cu plating layer is subjected to Cu plating. It is preferable to form a plating layer on the outermost layer in order to embed foreign substances that easily adhere to the surface during temper rolling or the like.

さらにまた、上記メッキ処理後、焼鈍前に1回目の調
質圧延を行い、その後、上記焼鈍処理・2回目の調質圧
延処理を行っても良い。
Furthermore, after the above-mentioned plating, the first temper rolling may be performed before annealing, and then the above-mentioned annealing and the second temper rolling may be performed.

作用 上記本発明に係わるNi,Cu被覆ステンレス鋼板は、ス
テンレス鋼素地とNi金属メッキ層およびCu金属メッキ層
との夫々の間にステンレス鋼とNiの拡散層、ステンレス
鋼とCuの拡散層が設けられているため、該拡散層により
ステンレス鋼素地とNi金属メッキ層およびCu金属メッキ
層との密着性が高まり、メッキ方法によるNi、Cuの被覆
方法の場合に生じる加工時のメッキ層の剥離を確実に防
止することが出来る。かつ、メッキ方法によりNi、Cu被
覆層を形成するため、前以てNi箔、Cu箔を設け、これを
ステンレス鋼素地の両面に供給して何度も圧延を繰り返
す圧延クラッド法と比較して、作業工程の大幅な短縮を
図ることが出来ると共に、Niメッキ層およびCuメッキ層
の厚さを圧延クラッド法による場合と比較して略1/4程
度に減少できるため、大幅なコストダウンを図ることも
出来る。
The Ni, Cu coated stainless steel sheet according to the present invention is provided with a stainless steel and Ni diffusion layer and a stainless steel and Cu diffusion layer between the stainless steel substrate and the Ni metal plating layer and the Cu metal plating layer, respectively. Because of the diffusion layer, the adhesion between the stainless steel substrate and the Ni metal plating layer and the Cu metal plating layer is increased by the diffusion layer, and peeling of the plating layer during processing that occurs in the case of the coating method of Ni and Cu by the plating method is prevented. It can be prevented reliably. And, in order to form a Ni, Cu coating layer by a plating method, a Ni foil and a Cu foil are provided in advance, compared with the rolling cladding method in which the steel is supplied to both sides of a stainless steel substrate and repeatedly rolled. In addition to greatly shortening the work process, the thickness of the Ni plating layer and Cu plating layer can be reduced to about 1/4 compared with the case of using the rolled cladding method, thereby achieving a significant cost reduction. You can do it.

実施例 以下、本発明を図面を参照して詳細に説明する。Hereinafter, the present invention will be described in detail with reference to the drawings.

第1図は本発明の第1実施例に係わるNi,Cu被覆ステ
ンレス鋼板1の断面図を示し、2はステンレス鋼素地、
3はステンレス鋼素地2の表裏の一方面(以下、A面と
称す)に積層されたステンレス鋼とNiの拡散層(以下、
SUS−Ni拡散層と称す)、4はステンレス鋼素地2の他
方面(以下、B面と称す)に積層されたステンレス鋼と
NiとCuとの拡散層(以下、SUS−Ni−Cu拡散層と称
す)、5はSUS−Ni拡散層3の表面に積層されたNi金属
メッキ層、6は上記SUS−Ni−Cu拡散層4の表面に積層
されたCu金属メッキ層である。
FIG. 1 is a cross-sectional view of a Ni, Cu-coated stainless steel sheet 1 according to a first embodiment of the present invention, where 2 is a stainless steel base,
Reference numeral 3 denotes a stainless steel and Ni diffusion layer (hereinafter, referred to as A) laminated on one of the front and back surfaces of the stainless steel substrate 2 (hereinafter, referred to as A surface).
4 is a stainless steel laminated on the other surface of the stainless steel substrate 2 (hereinafter referred to as surface B).
A diffusion layer of Ni and Cu (hereinafter, referred to as a SUS-Ni-Cu diffusion layer), 5 is a Ni metal plating layer laminated on the surface of the SUS-Ni diffusion layer 3, and 6 is the SUS-Ni-Cu diffusion layer. 4 is a Cu metal plating layer laminated on the surface of No. 4.

上記構成からなるNi,Cu被覆ステンレス鋼板1の板厚
は0.05〜0.8mmで、板幅は10mm〜800mmあり、Ni金属メッ
キ層5の厚さは0.5〜6.0μm、Cu金属メッキ層6の厚さ
は2〜20μm、SUS−Ni拡散層3およびSUS−Ni−Cu拡散
層4の厚さは0.1〜5.0μmである。
The thickness of the Ni, Cu coated stainless steel sheet 1 having the above configuration is 0.05 to 0.8 mm, the sheet width is 10 mm to 800 mm, the thickness of the Ni metal plating layer 5 is 0.5 to 6.0 μm, and the thickness of the Cu metal plating layer 6. The thickness is 2 to 20 μm, and the thickness of the SUS-Ni diffusion layer 3 and the SUS-Ni-Cu diffusion layer 4 is 0.1 to 5.0 μm.

上記Ni,Cu被覆ステンレス鋼板1は第3図に示すフロ
ーチャートに従って製造しており、概略的には、第2図
に示すように、ステンレス鋼素地2のA面にNiストライ
クメッキ層7、B面にNiストライクメッキ層8を形成し
た後、A面にNi本メッキ層9を厚メッキで形成すると共
にB面にCu本メッキ層10を厚メッキで形成している。こ
れらメッキ工程が終了した後、非酸化性雰囲気ガス(H2
5%〜75%、N295%〜25%)中で、焼鈍温度600℃〜900
℃、連続焼鈍時間0.5〜15分で焼鈍処理を行い、ステン
レス鋼素地2とNiメッキ層との間にSUS−Ni拡散層3、
ステンレス鋼素地2とCuメッキ層との間にSUS−Ni−Cu
拡散層4を形成し、その後、調質圧延を行うことにより
第1図に示すNi,Cu被覆ステンレス鋼板1を完成してい
る。
The Ni, Cu coated stainless steel plate 1 is manufactured according to the flowchart shown in FIG. 3, and as shown in FIG. 2, the Ni strike plating layer 7 and the B surface After the Ni strike plating layer 8 is formed, the Ni main plating layer 9 is formed by thick plating on the A side, and the Cu main plating layer 10 is formed by thick plating on the B side. After these plating steps are completed, a non-oxidizing atmosphere gas (H 2
5% to 75%, in N 2 95% to 25%), annealing temperature 600 ° C. to 900
℃, continuous annealing time of 0.5 to 15 minutes, SUS-Ni diffusion layer 3 between stainless steel substrate 2 and Ni plating layer,
SUS-Ni-Cu between stainless steel substrate 2 and Cu plating layer
The diffusion layer 4 is formed, and then temper rolling is performed to complete the Ni, Cu-coated stainless steel sheet 1 shown in FIG.

第3図を参照して、以下に製造方法を詳述すると、ま
ず、コイルに巻回したステンレス鋼素地2をコイル払出
機から巻き出し、電解脱脂処理して後、水洗処理し、つ
いで、活性化処理する。上記電解脱脂処理はオルソ珪酸
ソーダと苛性ソーダとの混合液に浸漬して行い、活性化
処理は塩酸10%溶液に浸漬して行う。
Referring to FIG. 3, the manufacturing method will be described in detail below. First, the stainless steel substrate 2 wound around a coil is unwound from a coil dispenser, subjected to electrolytic degreasing, washed with water, and then activated. Process. The electrolytic degreasing treatment is performed by dipping in a mixed solution of sodium orthosilicate and sodium hydroxide, and the activation treatment is performed by dipping in a 10% hydrochloric acid solution.

上記活性化処理の後、水洗処理し、ついで、片面(A
面)をNiストライクメッキ槽に送り、ステンレス鋼素地
2のA面にNiストライクメッキを施した後、次のNiスト
ライクメッキ槽に送り、ストライク素地2のB面にNiス
トライクメッキを施す。
After the activation treatment, a water washing treatment is performed, and then one side (A
Is transferred to the Ni strike plating tank, and the A side of the stainless steel base 2 is subjected to Ni strike plating, and then sent to the next Ni strike plating tank, and the B strike of the strike base 2 is subjected to Ni strike plating.

上記ステンレス鋼素地2のA面およびB面に対して片
面づつ行うストライクメッキ方法および後述する片面づ
つの厚メッキ方法としては、本出願人の平成2年5月15
日出願に係わる「Niメッキ鋼板、該Niメッキ鋼板からな
る成型品およびその製造方法」において開示した片面メ
ッキ装置によるメッキ方法等が適宜に採用出来る。尚、
ストライクメッキをA面B面同時に行ってもよいことは
言うまでもない。
The strike plating method performed on each of the A and B surfaces of the stainless steel substrate 2 one by one and the thick plating method performed on one surface described below are described in May 15, 1990 by the present applicant.
A plating method using a single-sided plating apparatus and the like disclosed in “Ni-plated steel sheet, molded article made of the Ni-plated steel sheet and a method of manufacturing the same” concerning the Japanese Patent Application can be appropriately adopted. still,
Needless to say, strike plating may be performed simultaneously on the A side and the B side.

上記ステンレス鋼素地2のA面とB面になすNiストラ
イクメッキは、塩化Ni200g/〜300g/、塩酸70g/〜
200g/のメッキ液を用い、電解メッキ方法でメッキし
ている。該NiストライクメッキはA面とB面とも0.05〜
0.2μmの薄さで電着させている。このNiストライクメ
ッキはステンレス鋼素地2の表面の不動態皮膜を除去す
ると共に後工程で行う厚メッキ層の密着性を向上させる
ものである。
The Ni strike plating on the A and B surfaces of the stainless steel substrate 2 is 200 g / ~ 300 g / Ni chloride and 70 g / ~ hydrochloric acid.
It is plated by electrolytic plating using a plating solution of 200 g /. The Ni strike plating is 0.05 ~ on both sides A and B
Electrodeposited with a thickness of 0.2 μm. This Ni strike plating removes the passivation film on the surface of the stainless steel substrate 2 and improves the adhesion of the thick plating layer performed in a later step.

上記したA面およびB面へのNiストライクメッキを施
した後、水洗処理し、ついで、A面にNi本メッキを行
い、続いて、B面にCu本メッキを行っている。
After Ni strike plating is applied to the A side and the B side described above, a water washing treatment is performed, then, the A side is subjected to the Ni main plating, and subsequently, the B side is subjected to the Cu main plating.

上記Ni本メッキ(Ni厚メッキ)は、硫酸Ni200g/〜3
00g/、塩化Ni40g/〜60g/、硼酸35g/〜55g/の
メッキ液を電解メッキ方法で電着し、0.5μm〜6.0μm
のNi金属メッキ層を設けている。該Ni電解メッキは、無
光沢メッキ方法で、ワット浴、スルファミン酸浴等の通
常のメッキ浴を使用している。尚、メッキ方法としては
無電解の化学メッキ方法を用いてもよいが、電解メッキ
の方が短時間で所定のメッキ厚を確実に得ることが出来
るため、安価である利点を有する。
The above Ni plating (Ni thick plating) is Ni sulfate 200g / ~ 3
Electrodeposit a plating solution of 00g /, Ni chloride 40g / ~ 60g /, boric acid 35g / ~ 55g / by electroplating method, 0.5μm ~ 6.0μm
Ni metal plating layer is provided. The Ni electrolytic plating is a matte plating method and uses a normal plating bath such as a Watts bath and a sulfamic acid bath. As a plating method, an electroless chemical plating method may be used, but electrolytic plating has an advantage of being inexpensive because a predetermined plating thickness can be reliably obtained in a short time.

上記Cu本メッキ(Cu厚メッキ)は、硫酸銅200g/〜2
50g/、硫酸45g/〜60g/のメッキ液を上記Ni本メッ
キと同様に電解メッキ方法で電着し、2μm〜20μmの
Cu金属メッキ層を設けている。
The above-mentioned Cu main plating (Cu thick plating) is copper sulfate 200g / ~ 2
Electrodepositing a plating solution of 50 g /, sulfuric acid 45 g / ~ 60 g / by the electrolytic plating method in the same manner as the above Ni main plating, and 2 μm to 20 μm
A Cu metal plating layer is provided.

上記したNi本メッキとCu本メッキとを順次連続的に行
った後、水洗処理、乾燥処理をしてコイル巻取機でコイ
ル状に巻き取っている。
After the above-described Ni main plating and Cu main plating are successively and sequentially performed, a water washing process and a drying process are performed, and the coil is wound into a coil by a coil winder.

尚、上記B面側のCu本メッキ10とステンレス鋼素地2
との間に設けるストライクメッキとしては、上記Niスト
ライクメッキの代りに、第7図の第2実施例に示すよう
にCuストライクメッキ層21を設けても良い。該Cuストラ
イクメッキはピロリン酸銅40g/〜50g/、ピロリン酸
カリウム150g/〜200g/、アンモニア1g/、シュウ
酸カリウム5g/〜10g/の混合メッキ液により行って
いる。
In addition, the Cu main plating 10 on the B side and the stainless steel substrate 2
As the strike plating provided between the first and second steps, a Cu strike plating layer 21 may be provided as shown in the second embodiment of FIG. 7 instead of the above-mentioned Ni strike plating. The Cu strike plating is performed with a mixed plating solution of copper pyrophosphate 40 g / 〜50 g /, potassium pyrophosphate 150 g / 〜200 g /, ammonia 1 g /, and potassium oxalate 5 g / 〜10 g /.

上記したように、ステンレス鋼素地2のA面側にNiス
トライクメッキ層7とNi本メッキ層9、B面側にNiスト
ライクメッキ層8とCu本メッキ層10(第2図に示す第1
実施例)を形成し、あるいはA面側が第1実施例と同様
で、B面側にCuストライクメッキ層21とCu本メッキ層10
(第7図に示す第2実施例)を形成してメッキ工程を終
了する。
As described above, the Ni strike plating layer 7 and the main Ni plating layer 9 are provided on the side A of the stainless steel substrate 2, and the Ni strike plating layer 8 and the main Cu plating layer 10 are provided on the side B.
Example 1), or the A side is the same as the first embodiment, and the Cu strike plating layer 21 and the Cu main plating layer 10 are formed on the B side.
(Second embodiment shown in FIG. 7) is formed, and the plating step is completed.

上記メッキ工程を終了してコイル状としたものを、コ
イル払出機から巻戻ながら連続焼鈍炉へ供給し、H25%
〜75%、N295%〜25%の混合ガスの非酸化性雰囲気中
で、好ましくは、H275%、N225%、露点−50℃以下の非
酸化性雰囲気中で、加熱温度600℃〜900℃に昇温度し、
均熱時間0.5〜15分間連続光輝焼鈍を行っている。
After finishing the above plating process, the coil-shaped product was supplied to a continuous annealing furnace while being unwound from a coil unloader, and H 2 5%
75%, in a non-oxidizing atmosphere N 2 95% to 25% of the gas mixture, preferably, H 2 75%, N 2 25%, in a non-oxidizing atmosphere having a dew point of -50 ° C. or less, the heating temperature The temperature rises from 600 ° C to 900 ° C,
Continuous bright annealing is performed for soaking time of 0.5 to 15 minutes.

上記連続焼鈍炉11は第4図に示すように、加熱炉12、
均熱炉13、一次冷却炉14、遇時効炉15、二次冷却炉16を
連続的に配置した構成からなる。上記連続焼鈍炉11には
コイル払出機17より巻出して連続的に通過させた後、調
質圧延機18を通過させ、調質圧延を行って後、コイル巻
取機19で巻き取っている。
As shown in FIG. 4, the continuous annealing furnace 11 has a heating furnace 12,
It has a configuration in which a soaking furnace 13, a primary cooling furnace 14, a pre-aging furnace 15, and a secondary cooling furnace 16 are continuously arranged. After being unwound from the coil unwinder 17 and continuously passed through the continuous annealing furnace 11, it is passed through a temper rolling mill 18, subjected to temper rolling, and then wound up by a coil winder 19. .

上記焼鈍処理により、A面側ではNiストライクメッキ
層7を挟んでステンレス鋼素地2とNi本メッキ層9との
間にSUS−Ni拡散層3を形成している。また、B面側に
は、Niストライクメッキ層8を挟んでステンレス素地2
とCu本メッキ層10の間にSUS−Ni−Cu拡散層4を形成し
ている。上記SUS−Ni拡散層3およびSUS−Ni−Cu拡散層
4は0.1μm〜5.0μmの厚さとなるように、焼鈍処理を
行っている。
By the annealing treatment, the SUS-Ni diffusion layer 3 is formed between the stainless steel substrate 2 and the Ni main plating layer 9 with the Ni strike plating layer 7 interposed therebetween on the A side. On the B side, the stainless steel substrate 2 is sandwiched with the Ni strike plating layer 8 interposed.
The SUS-Ni-Cu diffusion layer 4 is formed between the Cu and the main plating layer 10. The SUS-Ni diffusion layer 3 and the SUS-Ni-Cu diffusion layer 4 are annealed so as to have a thickness of 0.1 μm to 5.0 μm.

尚、前記B面側のストライクメッキとしてCuストライ
クメッキ層21を形成した第2実施例においては、第6図
および第7図に示すように、焼鈍処理によりCuストライ
クメッキ層21を挟んでステンレス鋼素地2とCu本メッキ
層10との間にSUS−Cu拡散層22を形成している。該SUS−
Cu拡散層22の厚さも0.1μm〜5.0μmである。
Incidentally, in the second embodiment in which the Cu strike plating layer 21 was formed as the strike plating on the side B, as shown in FIGS. 6 and 7, the stainless steel was sandwiched by the Cu strike plating layer 21 by annealing. The SUS-Cu diffusion layer 22 is formed between the substrate 2 and the main Cu plating layer 10. The SUS-
The thickness of the Cu diffusion layer 22 is also 0.1 μm to 5.0 μm.

上記拡散層3、4(あるいは拡散層22)を形成するた
めに行う焼鈍処理工程において、拡散層を所要厚さに迅
速に形成するために重要な要素は、雰囲気、加熱温度、
加熱時間およびメッキ厚さの相互関係である。該焼鈍処
理工程において、オーステナイト系およびフェライト系
のステンレス鋼では、第5図に示すように、焼鈍時間が
長くなると、粒界炭化物が析出する鋭敏化現象が発生
し、温度範囲が900℃〜600℃の範囲で広がる問題があ
る。該鋭敏化現象が起こると、脆くなり弾性が低下して
加工時に割れが発生する要因となるため、この鋭敏化現
象が発生しない温度および加熱時間に設定する必要があ
る。一方、通常のステンレス鋼では1120℃の高温の焼鈍
温度が可能であるが、Cuメッキが為されており、Cuの溶
融点は1083℃であるため、高温とするとCuが溶解するこ
ととなる。このため、焼鈍温度の最高限度は略900℃ま
でとなり、かつ、ステンレス鋼素地とNiとを拡散させる
ためには焼鈍温度は略600℃以上とする必要がある。よ
って、焼鈍温度は900℃〜600℃の範囲に制限されるが、
該温度範囲は上記第5図に示す鋭敏化現象が発生しやす
い温度範囲であるため、該鋭敏化現象が発生しない加熱
時間に限定する必要がある。第5図に示すように、加熱
温度を900℃の最高温度とした場合、焼鈍時間を30秒と
すると鋭敏化現象は発生せず、また、最低温度600℃と
した場合、焼鈍時間を120分とすると鋭敏化現象は発生
しない。よって、焼鈍条件は600℃〜900℃の温度範囲
で、該温度条件に応じて焼鈍時間を30秒から120分の範
囲で選択してなされる。
In the annealing process performed to form the diffusion layers 3 and 4 (or the diffusion layer 22), important factors for quickly forming the diffusion layer to a required thickness include an atmosphere, a heating temperature, and the like.
This is a correlation between the heating time and the plating thickness. In the annealing treatment step, in the austenitic and ferritic stainless steels, as shown in FIG. 5, when the annealing time is prolonged, a sensitization phenomenon of precipitation of grain boundary carbide occurs, and the temperature range is 900 ° C. to 600 ° C. There is a problem that spreads in the range of ° C. When the sensitization phenomenon occurs, the material becomes brittle and the elasticity is reduced, which causes cracking during processing. Therefore, it is necessary to set a temperature and a heating time at which the sensitization phenomenon does not occur. On the other hand, a high annealing temperature of 1120 ° C. is possible with ordinary stainless steel, but Cu plating is performed and the melting point of Cu is 1083 ° C. Therefore, when the temperature is increased, Cu is dissolved. Therefore, the maximum limit of the annealing temperature is about 900 ° C., and the annealing temperature needs to be about 600 ° C. or more in order to diffuse the stainless steel base and Ni. Therefore, the annealing temperature is limited to the range of 900 ℃ ~ 600 ℃,
Since the temperature range is a temperature range in which the sensitization phenomenon shown in FIG. 5 is likely to occur, it is necessary to limit the heating time to a time in which the sensitization phenomenon does not occur. As shown in FIG. 5, when the heating temperature is the highest temperature of 900 ° C., the sensitization phenomenon does not occur when the annealing time is 30 seconds, and when the minimum temperature is 600 ° C., the annealing time is 120 minutes. In this case, no sensitization phenomenon occurs. Therefore, the annealing condition is performed in a temperature range of 600 ° C. to 900 ° C., and the annealing time is selected in a range of 30 seconds to 120 minutes according to the temperature condition.

《実験例1》 上記鋭敏化現象の発生の有無、即ち、鋭敏化現象が発
生して加工時に亀裂が生じるか否かを、焼純処理の温度
条件、時間を変えて実験を行った。
<< Experimental Example 1 >> An experiment was conducted by changing the temperature condition and time of the inking treatment to determine whether or not the above-described sensitization phenomenon occurred, that is, whether or not the sensitization phenomenon occurred and a crack was generated during processing.

(I)SUS304、0.25BA材を用い、A面にNiストライクメ
ッキ0.2μm、Ni本メッキ3.0μm、B面にNiストライク
メッキ0.2μm、Cu本メッキ6.0μmの各メッキ層を形成
した。
(I) Using SUS304 and 0.25BA material, a plating layer of Ni strike plating 0.2 μm and Ni main plating 3.0 μm was formed on side A, Ni strike plating 0.2 μm and Cu main plating 6.0 μm was formed on side B.

(II)SUS304、0.25BA材を用い、A面にNiストライクメ
ッキ0.2μm、Ni本メッキ3.0μm、B面にCuストライク
メッキ0.2μm、Cu本メッキ6.0μmの各メッキ層を形成
した。
(II) Using SUS304 and 0.25BA material, a plating layer of Ni strike plating 0.2 μm and Ni main plating 3.0 μm was formed on the A side, and a Cu strike plating 0.2 μm and Cu main plating 6.0 μm was formed on the B side.

上記(I)(II)のメッキ処理材を用いて、H275%、
N225%、露点−40℃の混合ガス雰囲気で、下記の表に示
す加熱温度と加熱時間とで光輝焼鈍を行った。この加熱
温度、加熱時間を変えた5種類の(I)(II)材につい
て、第8図(イ)に示すようにCu金属メッキ層6を外面
として、また、第8図(ロ)に示すようにNi金属メッキ
層5を外面として180度折り曲げ、観察側Pより顕微鏡
で400倍に拡大して亀裂の有無を検査した。その結果は
下記の表に示す如くであり、表中、△は180度折り曲げ
て亀裂が少し発生したことを現し、○は180度折り曲げ
ても亀裂の発生がなく、延性が良好なことを現してい
る。
Using the plating materials (I) and (II) above, H 2 75%
Bright annealing was performed in a mixed gas atmosphere of N 2 25% and a dew point of −40 ° C. at a heating temperature and a heating time shown in the following table. With respect to the five types of (I) and (II) materials having different heating temperatures and heating times, the Cu metal plating layer 6 is used as an outer surface as shown in FIG. 8 (a), and as shown in FIG. 8 (b). As described above, the Ni metal plating layer 5 was bent 180 degrees with the outer surface, and the presence or absence of cracks was inspected with a microscope 400 times larger than the observation side P. The results are as shown in the table below. In the table, △ indicates that a small amount of cracks were generated by bending 180 degrees, and ○ indicates that no cracks were generated even when bent 180 degrees and the ductility was good. ing.

上記した表に示す実験の結果より明らかなように、70
0℃あるいは750℃で90秒加熱した場合には、鋭敏化は殆
んど皆無で、加工性の点等から最も良好であることが判
明した。
As is clear from the results of the experiments shown in the table above, 70
When heated at 0 ° C. or 750 ° C. for 90 seconds, there was almost no sensitization, which proved to be the best from the viewpoint of workability and the like.

上記した第1実施例および第2実施例ではいずれも、
メッキ工程終了後、焼鈍処理を行い、該焼鈍処理後に1
回の調質圧延処理を行って製造している。即ち、ステン
レス鋼素地としてステンレス調質圧延材を用い、該ステ
ンレス鋼素地に対して前記したメッキ処理および焼鈍処
理を行って後に、圧下率0.5%〜10%の調質圧延を行っ
ている。
In both the first and second embodiments described above,
After the plating step, an annealing treatment is performed.
It is manufactured by performing temper rolling several times. That is, a temper-rolled stainless steel material is used as the stainless steel base, and the above-described plating and annealing are performed on the stainless steel base, and then temper rolling is performed at a rolling reduction of 0.5% to 10%.

しかしながら、製造方法は上記した実施例に限定され
ず、調質圧延方法として、ステンレス素地の材質との関
係等から下記の第3、第4および第5実施例の方法を用
いることも出来る。
However, the manufacturing method is not limited to the above-described embodiment, and the following third, fourth, and fifth embodiments can be used as the temper rolling method from the relationship with the material of the stainless steel base.

まず、第3実施例では、ステンレス鋼素地としてステ
ンレス冷間圧延材を用いた場合、上記第1、第2実施例
と同様な条件でメッキ処理、焼鈍処理を行って後、第1
回目の調質圧延を圧延率10%〜50%で行う。(尚、圧延
率が50%を越えるとステンレス自身が加工硬化する。)
ついで、2回目の焼鈍を非酸化性雰囲気ガス中で行った
後、2回目の調質圧延を圧延率0.5%〜10%で行ってい
る。
First, in the third embodiment, when a stainless cold rolled material is used as the stainless steel base, plating and annealing are performed under the same conditions as in the first and second embodiments, and then the first steel is used.
The second temper rolling is performed at a rolling rate of 10% to 50%. (Note that when the rolling ratio exceeds 50%, the stainless steel itself hardens.)
Next, after the second annealing is performed in a non-oxidizing atmosphere gas, the second temper rolling is performed at a rolling rate of 0.5% to 10%.

第4実施例では、ステンレス素地としてステンレス調
質圧延材を用い、第1および第2実施例と同様な条件で
メッキ処理および焼鈍処理して後、圧延率2%〜10%で
1回目の調質圧延を行う。その後、2回目の焼鈍処理を
非酸化性雰囲気ガス中で行って後、0.5%〜3%の圧延
率で2回目の調質圧延を行っている。
In the fourth embodiment, a temper-rolled stainless steel material is used as a stainless base material, and plating and annealing are performed under the same conditions as in the first and second embodiments, and then the first tempering is performed at a rolling reduction of 2% to 10%. Perform quality rolling. Thereafter, the second annealing treatment is performed in a non-oxidizing atmosphere gas, and then the second temper rolling is performed at a rolling rate of 0.5% to 3%.

上記第3および第4実施例では焼鈍および調質圧延を
2回繰り返し行うことにより、拡散層の厚さが増し、密
着性が良好となって、180度の折り曲げ加工を行って
も、亀裂の発生を確実に防止出来る。
In the above third and fourth embodiments, annealing and temper rolling are repeated twice, so that the thickness of the diffusion layer is increased, the adhesion is improved, and even if the bending process is performed at 180 degrees, cracks are not formed. Generation can be reliably prevented.

第5実施例では、ステンレス鋼素地としてステンレス
調質圧延材を用い、上記第1および第2実施例と同様な
条件でメッキ処理を行って後、焼鈍処理を施す前に、第
1回目の調質圧延処理を圧延率2%〜10%で行う。該調
質圧延後に第1および第2実施例と同様な条件で焼鈍処
理を行い、その後、第2回目の調質圧延処理を圧延率0.
5%〜3%で行っている。
In the fifth embodiment, a stainless steel temper rolled material is used as a stainless steel substrate, and plating is performed under the same conditions as those of the first and second embodiments, and before the first annealing, the first tempering is performed. The quality rolling is performed at a rolling rate of 2% to 10%. After the temper rolling, an annealing treatment was performed under the same conditions as in the first and second embodiments.
Going between 5% and 3%.

上記第5実施例の場合、メッキ工程でCuメッキ層にメ
ッキのピンボール等が発生しても、メッキ後に1回目の
調質圧延を行うことで、Cu膜を埋め込むことになり、ピ
ンボールを無くすことが出来る。また、ステンレス鋼素
地とCuとの密着性が良くなり、その後、焼鈍、調質圧延
をすることにより更に密着性を高めることが出来る。
In the case of the fifth embodiment, even if a pin ball or the like occurs in the Cu plating layer in the plating step, the Cu film is embedded by performing the first temper rolling after plating, and the pin ball is removed. Can be eliminated. Further, the adhesion between the stainless steel substrate and Cu is improved, and thereafter, the adhesion can be further increased by performing annealing and temper rolling.

《実験例2》 焼鈍および調質圧延回数を変えることにより、形成さ
れる拡散層の厚さを比較した。
<< Experimental Example 2 >> The thickness of the diffusion layer formed was compared by changing the number of times of annealing and temper rolling.

調質圧延BA材からなるステンレス鋼素地のA面にNiス
トライクメッキ0.2μm,Ni本メッキ0.3μm施し、B面に
Niストライクメッキ0.2μm,Cu本メッキ6.0μm施した
後、圧延率4%の1回目の調質圧延を行った。その後、
H225%、N275%、露点−40℃の混合ガス雰囲気中で加熱
温度750℃で焼鈍時間90秒で光輝焼鈍を行い、その後、
再度、圧延率1.4%で2回目の調質圧延を行った。
Ni strike plating 0.2μm and Ni main plating 0.3μm are applied to surface A of stainless steel substrate made of temper rolled BA material, and to surface B
After Ni strike plating 0.2 μm and Cu main plating 6.0 μm, the first temper rolling at a rolling ratio of 4% was performed. afterwards,
H 2 25%, N 2 75 %, subjected to bright annealing in the annealing time of 90 seconds at a heating temperature of 750 ° C. in a mixed gas atmosphere of dew point of -40 ° C., then,
The second temper rolling was performed again at a rolling ratio of 1.4%.

上記と同一条件でA,B面のメッキを行って後、と
同一条件で光輝焼鈍を行い、ついで、圧延率5%の調質
圧延を行った。
After plating the A and B surfaces under the same conditions as above, bright annealing was performed under the same conditions as above, and then temper rolling at a rolling reduction of 5% was performed.

上記の調質圧延を行ったものについて、再度、同一
条件で2回目の光輝焼鈍を行い、その後、圧延率0.75%
で2回目の調質圧延を行った。
After the above temper rolling, the second bright annealing was performed again under the same conditions, and then the rolling reduction was 0.75%.
For the second temper rolling.

上記、およびにおいて形成された拡散層の厚さ
を測定したところ、およびはSUS−Ni拡散層は2.4μ
m、SUS−Ni−Cu拡散層は2.5μmであり、では焼鈍を
2回行っているため、SUS−Ni拡散層は4.0μm、SUS−N
i−Cu拡散層は4.25μmになり、およびと比較して
約1.7倍の厚さとなっていた。機械的特性については、
、およびとも余り変化はなかった。また、前記第
8図(イ),(ロ)に示すのと同様な180度折り曲げ後
の表面観察テストにおいては、いずれも亀裂は発見出来
なかった。
Above, and when the thickness of the diffusion layer formed in was measured, and SUS-Ni diffusion layer is 2.4μ
m, the SUS-Ni-Cu diffusion layer is 2.5 μm, and annealing is performed twice, so that the SUS-Ni diffusion layer is 4.0 μm and the SUS-N
The i-Cu diffusion layer was 4.25 μm, and was about 1.7 times as thick as compared to. For mechanical properties,
, And did not change much. Further, in the surface observation test after bending at 180 degrees similar to that shown in FIGS. 8 (a) and 8 (b), no crack was found in any case.

さらに、本発明に係わる製造方法においては、最終の
調質圧延処理の後に、Ni金属メッキ層5の表面にNiメッ
キ、Cu金属メッキ層6の表面にCuメッキを施す第6実施
例を採用することもできる。このように、最終的な表面
メッキを施すと、焼鈍処理および調質圧延処理の後、Ni
金属メッキ面の光沢が不十分な場合、再度、光沢Niメッ
キを施すと、光沢を出すことが出来る。かつ、Cu金属メ
ッキ面においては耐食性が不十分な場合に再度Cuメッキ
を施すことにより耐食性をカバーすることが出来る。さ
らに、調質圧延処理の際に異物が表面に付着した場合
に、該異物を再度施すメッキにより埋め込んで、異物を
表面化させないことが出来る。
Further, the manufacturing method according to the present invention employs a sixth embodiment in which, after the final temper rolling, the surface of the Ni metal plating layer 5 is plated with Ni and the surface of the Cu metal plating layer 6 is plated with Cu. You can also. In this way, when the final surface plating is performed, after annealing and temper rolling, Ni
When the gloss of the metal plating surface is insufficient, the gloss can be obtained by applying bright Ni plating again. In addition, when the corrosion resistance is insufficient on the Cu metal plating surface, the corrosion resistance can be covered by performing Cu plating again. Further, if foreign matter adheres to the surface during the temper rolling, the foreign matter can be buried by plating again to prevent the foreign matter from being surfaced.

発明の効果 以上の説明より明らかなように、本発明に係わるNi,C
u被覆ステンレス鋼板では、ステンレス鋼素地の両面に
施したNiメッキ層とCuメッキ層とを焼鈍処理することに
よりNiメッキおよびCuメッキの組織の一部をステンレス
鋼と拡散させて拡散層を設けているため、ステンレス鋼
素地とNiメッキ層およびCuメッキ層との密着性を向上さ
せることが出来る。かつ、上記拡散層の表層部は金属組
織をもつNi金属層およびCU金属層の状態に保持でき、ス
テンレス鋼素地の両面をNi金属層およびCu金属層で被覆
した状態とすることが出来る。しかも、メッキ方法によ
り略Ni4μm、Cu10μm前後の薄さでNiメッキおよびCu
メッキを施してNi金属層およびCu金属を形成するため、
従来の圧延クラッド法によりNi16μm、Cu40μm前後の
被覆層を設ける場合と比較して、Ni、Cuの量を約1/4程
度とすることが出来、大幅なコストダウンを図ることが
出来、安価にNi,Cu被覆ステンレス鋼を提供することが
出来る。かつ、圧延クラッド法による場合は何度も圧延
工程を必要とするため、作業手数および作業時間が多く
かかるが、この点においても本発明のメッキ方法により
Ni,Cu被覆層を形成する方が簡単かつ短時間で有利であ
る。
Effect of the Invention As is clear from the above description, Ni, C according to the present invention
In the case of u-coated stainless steel sheet, the Ni plating layer and Cu plating layer applied to both sides of the stainless steel substrate are annealed to diffuse part of the Ni-plated and Cu-plated structure with the stainless steel to provide a diffusion layer. Therefore, the adhesion between the stainless steel substrate, the Ni plating layer, and the Cu plating layer can be improved. In addition, the surface portion of the diffusion layer can be maintained in a state of a Ni metal layer and a CU metal layer having a metal structure, and both surfaces of the stainless steel base can be covered with the Ni metal layer and the Cu metal layer. Moreover, depending on the plating method, Ni plating and Cu
To apply plating to form Ni metal layer and Cu metal,
Compared to the case of providing a coating layer of about 16 μm Ni and about 40 μm Cu by the conventional roll cladding method, the amount of Ni and Cu can be reduced to about 1/4, resulting in significant cost reduction and low cost. Ni, Cu coated stainless steel can be provided. And, in the case of using the rolling clad method, since the rolling step is required many times, it takes a lot of labor and work time, but in this regard, the plating method of the present invention also
Forming a Ni, Cu coating layer is advantageous simply and in a short time.

また、ステンレス鋼素地の片面づつにNiメッキおよび
Cuメッキを別個に施すため、これらメッキ層の厚さを別
々に任意に制御でき、差厚とすることも容易である等の
種々の利点を有する。
In addition, Ni plating and
Since the Cu plating is performed separately, the thicknesses of these plating layers can be controlled separately and arbitrarily, and there are various advantages such as easy difference in thickness.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の第1実施例を示す断面図、第2図は第
1実施例のメッキ後で焼鈍前の状態を示す断面図、第3
図は第1実施例の製造工程を示すフローチャート、第4
図は焼鈍工程で使用する連続焼鈍炉の概略構成図、第5
図は鋭敏化現象を示す図面、第6図は第2実施例を示す
断面図、第7図は第2実施例のメッキ後で焼鈍前の状態
を示す断面図、第8図(イ),(ロ)は180度折り曲げ
テストを示す図面である。 1……Ni,Cu被覆ステンレス鋼板、 2……ステンレス鋼素地、 3……SUS−Ni拡散層、 4……SUS−Ni−Cu拡散層、 5……Ni金属メッキ層、 6……Cu金属メッキ層、 22……SUS−Cu拡散層。
FIG. 1 is a sectional view showing a first embodiment of the present invention, FIG. 2 is a sectional view showing a state after plating and before annealing in the first embodiment, and FIG.
FIG. 4 is a flowchart showing the manufacturing process of the first embodiment, and FIG.
The figure is a schematic configuration diagram of a continuous annealing furnace used in the annealing step.
FIG. 6 is a diagram showing a sensitization phenomenon, FIG. 6 is a cross-sectional diagram showing a second embodiment, FIG. 7 is a cross-sectional diagram showing a state after plating and before annealing in the second embodiment, and FIGS. (B) is a drawing showing a 180-degree bending test. 1 ... Ni, Cu coated stainless steel sheet, 2 ... Stainless steel base, 3 ... SUS-Ni diffusion layer, 4 ... SUS-Ni-Cu diffusion layer, 5 ... Ni metal plating layer, 6 ... Cu metal Plating layer, 22 ... SUS-Cu diffusion layer.

Claims (7)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】ステンレス鋼素地の表裏一方面にNi金属メ
ッキ層、他方面にCu金属メッキ層を備えると共に、これ
らステンレス鋼素地とNi金属メッキ層の間にステンレス
鋼とNiの拡散層、ステンレス鋼素地とCu金属メッキ層の
間にステンレス鋼とCuの拡散層あるいはステンレス鋼と
NiとCuの拡散層を備えていることを特徴とするNi,Cu被
覆ステンレス鋼板。
A stainless steel substrate is provided with a Ni metal plating layer on one surface and a Cu metal plating layer on the other surface, and a diffusion layer of stainless steel and Ni between the stainless steel substrate and the Ni metal plating layer. Stainless steel and Cu diffusion layer or stainless steel between steel base and Cu metal plating layer
A Ni, Cu coated stainless steel sheet comprising a diffusion layer of Ni and Cu.
【請求項2】上記ステンレス鋼素地の表裏一方面に設け
るNi金属メッキ層の厚さは0.5〜6.0μm、他方面に設け
るCu金属メッキ層の厚さは2〜20μm、全体の板厚が0.
05mm〜0.8mmからなり、かつ、上記ステンレス鋼とNiの
拡散層、ステンレス鋼とCuの拡散層、およびステンレス
鋼とNiとCuの拡散層からなる各拡散層の厚さが0.1〜5.0
μmである請求項1記載のNi,Cu被覆ステンレス鋼板。
2. The thickness of a Ni metal plating layer provided on one surface of the front and back of the stainless steel substrate is 0.5 to 6.0 μm, and the thickness of a Cu metal plating layer provided on the other surface is 2 to 20 μm. .
The thickness of each diffusion layer consisting of a diffusion layer of stainless steel and Ni, a diffusion layer of stainless steel and Cu, and a diffusion layer of stainless steel and Ni and Cu is 0.1 to 5.0 mm.
The Ni, Cu-coated stainless steel sheet according to claim 1, which has a thickness of μm.
【請求項3】ステンレス鋼素地の表裏一方面にNi本メッ
キを施すと共に、他方面にCu本メッキを施し、 ついで、非酸化性雰囲気ガス中で光輝焼鈍を行って、ス
テンレス鋼とNi本メッキ層との間にステンレス鋼とNiと
の拡散層、ステンレス鋼とCu本メッキとの間にステンレ
ス鋼とCuとの拡散層を形成した後、調質圧延を行うこと
を特徴とするNi,Cu被覆ステンレス鋼板の製造方法。
3. The stainless steel substrate is plated with Ni on one surface and the other is plated with Cu on the other surface, and then subjected to bright annealing in a non-oxidizing atmosphere gas to form the stainless steel and Ni plating. After forming a diffusion layer of stainless steel and Ni between the layer and a diffusion layer of stainless steel and Cu between the stainless steel and the main plating, Ni, Cu characterized by performing temper rolling Manufacturing method of coated stainless steel sheet.
【請求項4】上記ステンレス鋼素地の表裏一方面に施す
Ni本メッキの前にNiストライクメッキを施し、また、Cu
本メッキの前にNiあるいはCuストライクメッキを施し、
Cu本メッキの前にNiストライクメッキを施した場合に
は、上記焼鈍でステンレス鋼素地とCuとの間にステンレ
ス鋼とNiとCuの拡散層を形成することを特徴とする請求
項3記載の製造方法。
4. Applying to one surface of the front and back of the stainless steel base
Ni strike plating is applied before Ni plating, and Cu
Apply Ni or Cu strike plating before main plating,
4. The method according to claim 3, wherein when Ni strike plating is performed before Cu main plating, a diffusion layer of stainless steel, Ni and Cu is formed between the stainless steel base and Cu by the annealing. Production method.
【請求項5】上記ステンレス鋼素地の表裏一方面に設け
るNi本メッキの厚さを0.5〜6.0μm、他方面に設けるCu
本メッキの厚さを2〜20μmとすると共に、調質圧延に
より成形する全体の板厚を0.05mm〜0.8mmとし、かつ、
上記ステンレス鋼とNiの拡散層、ステンレス鋼とCuの拡
散層あるいはステンレス鋼とNiとCuの拡散層からなる各
拡散層の厚さが0.1〜5.0μmとなるように、連続焼鈍時
間0.5〜15分、焼鈍温度600℃〜900℃、H25%〜75%、N2
95%〜25%の非酸化性雰囲気ガス中で焼鈍処理を行うこ
とを特徴とする請求項3または請求項4のいずれか1項
に記載の製造方法。
5. The thickness of the Ni plating provided on one surface of the front and back surfaces of the stainless steel substrate is 0.5 to 6.0 μm, and the thickness of Cu provided on the other surface is
The thickness of this plating is 2 to 20 μm, and the overall thickness of the sheet formed by temper rolling is 0.05 mm to 0.8 mm, and
The continuous annealing time is 0.5 to 15 so that the thickness of each of the diffusion layers of stainless steel and Ni, the diffusion layer of stainless steel and Cu or the diffusion layer of stainless steel and Ni and Cu is 0.1 to 5.0 μm. min, annealing temperature 600 ℃ ~900 ℃, H 2 5 % ~75%, N 2
The method according to claim 3, wherein the annealing is performed in a 95% to 25% non-oxidizing atmosphere gas.
【請求項6】上記NiおよびCuメッキ層を形成して後、焼
鈍・調質圧延を任意の回数行い、最後の調質圧延後に、
Ni金属メッキ層にNiメッキおよびCu金属メッキ層にCuメ
ッキを施すことを特徴とする請求項3から請求項5のい
ずれか1項に記載の製造方法。
6. After forming the Ni and Cu plating layers, annealing and temper rolling are performed an arbitrary number of times, and after the final temper rolling,
The method according to any one of claims 3 to 5, wherein Ni plating is performed on the Ni metal plating layer and Cu plating is performed on the Cu metal plating layer.
【請求項7】上記最終の調質圧延処理あるいはメッキ処
理を連続して行ったNi,Cu被覆ステンレス鋼をコイル状
に巻き取ることを特徴とする請求項3から請求項6のい
ずれか1項に記載の製造方法。
7. The Ni, Cu-coated stainless steel which has been continuously subjected to the final temper rolling or plating is wound up in a coil shape. The production method described in 1.
JP02163472A 1990-06-20 1990-06-20 Ni, Cu coated stainless steel sheet and method for producing the same Expired - Lifetime JP3092929B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP02163472A JP3092929B2 (en) 1990-06-20 1990-06-20 Ni, Cu coated stainless steel sheet and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP02163472A JP3092929B2 (en) 1990-06-20 1990-06-20 Ni, Cu coated stainless steel sheet and method for producing the same

Publications (2)

Publication Number Publication Date
JPH0452295A JPH0452295A (en) 1992-02-20
JP3092929B2 true JP3092929B2 (en) 2000-09-25

Family

ID=15774522

Family Applications (1)

Application Number Title Priority Date Filing Date
JP02163472A Expired - Lifetime JP3092929B2 (en) 1990-06-20 1990-06-20 Ni, Cu coated stainless steel sheet and method for producing the same

Country Status (1)

Country Link
JP (1) JP3092929B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102365771A (en) * 2009-03-31 2012-02-29 新日本制铁株式会社 Material for metallic outer case for secondary battery utilizing non-aqueous electrolyte, metallic outer case, secondary battery, and process for production of material for metallic outer case

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05214583A (en) * 1992-02-04 1993-08-24 Toyo Kohan Co Ltd Manufacture of surface-treated stainless steel sheet for cell
JPH0757717A (en) * 1993-08-06 1995-03-03 Katayama Tokushu Kogyo Kk Metallic material plate, negative terminal plate made of the metallic material plate, and manufacture of the terminal plate
JP4819148B2 (en) * 2009-03-31 2011-11-24 新日本製鐵株式会社 Material for metal outer case and metal outer case of lithium ion battery with little voltage drop due to metal elution and lithium ion battery
JP5168237B2 (en) * 2009-06-29 2013-03-21 新日鐵住金株式会社 Material for metal outer case of high capacity lithium ion battery in which elution of Ni and Fe is suppressed, metal outer case, and lithium ion battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102365771A (en) * 2009-03-31 2012-02-29 新日本制铁株式会社 Material for metallic outer case for secondary battery utilizing non-aqueous electrolyte, metallic outer case, secondary battery, and process for production of material for metallic outer case

Also Published As

Publication number Publication date
JPH0452295A (en) 1992-02-20

Similar Documents

Publication Publication Date Title
JP2022513740A (en) Manufacturing method and equipment for corrosion-resistant hot stamping parts
JPH062104A (en) Nickel plating steel strip with high corrosion resistance and its production
JP3092929B2 (en) Ni, Cu coated stainless steel sheet and method for producing the same
US3076260A (en) Strip and method for manufacturing bundy tubing and method of making the same
JP3092930B2 (en) Ni, Cu coated cold rolled steel sheet and method for producing the same
JP2991379B2 (en) Method for manufacturing molded product made of Ni-plated steel sheet, method for manufacturing Ni-plated steel sheet, and Ni-plated steel sheet
JPS61235594A (en) Ni plated steel sheet having superior workability and corrosion resistance and its manufacture
JPH02129395A (en) Flaw resistant nickel-plated steel sheet and production thereof
JPH0919775A (en) Lead composite steel and its manufacture
JP2971366B2 (en) Nickel-plated steel sheet subjected to adhesion prevention treatment during annealing and its manufacturing method
JP3294409B2 (en) Dissimilar metal composite plate and method of manufacturing the same
JP3079311B2 (en) Bright Ni-plated steel strip and method for producing the same
JPH044986A (en) Manufacture of nickel and stainless steel clad material
JPH0441085A (en) Production of aluminum laminated steel plate
JP2005256014A (en) Steel plate for welded can having excellent weldability, adhesiveness and corrosion resistance
JP3124233B2 (en) Surface-treated steel sheet for welded cans having excellent rust resistance and corrosion resistance under coating film, and method for producing the same
JP3093917B2 (en) Laminated steel sheet and its original sheet
JP3270318B2 (en) Steel plate for welded cans with excellent weldability, corrosion resistance, appearance and adhesion
JP3822704B2 (en) Manufacturing method of steel sheet for welding can excellent in weldability, corrosion resistance, appearance and adhesion
JP3461684B2 (en) Manufacturing method of steel plate for laminated welding can
JP2001345080A (en) Ni plated steel sheet for positive electrode can of alkaline manganese battery, its manufacturing method and positive electrode using it
JPH0649658A (en) Spring wire having solderability and corrosion resistance and its production
JP3745457B2 (en) Manufacturing method of steel sheet for welding can excellent in weldability, corrosion resistance, appearance and adhesion
JP2726144B2 (en) Manufacturing method of high corrosion resistance Pb-Sn alloy plated Cr-containing steel sheet with excellent coverage and adhesion
JP2522075B2 (en) Ultra-thin Sn-plated steel sheet for can and method for producing the same

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080728

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090728

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100728

Year of fee payment: 10

EXPY Cancellation because of completion of term