JPS60159914A - Movement control device for self-running car - Google Patents

Movement control device for self-running car

Info

Publication number
JPS60159914A
JPS60159914A JP59014290A JP1429084A JPS60159914A JP S60159914 A JPS60159914 A JP S60159914A JP 59014290 A JP59014290 A JP 59014290A JP 1429084 A JP1429084 A JP 1429084A JP S60159914 A JPS60159914 A JP S60159914A
Authority
JP
Japan
Prior art keywords
self
propelled vehicle
wiring
control circuit
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59014290A
Other languages
Japanese (ja)
Inventor
Katsuhiko Aoyanagi
青柳 克彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP59014290A priority Critical patent/JPS60159914A/en
Publication of JPS60159914A publication Critical patent/JPS60159914A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0259Control of position or course in two dimensions specially adapted to land vehicles using magnetic or electromagnetic means
    • G05D1/0265Control of position or course in two dimensions specially adapted to land vehicles using magnetic or electromagnetic means using buried wires

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Electromagnetism (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

PURPOSE:To simplify a control device without providing control devices of two systems by detecting passing of a self-running car in an intersection point of wirings placed on a floor, and executing simultaneously a track correction and the present position detection of the self-running car. CONSTITUTION:When one wheel 24 of a self-running car 22a is positioned on a specified intersection point 25a of wirings 23x, 23y, a conductive rubber material 26 inserted between both wirings is compressed by the weight of the self-running car 22a and a resistance value between both wirings is reduced. Accordingly, only the wiring 23y of the intersection point 25a shows a high voltage value, by which an (x) coordinate of the intersection point 25a is detected. In this case, an input/output switching circuit 30 is inverted, by which a (y) coordinate of the specified intersection point 25a is detected in a main controlling circuit 31. Also, by setting narrowly an interval of each wiring 23x, 23y spread all over a track sheet 21, a position shift of the present position against each track of each self- running car 22a... set in advance to a movement controlling circuit 32 can be corrected strictly.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は一定領域の床面上を移動する自走車の移動制御
装置に係り、特に自走車の現在位置をも適確に検出でき
る自走車移動制御装置に関する。
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention relates to a movement control device for a self-propelled vehicle that moves on a floor surface in a certain area, and in particular to a device for controlling the movement of a self-propelled vehicle that can accurately detect the current position of the self-propelled vehicle. The present invention relates to a vehicle movement control device.

〔発明の技術的背景〕[Technical background of the invention]

商品倉庫における商品搬送用台車のようにその移動パタ
ーンが予め定められている場合、一般に床面に軌道を設
けて、その軌道上に無人の自走車を走行させるようにし
ている。このような自走車の移動制御装置における上記
軌道を検出する方式として、例えば第1図に示す電磁誘
導方式、第2図に示す光反射誘導方式等が採用されてい
る。
When the movement pattern of a cart for transporting goods in a goods warehouse is predetermined, a track is generally provided on the floor, and an unmanned self-propelled vehicle is run on the track. As a method for detecting the trajectory in such a movement control device for a self-propelled vehicle, for example, an electromagnetic induction method shown in FIG. 1, a light reflection guidance method shown in FIG. 2, etc. are adopted.

第1図の電磁誘導方式においては、床1の軌道2の溝内
に敷設された電磁石又は永久磁石からなる磁性体3の磁
界を自走車4の両車輪5a。
In the electromagnetic induction system shown in FIG. 1, the magnetic field of a magnetic body 3 made of an electromagnet or a permanent magnet placed in a groove of a track 2 on a floor 1 is applied to both wheels 5a of a self-propelled vehicle 4.

5bの間に設けられた一対のピックアップコイル6a。A pair of pickup coils 6a provided between pickup coils 5b.

6bにて検出し、これら各ピックアップコイル6 a 
+ 6bにてそれぞれ検出された磁界強度の差を偏差検
出装置7でめて、この差が零になるようにハンドルに連
結されたステアリングモータ8を制御して自走車4の中
心位置を軌道2に合せるようにしている。また、第2図
の光反射誘導方式においては、床1の軌道2に光を反射
する白色ペンキ等を塗シ、この軌道2を含む床1に自走
車4の両車輪5m 、5b間に設けられた横長の投光器
9にて光を照射する。そして軌道2からの反射光を一対
の光検出器10m’、10bにて検出し、各増幅器11
h、llbにて増幅された各光検出器10a 、 10
bからの検出信号の差を第1図と同様に偏差検出装置7
にてめ、ステアリングモータ8へ印加することによって
自走車4の中心位置を軌道2に合せるようにしている。
6b, each of these pickup coils 6a
The difference in magnetic field strength detected at + 6b is detected by the deviation detection device 7, and the steering motor 8 connected to the steering wheel is controlled so that this difference becomes zero, and the center position of the self-propelled vehicle 4 is adjusted to the orbit. I'm trying to match it to 2. In addition, in the light reflection guidance system shown in Fig. 2, the track 2 on the floor 1 is coated with white paint that reflects light, and the two wheels of the self-propelled vehicle 4 are placed on the floor 1 including the track 2, with a distance of 5 m between the two wheels 5b. Light is irradiated by a horizontally long projector 9 provided. Then, the reflected light from orbit 2 is detected by a pair of photodetectors 10m' and 10b, and each amplifier 11
Each photodetector 10a, 10 amplified at h, llb
The difference in the detection signal from b is detected by the deviation detection device 7 in the same way as in FIG.
Then, the center position of the self-propelled vehicle 4 is aligned with the track 2 by applying power to the steering motor 8.

また、第3図においては、床1の軌道のコーナ等の各要
所にレーデ装置12を取付け、このレーザ装置12から
出力されるレーザ光線をスキャナー13にて走査して床
1に照射している。
In addition, in FIG. 3, a radar device 12 is installed at each important point such as a corner of the track of the floor 1, and a laser beam output from this laser device 12 is scanned by a scanner 13 and irradiated onto the floor 1. There is.

そして、自走車4に上記レーザ光線を受ける受光装置1
4を取付け、この受光装置14にて受(M したレーザ
光w量が最大値を示す方向にステアリングモータを制御
するようにしている。
A light receiving device 1 receives the laser beam from the self-propelled vehicle 4.
4 is attached, and the steering motor is controlled in the direction in which the amount of laser light W received by the light receiving device 14 (M) shows the maximum value.

〔背景技術の問題点〕[Problems with background technology]

しかしながら、第1図の電磁@尋方式、第2図の光反射
誘導方式および第3図のレーザ誘導方式においては次の
ような問題があった。すなわち、上記各誘導方式におい
ては、各自走車4は床1に設定された各軌道2およびレ
ーザ光線によって設定された軌道2上を正確に走行する
ことが可能であるが、各自走車4が現在床1全体のどの
位置に位置しているかの情報を得ることは不可能である
。したがって、自走車4の現在゛位置を検出する検出装
置を別途膜けなければならない。その結果、自走車4に
搭載する装置および固定装置が増大し、自走車移動制御
装置全体が大型化すると共に制御装置も複雑化する問題
があった。また、複雑な移動ノ?ターンを設定すること
は困難であった。特に複数台の自走車の現在位置を同時
に連続して把握することは大がかシな設備を必要とし、
設置費用が増大する問題もあった。
However, the electromagnetic method shown in FIG. 1, the optical reflection guidance method shown in FIG. 2, and the laser guidance method shown in FIG. 3 have the following problems. That is, in each of the above-mentioned guidance methods, each self-propelled vehicle 4 can accurately travel on each track 2 set on the floor 1 and the trajectory 2 set by the laser beam, but it is possible for each self-propelled vehicle 4 to It is impossible to obtain information about where the user is currently located on the entire floor 1. Therefore, a detection device for detecting the current position of the self-propelled vehicle 4 must be provided separately. As a result, the number of devices and fixing devices mounted on the self-propelled vehicle 4 increases, resulting in the overall size of the self-propelled vehicle movement control device and the complexity of the control device. Also, complicated movement? It was difficult to set the turn. In particular, grasping the current positions of multiple self-propelled vehicles simultaneously and continuously requires large-scale equipment.
There was also the problem of increased installation costs.

〔発明の目的〕[Purpose of the invention]

本発明は、このような事情に基づいてなされたものであ
シ、その目的とするところは、床に配列された配線の交
点における自走車の通過を検出することによって、自走
車の軌道補正と現在位置検出とを同時に実施でき、制御
装置の簡素化を図ることができる自走車移動制御装置を
提供することにある。
The present invention was made based on the above circumstances, and its purpose is to detect the trajectory of a self-propelled vehicle by detecting the passage of the self-propelled vehicle at the intersection of the wiring arranged on the floor. It is an object of the present invention to provide a self-propelled vehicle movement control device that can perform correction and current position detection at the same time, and can simplify the control device.

〔発明の概要〕[Summary of the invention]

本発明においては、自走車が移動制御される床面に互い
に交差する複数の配線を配置し、これら交差する各交点
部分の配線間に上記自走車の車輪にて加圧されると両端
間の抵抗が変化する導電性材を介挿している。また、上
記複数の互いに直交する各配線に、この各配線に対して
信号印加動作と信号検出動作とを択一的に実行する一対
の信号制御回路を接続し、入出力切換回路によって、上
記一対の信号制御回路における信号印加動作と信号検出
動作との動作を信号制御回路間で互いに異る動作に切換
えるようにしている。そして、主制御回路によって、信
号検出動作に切換えられたときの各信号制御回路から出
力される信号に基づいて上記加圧された導電材が介挿さ
れた配線の交点を検出し、この検出された交点位置を自
走車の移動方向を制御する移動制御回路へ送出するよう
にしている。
In the present invention, a plurality of wires are arranged to intersect with each other on the floor surface on which the movement of the self-propelled vehicle is controlled, and when pressure is applied between the wires at each intersection of these intersecting wires by the wheels of the self-propelled vehicle, both ends A conductive material that changes the resistance between the two is inserted. Further, a pair of signal control circuits for selectively performing a signal application operation and a signal detection operation are connected to each of the plurality of mutually orthogonal wirings, and an input/output switching circuit controls the pair of The signal applying operation and the signal detecting operation in the signal control circuit are switched to different operations between the signal control circuits. Then, the main control circuit detects the intersection of the wires in which the pressurized conductive material is inserted, based on the signals output from each signal control circuit when the signal detection operation is switched. The detected intersection position is sent to a movement control circuit that controls the moving direction of the self-propelled vehicle.

〔発明の実施例〕[Embodiments of the invention]

以下本発明の実施例を図面を用いて説明する。 Embodiments of the present invention will be described below with reference to the drawings.

第4図は実施例の自走車移動制御装置の床面に載置され
た軌道シートの配線を示す図であシ、第5図はその細部
を示す図である。この実施例においては、床面上に軌道
シート2ノが敷かれておシ、この軌道シート21上を移
動制御される例えば3台の自走車22 a 、 22 
b + 22 cが走行する。軌道シート21はほぼ長
方形状であシ、そのX軸方向およびX軸方向に一定間隔
で配線23x、23yが敷詰られている。上記間隔は自
走車22a、22b、22cにおける各車輪24の幅以
下の寸法に設定されている。
FIG. 4 is a diagram showing the wiring of the track sheet placed on the floor of the self-propelled vehicle movement control device of the embodiment, and FIG. 5 is a diagram showing its details. In this embodiment, a track sheet 2 is laid out on the floor surface, and for example, three self-propelled vehicles 22a, 22 are controlled to move on this track sheet 21.
b + 22 c runs. The track sheet 21 has a substantially rectangular shape, and wires 23x and 23y are laid out at regular intervals in the X-axis direction and in the X-axis direction. The above-mentioned interval is set to a dimension equal to or less than the width of each wheel 24 of the self-propelled vehicles 22a, 22b, and 22c.

X軸方向の配線23xとY軸方向の配線237が直角に
交差する各交点25部分は第5図に示すように下側に配
置された板状の配線237と上側に配置された板状の配
線23xとの間に導電性材として直方体型の導電性ゴム
材26が介挿されている。この導電性ゴム材26は外力
によシ圧縮されると、圧縮方向における両端間の抵抗値
が低下する性質を持っている。したがって、この交点5
の配線23xの上面に下方向の圧力を加えると、配M2
3 xと配線237との間の抵抗が低下する。軌道シー
ト21のX軸方向の側辺に各配線23xのX軸接続端子
27Xが取付られており、Y軸方向の側辺に各配線23
7のY軸接続端子277が接続されている。
As shown in FIG. 5, each intersection 25 where the wiring 23x in the X-axis direction and the wiring 237 in the Y-axis intersect at right angles is a plate-shaped wiring 237 placed on the lower side and a plate-shaped wiring 237 placed on the upper side. A rectangular parallelepiped conductive rubber material 26 is inserted as a conductive material between the wiring 23x and the wiring 23x. When this conductive rubber material 26 is compressed by an external force, the resistance value between both ends in the compression direction decreases. Therefore, this intersection 5
When downward pressure is applied to the top surface of wiring 23x, wiring M2
3 The resistance between x and the wiring 237 decreases. The X-axis connection terminal 27X of each wiring 23x is attached to the side of the track sheet 21 in the X-axis direction, and the X-axis connection terminal 27X of each wiring 23x is attached to the side of the track sheet 21 in the Y-axis direction.
No. 7 Y-axis connection terminal 277 is connected.

X軸接続端子21xおよびY軸接続端子27yはそれぞ
れ接続ケーブル28x、28Vを介して第6図のX軸信
号制御回路29 x+Y軸信号制御回路297に接続さ
れている。なお、上側の各配線23xの上面に図示しな
い絶縁シートが貼付られている。
The X-axis connection terminal 21x and the Y-axis connection terminal 27y are connected to the X-axis signal control circuit 29x+Y-axis signal control circuit 297 in FIG. 6 via connection cables 28x and 28V, respectively. Note that an insulating sheet (not shown) is attached to the upper surface of each upper wiring 23x.

第6図において、X軸信号制御回路29xは、X軸接続
端子27xを介して接続された各配線23xに同時に一
定電圧を印加する信号印加動作と、上記各配線23xに
生じる各電圧を検出する信号検出動作とを択一的に実行
するように構成されている。Y軸信号制御回路29yも
上記X軸信号制御回路29xと同じ動作機能を有してい
る。これらX軸信号制御回路29xとY軸信号制御回路
297における各動作の切換指令は入出力切換回路3o
から送出される。この入出力切換回路3oは主制御回路
3ノからの指令に基づき、各信号制御回路29x 、2
9yへ一定周期でもって反転する切換指令を送出する。
In FIG. 6, the X-axis signal control circuit 29x performs a signal application operation of simultaneously applying a constant voltage to each wire 23x connected via the X-axis connection terminal 27x, and detects each voltage generated on each wire 23x. The signal detection operation is configured to be performed alternatively. The Y-axis signal control circuit 29y also has the same operational functions as the X-axis signal control circuit 29x. Switching commands for each operation in the X-axis signal control circuit 29x and Y-axis signal control circuit 297 are issued by the input/output switching circuit 3o.
Sent from This input/output switching circuit 3o is connected to each signal control circuit 29x, 2 based on a command from the main control circuit 3.
A switching command is sent to 9y to invert at regular intervals.

なおこの時、各信号制御回路29x、29yへ必ず互い
に異った切換指令が送出される。すなわち、一方が信号
印加動作中、他方は信号検出動作中になるように制御さ
れる。
At this time, different switching commands are always sent to each signal control circuit 29x, 29y. That is, one is controlled so that it is in a signal application operation and the other is in a signal detection operation.

各信号制御回路29x、29yが信号検出動作中に各配
線23xおよび各配線237から入力された電圧は上記
主制御回路31へ送出される。この主制御回路31は各
信号制御回路29x。
While each signal control circuit 29x, 29y is in a signal detection operation, the voltage inputted from each wiring 23x and each wiring 237 is sent to the main control circuit 31. This main control circuit 31 includes each signal control circuit 29x.

29yからの上記電圧データに基づいて各自走車22h
、22b、22cの現在位置を検出してその結果を各自
走車22 a + 22 b * 22 cの移動方向
を制御する移動制御回路32へ送出する。さらに、この
移動制御回路32は送信機33を介して無線通信にて各
自走車22a*22b+22cへ移動指令を送信する。
Based on the above voltage data from 29y, each self-propelled vehicle 22h
, 22b, and 22c, and sends the results to a movement control circuit 32 that controls the movement direction of each self-propelled vehicle 22a+22b*22c. Furthermore, this movement control circuit 32 transmits a movement command to each self-propelled vehicle 22a*22b+22c via a transmitter 33 by wireless communication.

このように構成された自走車移動制御装置において、自
走車22th+22br22cが床面に敷かれたシート
21上を移動している間、入出力切換回路30は主制御
回路31からの指令に基づきX軸信号制御回路29x 
+Y軸信号制御回路297へ一定周期でもって切換指令
を送出し続ける。しだがって、各配線23xおよび各配
線237に一定周期でもって交互に一定電圧が印加され
る。今仮に、自走車22aの一つの車輪24が配線23
x、23yの特定の交点25a上に位置したとすると、
この交点25aの配線23xa、23ya間に介挿され
た導電性ゴム材26が車輪24を含む自走車22thの
重量によって圧縮される。したがって、この導電性ゴム
材26の両端間の抵抗が減少して、配線23xaと配線
23yaの間の抵抗が減少する。この状態でX軸信号制
御回路29xが信号印加動作中のとき、配線23xth
に印加された電圧は、抵抗値が低減した導電性ゴム材2
6を介して配線231hに伝達される。また、この状態
ではY軸信号制御回路297は信号検出動作中であるの
で、上記特定の交点25&を通る配線231aの上記配
線23xaから伝達された電圧はこのY軸信号制御回路
29yaへ入力される。したがって、主制御回路31に
入力される全てのY軸方向の配線237に生じる電圧の
うち、上記特定の交点25mを通る配線23yaの電圧
のみが高い値を示すことになる。したがって、主制御回
路511rl上記配線237hの配列された位置から上
記特定の交点25aのX座標を検出できる。
In the self-propelled vehicle movement control device configured as described above, while the self-propelled vehicle 22th+22br22c is moving on the sheet 21 spread on the floor, the input/output switching circuit 30 operates based on a command from the main control circuit 31. X-axis signal control circuit 29x
Switching commands continue to be sent to the +Y-axis signal control circuit 297 at regular intervals. Therefore, a constant voltage is alternately applied to each wiring 23x and each wiring 237 at a constant period. Now, suppose that one wheel 24 of the self-propelled vehicle 22a is connected to the wiring 23.
Assuming that it is located on a specific intersection 25a of x and 23y,
The conductive rubber material 26 inserted between the wires 23xa and 23ya at this intersection 25a is compressed by the weight of the self-propelled vehicle 22th including the wheels 24. Therefore, the resistance between both ends of the conductive rubber material 26 is reduced, and the resistance between the wiring 23xa and the wiring 23ya is reduced. In this state, when the X-axis signal control circuit 29x is applying a signal, the wiring 23xth
The voltage applied to the conductive rubber material 2 with reduced resistance value
6 to the wiring 231h. Also, in this state, the Y-axis signal control circuit 297 is in the signal detection operation, so the voltage transmitted from the wire 23xa of the wire 231a passing through the specific intersection 25& is input to the Y-axis signal control circuit 29ya. . Therefore, among the voltages generated in all the wirings 237 in the Y-axis direction that are input to the main control circuit 31, only the voltage of the wiring 23ya passing through the specific intersection 25m exhibits a high value. Therefore, the X coordinate of the specific intersection 25a can be detected from the position where the wiring 237h of the main control circuit 511rl is arranged.

次に、同一条件で、入出力切換回路30の切換指令が反
転すると、Y軸信号制御回路29yが信号印加動作中に
なシ、X軸信号制御回路29xが信号検出動作中になる
。この場合、前記特定の交点25aを通るY軸方向の配
線23yaに一定電圧が印加され、X軸方向の配線23
 xaに上記電圧が伝達される。したがって、前述と同
様の手法にて、主制御回路31に上記特定の交点25a
のy座標が検出される。しかして、自走車22gの車輪
24の軌道シート2ノ上における絶対位置が座標(x、
y)でまる。同様な手法にて自走車22mの他の3個の
車輪24の絶対位置および他の自走車22b、22eの
絶対位置がまる。なお、入出力切換回路30から各信号
制御回路29x、29yへ送出する切換指令の切換周波
数を高く設定することによって、各自走車22a + 
22b + 22cの絶対位置、すなわち、移動中の現
在位置を同時に連続して検出できる。
Next, under the same conditions, when the switching command of the input/output switching circuit 30 is reversed, the Y-axis signal control circuit 29y is no longer in the signal application operation, and the X-axis signal control circuit 29x is in the signal detection operation. In this case, a constant voltage is applied to the wiring 23ya in the Y-axis direction passing through the specific intersection 25a, and the wiring 23ya in the X-axis direction
The above voltage is transmitted to xa. Therefore, in the same manner as described above, the main control circuit 31
The y-coordinate of is detected. Therefore, the absolute position of the wheel 24 of the self-propelled vehicle 22g on the track sheet 2 is determined by the coordinates (x,
y) Demaru. In a similar manner, the absolute positions of the other three wheels 24 of the self-propelled vehicle 22m and the absolute positions of the other self-propelled vehicles 22b and 22e are determined. Note that by setting the switching frequency of the switching command sent from the input/output switching circuit 30 to each signal control circuit 29x, 29y high, each self-propelled vehicle 22a +
The absolute positions of 22b + 22c, that is, the current positions during movement, can be detected simultaneously and continuously.

主制御回路31にて検出された各自走車22a22b、
22cの現在位置は、移動制御回路32へ送出される。
Each self-propelled vehicle 22a22b detected by the main control circuit 31,
The current position of 22c is sent to the movement control circuit 32.

この移動制御回路32は主制御回路31から入力された
現在位置情報に基づき、送信機33を介して各自走車2
2h*22br22cへそれぞれ次の移動方向を示す移
動指令を送信する。各自走車22ar 22b + 2
2cはそれぞれ自己の移動指令を受(Thして、目的地
へ走行する。
Based on the current position information input from the main control circuit 31, this movement control circuit 32 transmits information to each self-propelled vehicle 2 via a transmitter 33.
A movement command indicating the next movement direction is transmitted to each of the 2h*22br22c. Each self-propelled vehicle 22ar 22b + 2
2c each receives its own movement command (Th, and travels to the destination.

このように構成された自走車移動制御装置であれば、各
自走車22 a + 22 b r 22eが軌道シー
ト2)上のいずれの位置を移動中であったとしても、そ
の現在位置が連続して検出される。また、軌道シート2
ノに敷詰める各配線23xおよび各配線237の間隔を
狭く設定することによって、予め移動制御回路32に設
定されている各自走車221k + 22 b H22
cの各軌道に対する現在位置の位置ずれを厳密に補正す
ることも可能である。したがって、−組の制御系にて、
各自走車22a+ 22b r 22cの細かい軌道補
正と現在位置検出とを同時に、しかも簡単に実施できる
。その結果、従来装置のように現在位置を検出する検出
装置を別途備える必要ないので、制御装置の簡素化を図
ることができる。
With the self-propelled vehicle movement control device configured in this way, no matter which position on the track sheet 2) each self-propelled vehicle 22a + 22 b r 22e is moving, its current position is continuous. detected. In addition, orbital sheet 2
By narrowly setting the intervals between each wiring 23x and each wiring 237, each self-propelled vehicle 221k + 22 b H22 set in advance in the movement control circuit 32 is set narrowly.
It is also possible to strictly correct the positional deviation of the current position with respect to each trajectory of c. Therefore, in the − group control system,
Fine trajectory correction and current position detection of each of the self-propelled vehicles 22a+22b r 22c can be performed simultaneously and easily. As a result, unlike conventional devices, there is no need to separately provide a detection device for detecting the current position, so the control device can be simplified.

また、軌道シート21上を走行できる自走車22h、2
2b、22eの台数も自由に設定でき、設定台数を増加
しても各自走車の位置を検出する軌道シート2ノ、各信
号制御回路29x。
In addition, self-propelled vehicles 22h and 2 that can run on the track sheet 21 are also provided.
The number of vehicles 2b and 22e can be set freely, and the track sheet 2 and each signal control circuit 29x detect the position of each self-propelled vehicle even if the number of vehicles is increased.

29y、入出力切換回路30等の装置の構成を変更する
必要ない。
29y, there is no need to change the configuration of devices such as the input/output switching circuit 30.

第7図は上述した実施例の自走車移動制御装置を物品移
動システム腎適用した例を示すものである。この適用例
に用いる自走車41に図示しない物品を保持する口?ッ
ト42が搭載されている。床には自走車41移動方向を
示す軌道43が描かれている。また、自走車41にて搬
送された物品を載置するための台44 m + 44 
bの前方床面上にそれぞれ前述した軌道シート45*、
45bが敷かれている。そして、各軌道シート45a、
45bは第6図の各制御部品を収納した操作盤46に接
続されている。そして、操作盤46の記憶部に各台44
m 、44bの物品を載せる位置および自走車41の停
止位置を各軌道シート45*、45bの座標に換算−し
た値が記憶されている。
FIG. 7 shows an example in which the self-propelled vehicle movement control device of the above-described embodiment is applied to an article movement system. Is there a port for holding articles (not shown) in the self-propelled vehicle 41 used in this application example? A cut 42 is installed. A track 43 indicating the direction of movement of the self-propelled vehicle 41 is drawn on the floor. In addition, a table 44 m + 44 for placing articles transported by the self-propelled vehicle 41
The above-mentioned track sheet 45* is placed on the front floor surface of b.
45b is laid. And each track sheet 45a,
45b is connected to an operation panel 46 housing each control component shown in FIG. Then, each unit 44 is stored in the storage section of the operation panel 46.
The values obtained by converting the article loading position of m, 44b and the stopping position of the self-propelled vehicle 41 into the coordinates of each track sheet 45*, 45b are stored.

しかして、操作盤46からの無線操縦によって、ロボッ
ト42に物品を保持させた状態で自走車41を軌道43
を経て例えば軌道シート45gの物品を載せる台44a
の前方まで移動させる。そして、前述した手段にて上記
記憶部に記憶された軌道シート45mの正確な位置に停
止させる。その後、口?ット42を動作させて物品を台
44a上の正確な位置に載置する。
Then, by radio control from the operation panel 46, the self-propelled vehicle 41 is moved to the orbit 43 with the robot 42 holding the article.
For example, a table 44a on which an article of 45 g of track sheet is placed.
Move it to the front of. Then, it is stopped at the exact position of the track sheet 45m stored in the storage section using the above-described means. Then the mouth? The article is placed at a precise position on the stand 44a by operating the cutter 42.

なお、台44bに物品を載せる場合にも同様な手順で操
作する。このように実施例の自走車移動制御装置を適用
することによって、物品をより正確な位置に移動するこ
とができる。
Note that the same procedure is followed when placing an article on the stand 44b. By applying the self-propelled vehicle movement control device of the embodiment in this way, articles can be moved to more accurate positions.

なお、本発明は上述した実施例に限定されるものではな
い。実施例では2、加圧されると両端間の抵抗が変化す
る導電性材として導電性ゴム材を用いたが同様の特性を
有する他の材料を用いてもよい。
Note that the present invention is not limited to the embodiments described above. In Example 2, a conductive rubber material was used as the conductive material whose resistance between both ends changes when pressurized, but other materials having similar characteristics may be used.

また、軌道シートを使用せずに床面に直接会配線を設置
してもよい。
Alternatively, the wiring may be installed directly on the floor without using a track sheet.

〔発明の効果〕 以上説明したように本発明によれば、床(軌道シート)
に配列された各配線の交点における自走車の通過を検出
することによって自走車の現在位置をめるようにしてい
る。また、配線の敷詰間隔を狭く設定することによって
自走車の細かい軌道補正も同時に実施できる。したがっ
て、軌道補正用と現在位置検出用との2系統の制御装置
を設ける必要ないので、制御装置の簡素化を図ることが
できる。
[Effect of the invention] As explained above, according to the present invention, the floor (track sheet)
The current position of the self-propelled vehicle is determined by detecting the passage of the self-propelled vehicle at the intersections of the wires arranged in the grid. Furthermore, by setting the wiring spacing narrowly, detailed trajectory corrections for self-propelled vehicles can be performed at the same time. Therefore, since it is not necessary to provide two systems of control devices, one for orbit correction and one for current position detection, the control device can be simplified.

【図面の簡単な説明】[Brief explanation of drawings]

第1図乃至第3図は従来の自走車移動制御装置を示す模
式図、第4図は本発明の一実施例に係る自走車移動制御
装置の軌道シートを示す模式図、第5図は同軌道シート
の要部を示す切欠斜視図、第6図は同制御装置の制御ブ
ロック図、第7図は同制御装置を物品移動システムに適
用した模式図である。 21.45& 、45b−・・軌道シート、22a。 22b、22c、41・・・自走車、23 x、23 
y・・・配線、24・・・車輪、25・・・交点、26
・・・導電性ゴム材、29x・・・X軸信号制御回路、
297・・・X軸信号制御回路、30・・・入出力切換
回路、31・・・主制御回路、32・・・移動制御回路
。 出願人代理人 弁理土鈴 江 武 彦
1 to 3 are schematic diagrams showing a conventional self-propelled vehicle movement control device, FIG. 4 is a schematic diagram showing a track sheet of a self-propelled vehicle movement control device according to an embodiment of the present invention, and FIG. 5 6 is a control block diagram of the control device, and FIG. 7 is a schematic diagram in which the control device is applied to an article moving system. 21.45&, 45b--orbital sheet, 22a. 22b, 22c, 41... self-propelled vehicle, 23 x, 23
y...Wiring, 24...Wheel, 25...Intersection, 26
...Conductive rubber material, 29x...X-axis signal control circuit,
297... X-axis signal control circuit, 30... Input/output switching circuit, 31... Main control circuit, 32... Movement control circuit. Applicant's agent Takehiko E, patent attorney

Claims (1)

【特許請求の範囲】[Claims] 床面上を移動制御される自走車と、前記床面に配列され
た互いに交差する複数の配線と、これら交差する各交点
部分の配線間に介挿されると共に、前記自走車の車輪に
加圧されることによって両端間の抵抗が変化する複数の
導電性材と、前記複数の互いに交差する配線にそれぞれ
接続され、各配線に対して信号印加動作と信号検出動作
とを択一的に実行する一対の信号制御回路と、これら一
対の信号制御回路における前記信号印加動作と信号検出
動作との動作をこれら信号制御回路間で互いに異る動作
に切換える入出力切換回路と、この入出力切換回路によ
って信号検出動作に切換えられたときの前記各信号制御
回路から出力される信号に基づいて前記加圧された導電
性材が介挿された配線の交点を検出すると共に、この検
出された交点位置を前記自走車の移動方向を制御する移
動制御回路へ送出する主制御回路とを具備してなること
を特徴とする自走車移動制御装置。
A self-propelled vehicle that is controlled to move on a floor surface, a plurality of wires arranged on the floor surface that intersect with each other, and a wire that is inserted between the wires at each intersection of these wires, and that is connected to the wheels of the self-propelled vehicle. A plurality of conductive materials whose resistance between both ends changes when pressurized are respectively connected to the plurality of interconnections that intersect with each other, and selectively performs a signal application operation and a signal detection operation for each interconnection. a pair of signal control circuits for execution; an input/output switching circuit for switching the signal application operation and signal detection operation in the pair of signal control circuits to different operations between the signal control circuits; and the input/output switching circuit. Detecting the intersection of the wires in which the pressurized conductive material is inserted based on the signals output from each of the signal control circuits when the circuit switches to signal detection operation, and detecting the detected intersection A self-propelled vehicle movement control device comprising: a main control circuit that sends the position to a movement control circuit that controls the moving direction of the self-propelled vehicle.
JP59014290A 1984-01-31 1984-01-31 Movement control device for self-running car Pending JPS60159914A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59014290A JPS60159914A (en) 1984-01-31 1984-01-31 Movement control device for self-running car

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59014290A JPS60159914A (en) 1984-01-31 1984-01-31 Movement control device for self-running car

Publications (1)

Publication Number Publication Date
JPS60159914A true JPS60159914A (en) 1985-08-21

Family

ID=11856957

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59014290A Pending JPS60159914A (en) 1984-01-31 1984-01-31 Movement control device for self-running car

Country Status (1)

Country Link
JP (1) JPS60159914A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03194604A (en) * 1989-12-22 1991-08-26 Nippon Yusoki Co Ltd Present travel position correction means
CN111336670A (en) * 2020-03-13 2020-06-26 北京中科志凌电子科技有限公司 Air conditioner temperature controller

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03194604A (en) * 1989-12-22 1991-08-26 Nippon Yusoki Co Ltd Present travel position correction means
CN111336670A (en) * 2020-03-13 2020-06-26 北京中科志凌电子科技有限公司 Air conditioner temperature controller

Similar Documents

Publication Publication Date Title
US4939651A (en) Control method for an unmanned vehicle (robot car)
JPH0287903A (en) Carrying facility utilizing linear motor
WO2019026761A1 (en) Moving body and computer program
JPH05150829A (en) Guide system for automatic vehicle
JPH05150827A (en) Guide system for unattended vehicle
US20210125493A1 (en) Travel control apparatus, travel control method, and computer program
JP7164085B2 (en) Work transport method using moving body, computer program, and moving body
EP0341889B1 (en) Automated vehicle control
WO2020137520A1 (en) Crane control system and control method
EP0499876B1 (en) Position detecting apparatus and method
JPS60159914A (en) Movement control device for self-running car
JPH036522B2 (en)
CN113711153B (en) Map creation system, signal processing circuit, mobile object, and map creation method
JP3317159B2 (en) Automatic guided vehicle
JPH0441362Y2 (en)
JP2001135989A (en) Collision-preventing device for component-mounting apparatus
JP3857115B2 (en) Driving control method in line guidance type racing game apparatus
JP2543847B2 (en) Autonomous mobile
JP2753774B2 (en) Mobile guidance system
JP3244641B2 (en) Mobile body guidance equipment
JP2825145B2 (en) Control method of cable crane
JPH01241604A (en) Unmanned load working device
JPH08234836A (en) Automatic traveling system for carrier
JPH0436404B2 (en)
JP2806775B2 (en) Display method and display device for precision approaching radar