WO2019026761A1 - Moving body and computer program - Google Patents

Moving body and computer program Download PDF

Info

Publication number
WO2019026761A1
WO2019026761A1 PCT/JP2018/028092 JP2018028092W WO2019026761A1 WO 2019026761 A1 WO2019026761 A1 WO 2019026761A1 JP 2018028092 W JP2018028092 W JP 2018028092W WO 2019026761 A1 WO2019026761 A1 WO 2019026761A1
Authority
WO
WIPO (PCT)
Prior art keywords
positioning device
mobile
estimation result
agv
estimation
Prior art date
Application number
PCT/JP2018/028092
Other languages
French (fr)
Japanese (ja)
Inventor
伊知朗 宮崎
知好 横山
清水 仁
Original Assignee
日本電産シンポ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電産シンポ株式会社 filed Critical 日本電産シンポ株式会社
Priority to JP2019534452A priority Critical patent/JPWO2019026761A1/en
Priority to CN201880050090.1A priority patent/CN110998472A/en
Publication of WO2019026761A1 publication Critical patent/WO2019026761A1/en

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/02Control of position or course in two dimensions

Definitions

  • the present disclosure relates to a mobile and a computer program for controlling movement of the mobile.
  • a moving body that performs self-position estimation includes an external sensor such as a laser range-finding sensor, for example, and senses the surrounding space while moving to acquire sensor data. For example, it is possible to identify a self-location on an environmental map by matching local map data around a moving object created from sensor data with a wider range of environmental map data.
  • Japanese Patent Laid-Open No. 2016-224680 discloses a self-position estimation apparatus that includes a first self-position estimation unit and a second self-position estimation unit, and executes estimation processing for each step.
  • the first self-position estimation unit obtains a probability distribution of the latest position of the moving object from the sensor data and the environmental map, and estimates the first self-position based on the probability distribution.
  • the second self-position estimating unit estimates the second self-position by adding the moving distance and the moving direction from the previous step to the current step, which are obtained by odometry, to the final self-position estimated in the previous step Do.
  • the weighted average value of the first self position and the second self position is taken as the final self position in the current step.
  • WO 2013/002067 discloses a self position and attitude estimation system for an autonomous mobile robot using a particle filter.
  • This system estimates the position and orientation of a robot using measurement data from a distance sensor, map data, and odometry data from an encoder. An evaluation value of the reliability of the position and orientation estimation result is calculated based on the dispersion of the particles. According to this system, it is determined whether or not the position and orientation estimation of the mobile robot is normally performed. If it is not normal, the robot is decelerated, the emergency stop is performed, or it is indicated that the robot is not normally performed. It can output a signal.
  • the present disclosure provides a technique for further stabilizing the traveling of a mobile including two types of positioning devices with different sensing methods.
  • a mobile includes, in an exemplary embodiment, at least one motor, a drive that controls the at least one motor to move the mobile, and movement of the mobile according to a first sensing method.
  • a first sensor that outputs first sensor data indicating a sensing result acquired according to the second sensing method, and a second sensor indicating a sensing result acquired according to the movement of the moving object by a second sensing method different from the first sensing method
  • a second sensor that outputs data; a first positioning device that performs a first estimation operation using the first sensor data to estimate the position of the mobile object; and the first estimation using the second sensor data
  • a second positioning device for estimating the position of the mobile body by performing a second estimation operation different from the operation, and a signal indicating the likelihood of the estimation result by the first positioning device
  • an arithmetic circuit for selecting one of the estimation result by the first positioning device and the estimation result by the second positioning device as the position of the moving object, depending on whether the polarity data matches a predetermined condition or not.
  • the estimation result by the first positioning device and the reliability data indicating the likelihood of the estimation result by the first positioning device match the predetermined condition and One of the estimation results by the second positioning device is selected as the position of the mobile body.
  • FIG. 1 is a block diagram showing an example of a basic configuration of a mobile unit in an exemplary embodiment of the present disclosure.
  • FIG. 2 is a diagram showing an outline of a control system that controls traveling of each AGV according to the present disclosure.
  • FIG. 3 is a view showing an example of a moving space S in which an AGV is present.
  • FIG. 4A shows the AGV and tow truck before being connected.
  • FIG. 4B shows the connected AGV and tow truck.
  • FIG. 5 is an external view of an exemplary AGV according to the present embodiment.
  • FIG. 6A is a diagram showing an example of a first hardware configuration of an AGV.
  • FIG. 6B is a diagram showing a second hardware configuration example of the AGV.
  • FIG. 7A shows an AGV that generates a map while moving.
  • FIG. 7B is a diagram showing an AGV that generates a map while moving.
  • FIG. 7C is a diagram showing an AGV that generates a map while moving.
  • FIG. 7D is a diagram showing an AGV that generates a map while moving.
  • FIG. 7E is a diagram showing an AGV that generates a map while moving.
  • FIG. 7F is a view schematically showing a part of the completed map.
  • FIG. 8 is a diagram showing an example of a hardware configuration of the operation management device.
  • FIG. 9 is a diagram schematically showing an example of the AGV movement route determined by the operation management device.
  • FIG. 10 is a block diagram showing a configuration example of the mobile unit 10.
  • FIG. 11 is a view schematically showing the flow of signals between components in the present embodiment.
  • FIG. 12 is a flowchart showing an example of the operation of the mobile unit 10.
  • FIG. 13 is a diagram for explaining the map switching area.
  • FIG. 14 is a diagram schematically showing an example of the operation of the mobile unit 10.
  • FIG. 15 is a diagram showing temporal changes in velocity of the mobile unit 10 in an embodiment.
  • FIG. 16 is a flowchart illustrating an operation of traveling using encoder coordinates in an embodiment.
  • FIG. 17 is a diagram schematically showing map switching processing in a normal state in which the reliability of LRF coordinates is high.
  • FIG. 18 is a diagram schematically showing map switching processing in the case where the reliability of LRF coordinates decreases while traveling in the map switching area.
  • FIG. 19 is a diagram illustrating an example of a change in LRF coordinates and a change in encoder coordinates.
  • unmanned transport vehicle means a trackless vehicle that manually or automatically loads a load on a main body, travels automatically to a designated location, and unloads manually or automatically.
  • unmanned aerial vehicle includes unmanned tow vehicles and unmanned forklifts.
  • unmanned means that the steering of the vehicle does not require a person, and does not exclude that the unmanned carrier conveys a "person (e.g., a person who unloads a package)".
  • the "unmanned tow truck” is a trackless vehicle that is tow to a designated location by automatically pulling a cart for loading and unloading a load manually or automatically.
  • the “unmanned forklift” is a trackless vehicle equipped with a mast that raises and lowers a load transfer fork and the like, automatically transfers the load onto the fork and so on, and automatically travels to a designated location to perform an automatic cargo handling operation.
  • a “trackless vehicle” is a vehicle that includes a wheel and an electric motor or engine that rotates the wheel.
  • a “mobile” is a device that moves while carrying a person or a load, and includes a driving device such as a wheel, a biped or multi-legged walking device, or a propeller that generates a traction for movement.
  • a driving device such as a wheel, a biped or multi-legged walking device, or a propeller that generates a traction for movement.
  • the term “mobile” in the present disclosure includes mobile robots and drone as well as unmanned transport vehicles in a narrow sense.
  • the “automatic traveling” includes traveling based on an instruction of an operation management system of a computer to which the automated guided vehicle is connected by communication, and autonomous traveling by a control device provided in the automated guided vehicle.
  • the autonomous traveling includes not only traveling by the automated guided vehicle toward a destination along a predetermined route, but also traveling by following a tracking target.
  • the automatic guided vehicle may perform manual traveling temporarily based on the instruction of the worker.
  • “automatic travel” generally includes both “guided” travel and “guideless” travel, in the present disclosure, “guideless” travel is meant.
  • the “guided type” is a system in which a derivative is installed continuously or intermittently and a guided vehicle is guided using the derivative.
  • the “guideless type” is a method of guiding without installing a derivative.
  • the unmanned transfer vehicle according to the embodiment of the present disclosure includes a self-position estimation device and travels in a guideless manner.
  • the “self-position estimation device” is a device that estimates the self-location on the environment map based on sensor data acquired by an external sensor such as a laser range finder.
  • SAM Simultaneous Localization and Mapping
  • FIG. 1 is a block diagram showing an example of a basic configuration of a mobile unit in an exemplary embodiment of the present disclosure.
  • the mobile unit 10 in this example includes a first sensor 101, a second sensor 102, a first positioning device 103, a second positioning device 104, an arithmetic circuit 105, and at least one electric motor (hereinafter simply referred to as "motor And a drive unit 107.
  • the first positioning device 103 is connected between the first sensor 101 and the arithmetic circuit 105.
  • the second positioning device 104 is connected between the second sensor 102 and the arithmetic circuit 105.
  • the drive device 107 controls the at least one motor 106 to move the moving body 10.
  • a typical example of the moving body 10 has at least one drive wheel (not shown) mechanically coupled to the motor 106, and can travel on the ground by the traction of the drive wheel.
  • first sensor 101 and the second sensor 102 acquire information corresponding to the movement of the mobile unit 10 by different sensing methods. Each sensing result is used for position estimation of the mobile unit 10.
  • the data output from the first sensor 101 and the second sensor 102 will be referred to as first sensor data and second sensor data, respectively.
  • the “external sensor” is a sensor that senses the external state of the mobile object 10.
  • the external sensors include, for example, a laser range finder, a camera (or an imaging device), a light detection and ranging (LIDAR), a millimeter wave radar, and a magnetic sensor.
  • the “internal sensor” is a sensor that senses the internal state of the mobile object 10.
  • the internal sensors include, for example, a rotary encoder (hereinafter, may be simply referred to as an "encoder”), an acceleration sensor, and an angular acceleration sensor (for example, a gyro sensor).
  • the first sensor 101 and the second sensor 102 are different types of sensors.
  • the first sensor 101 may be an external sensor, and the second sensor 102 may be an internal sensor.
  • the first sensor 101 includes a laser range finder (hereinafter also referred to as LRF), and the second sensor 102 includes at least one rotary encoder.
  • LRF laser range finder
  • the present disclosure is not limited to such a form.
  • Each of the first sensor 101 and the second sensor 102 is not limited to a specific type of sensor as long as it outputs data used to estimate the position of the mobile object 10.
  • Each of the first sensor 101 and the second sensor 102 may be, for example, a device such as a camera, an imaging device, an imaging device, a magnetic sensor, a LIDAR, a millimeter wave radar, an angular velocity sensor, or an acceleration sensor.
  • a device such as a camera, an imaging device, an imaging device, a magnetic sensor, a LIDAR, a millimeter wave radar, an angular velocity sensor, or an acceleration sensor.
  • the first positioning device 103 While the mobile unit 10 is moving, the first positioning device 103 performs a first estimation operation using the first sensor data output from the first sensor 101 to estimate the current position of the mobile unit 10. For example, when the first sensor 101 is a laser range finder, the first positioning device 103 collates map data prepared in advance with data acquired by the laser range finder, and moves the mobile object to any position on the map Estimate if is located. The first positioning device 103 may estimate not only the position of the mobile body but also the orientation (or attitude). The first positioning device 103 outputs data indicating the estimation result as first position information.
  • the second positioning device 104 performs a second estimation operation using the second sensor data output from the second sensor 102 to estimate the current position of the mobile object 10. For example, when the second sensor 102 includes at least one rotary encoder, the second positioning device 104 indicates the information of the initial position previously recorded on a recording medium such as a memory and the rotational state of the wheel output from the rotary encoder. From the information, the current position can be estimated. The second positioning device 104 may also estimate the direction as well as the position of the mobile body. The second positioning device 104 outputs data indicating the estimation result as second position information.
  • the mobile unit 10 may further include a storage device for storing map data created in advance based on sensor data periodically output from the laser range finder.
  • the laser range finder (LRF) used to create map data may be an LRF (first sensor 101) mounted on the moving object 10 or another LRF.
  • the first positioning device 103 collates the first sensor data with the map data to estimate the position of the mobile object 10. This operation is called "self-position estimation".
  • Self-position estimation may include not only coordinates but also estimation of an angle from a reference axis.
  • the moving body 10 may be a vehicle provided with a plurality of wheels including a first wheel and a second wheel.
  • the at least one motor 106 may include a first motor mechanically connected to the first wheel and a second motor mechanically connected to the second wheel.
  • the moving body 10 has any one position of a first rotary encoder that measures rotation at any position of the power transmission mechanism from the first motor to the first wheel, and any position of the power transmission mechanism from the second motor to the second wheel. And a second rotary encoder for measuring the rotation of the motor.
  • “To measure rotation” means to measure at least “rotational direction” and “rotational position (in consideration of the number of rotations)”.
  • the first and second rotary encoders measure the rotation of the first and second wheels, respectively.
  • the second positioning device 104 measures a relative displacement amount from a given initial position using the second sensor data output from each of the first rotary encoder and the second rotary encoder, and performs an initial position.
  • the position moved by the displacement amount can be estimated as the position of the moving body 10 from the above.
  • the initial position may be updated periodically or irregularly while the mobile object 10 is traveling.
  • the arithmetic circuit 105 may update the value of the initial position described above with the value of the position (coordinates) estimated by the first positioning device 103. While the moving object 10 is traveling, the arithmetic circuit 105 may perform the update of the initial position at a predetermined cycle or aperiodically.
  • the first position information acquired using the LRF is higher than the second position information acquired using the encoder. It tends to be reliable. This is because the odometry data output from the encoder is likely to have an error, and the error is likely to be accumulated, due to slippage of wheels caused by road surface conditions or a shift due to a step.
  • Such a mismatch in reliability may occur not only in the combination of LRF and encoder but also in the combination of two other types of sensors (for example, a camera and a gyro sensor). Therefore, among the first position information and the second position information, the one with higher reliability is mainly used, and the other is used auxiliary.
  • the first position information may be less reliable than the second position information.
  • the first positioning device 103 may erroneously output coordinates which are completely different from the actual ones. . This is likely to occur, for example, when there are a plurality of locations including similar feature points on the route, or when there is an object (in particular, an object that is easily confused with a wall or the like) that did not exist at the time of mapping. In such a case, if self-position estimation using the first position information is continued, it is not possible to travel an accurate route. As a result, not only can the destination point not be reached, there is a risk of overruns or collisions.
  • the arithmetic circuit 105 estimates an estimation result estimated to be more accurate among the estimation results of the first positioning device 103 and the second positioning device 104. Select to control travel. Accordingly, for example, when it is determined that the vehicle travels normally using the position information estimated by the first positioning device 103 and it is determined that the reliability of the position information by the first positioning device 103 is low, the second positioning device 04 It is possible to switch to travel using position information.
  • the arithmetic circuit 105 determines the current position of the moving body 10 based on the first position information and the second position information, and controls the drive device 107.
  • the arithmetic circuit 105 acquires reliability data indicating the likelihood of the estimation result by the first positioning device 103 in addition to the first and second position information.
  • the arithmetic circuit 105 selects one of the estimation result by the first positioning device 103 and the estimation result by the second positioning device 104 as the position of the mobile object 10 according to whether or not the reliability data conforms to a predetermined condition. Do.
  • the arithmetic circuit 105 receives an instruction of a destination from, for example, an external device, controls the drive device 107 using the position of the selected mobile unit 10, and moves the mobile unit 10 toward the destination.
  • the reliability data may be output from the first positioning device 103 or may be generated by the arithmetic circuit 105 itself.
  • the first positioning device 103 may output data indicating the degree of coincidence between the first sensor data and the map data as the first reliability data.
  • the calculation circuit 105 selects the estimation result of the first positioning device 103 as the position of the mobile object 10
  • the second positioning is performed when the value of the first reliability data becomes equal to or less than the switching threshold.
  • the estimation result by the device 104 can be selected as the position of the moving body 10.
  • the calculation circuit 105 selects the estimation result of the second positioning device 104 as the position of the mobile object 10.
  • the first positioning is performed when the value of the first reliability data becomes equal to or more than the recovery threshold. It is possible to return to the state of selecting the estimation result by the device 103 as the position of the moving body 10.
  • the return threshold may be the same value as the switching threshold, or may be a value larger than the switching threshold.
  • the operation can be made more stable by setting the recovery threshold to a value that is several% to 30% higher than the switching threshold. it can.
  • the arithmetic circuit 105 does not approximate the movement of the coordinates indicated by the first position information and the movement of the coordinates indicated by the second position information.
  • the position indicated by the second position information may be selected as the position of the moving body 10.
  • the estimation result by the second positioning device 104 is a mobile object It may be selected as 10 positions and the operation may be continued.
  • the reliability data may include data (referred to as “second reliability data”) indicating the difference between the coordinates indicated by the first position information and the coordinates indicated by the second position information.
  • the arithmetic circuit 105 outputs the difference between the position obtained as the estimation result of the first positioning device 103 and the position obtained as the estimation result of the second positioning device 104 as second reliability data.
  • the second reliability data is, for example, an absolute value of (x1-x2), the absolute value of (y1-y2), or (x1-x2) may be a 2 + (y1-y2) data indicating a value of 2 or a square root.
  • the calculation circuit 105 selects the estimation result of the first positioning device 103 as the position of the mobile object 10.
  • the second positioning is performed when the value of the second reliability data becomes equal to or greater than a predetermined allowable value.
  • the estimation result by the device 104 can be selected as the position of the moving body 10.
  • the calculation circuit 105 selects the estimation result by the second positioning device 104 as the position of the mobile object 10
  • the value of the second reliability data becomes less than the allowable value or a value smaller than that value. At this time, it is possible to return to the state of selecting the measurement result by the first positioning device 103 as the position of the mobile object 10.
  • the present disclosure also includes a computer program executed by an arithmetic circuit in a mobile. Such programs are stored in the memory of the mobile.
  • the computer program causes the arithmetic circuit to calculate the estimation result by the first positioning device and the first estimation device depending on whether reliability data indicating the likelihood of the estimation result by the first positioning device matches a predetermined condition. 2) One of the estimation results by the positioning device is selected as the position of the mobile unit.
  • the present embodiment relates to a system provided with an unmanned transport vehicle as an example of a mobile object.
  • an unmanned carrier is described as "AGV" using abbreviations.
  • the first sensor 101 includes a laser range finder
  • the second sensor 102 includes two rotary encoders that measure rotational speeds (rotations per unit time) of the two wheels.
  • FIG. 2 shows an example of the basic configuration of an exemplary mobile management system 100 according to the present disclosure.
  • the mobile management system 100 includes at least one AGV 10, a terminal device 20 operated by the user 1, and an operation management device 50 that performs operation management of the AGV 10.
  • the AGV 10 is an unmanned transport carriage capable of "guideless" traveling, which does not require a derivative such as a magnetic tape for traveling.
  • the AGV 10 can perform self-position estimation, and can transmit the result of estimation to the terminal device 20 and the operation management device 50.
  • the AGV 10 can automatically travel in the moving space S in accordance with a command from the operation management device 50.
  • the operation management device 50 is a computer system that tracks the position of each AGV 10 and manages traveling of each AGV 10.
  • the operation management device 50 may be a desktop PC, a laptop PC, and / or a server computer.
  • the operation management apparatus 50 communicates with each AGV 10 via the plurality of access points 2. For example, the operation management device 50 transmits, to each AGV 10, data of coordinates of a position to which each AGV 10 should go next.
  • Each AGV 10 periodically transmits data indicating its position and attitude to the operation management device 50, for example, every 100 milliseconds.
  • the operation management device 50 transmits data of coordinates of a position to be further advanced.
  • the AGV 10 can also travel in the moving space S in accordance with the operation of the user 1 input to the terminal device 20.
  • An example of the terminal device 20 is a tablet computer.
  • travel of the AGV 10 using the terminal device 20 is performed at the time of map creation, and travel of the AGV 10 using the operation management device 50 is performed after the map creation.
  • FIG. 3 shows an example of a moving space S in which three AGVs 10a, 10b and 10c exist. All AGVs are assumed to travel in the depth direction in the figure. The AGVs 10a and 10b are carrying the load placed on the top plate. The AGV 10 c runs following the front AGV 10 b.
  • the referential mark 10a, 10b and 10c were attached
  • the AGV 10 can also transfer a load using a tow truck connected to itself, in addition to the method of transferring the load placed on the top plate.
  • FIG. 4A shows the AGV 10 and the tow truck 5 before being connected. Each leg of the tow truck 5 is provided with a caster. The AGV 10 is mechanically connected to the tow truck 5.
  • FIG. 4B shows the connected AGV 10 and tow truck 5. When the AGV 10 travels, the tow truck 5 is pulled by the AGV 10. By pulling the tow truck 5, the AGV 10 can transport the load placed on the tow truck 5.
  • connection method of AGV10 and the pulling truck 5 is arbitrary. An example will be described.
  • a plate 6 is fixed to the top plate of the AGV 10.
  • the tow truck 5 is provided with a guide 7 having a slit.
  • the AGV 10 approaches the tow truck 5 and inserts the plate 6 into the slit of the guide 7.
  • the AGV 10 penetrates the plate 6 and the guide 7 with an electromagnetic lock type pin (not shown) to lock the electromagnetic lock.
  • AGV10 and the pulling truck 5 are physically connected.
  • Each AGV 10 and the terminal device 20 can be connected, for example, on a one-to-one basis to perform communication conforming to the Bluetooth (registered trademark) standard.
  • Each AGV 10 and the terminal device 20 can also perform communication conforming to Wi-Fi (registered trademark) using one or more access points 2.
  • the plurality of access points 2 are connected to one another via, for example, a switching hub 3. Two access points 2a and 2b are shown in FIG.
  • the AGV 10 is wirelessly connected to the access point 2a.
  • the terminal device 20 is wirelessly connected to the access point 2b.
  • the data transmitted by the AGV 10 is received by the access point 2 a, transferred to the access point 2 b via the switching hub 3, and transmitted from the access point 2 b to the terminal device 20.
  • the data transmitted by the terminal device 20 is received by the access point 2 b, transferred to the access point 2 a via the switching hub 3, and transmitted from the access point 2 a to the AGV 10. Thereby, bi-directional communication between the AGV 10 and the terminal device 20 is realized.
  • the plurality of access points 2 are also connected to the operation management device 50 via the switching hub 3. Thereby, bidirectional communication is realized also between the operation management device 50 and each of the AGVs 10.
  • the AGV 10 transitions to the data acquisition mode by the operation of the user.
  • the AGV 10 starts acquiring sensor data using a laser range finder.
  • the laser range finder periodically scans the surrounding space S by emitting a laser beam of, for example, infrared or visible light to the surroundings.
  • the laser beam is reflected by, for example, a surface such as a wall, a structure such as a pillar, or an object placed on the floor.
  • the laser range finder receives the reflected light of the laser beam, calculates the distance to each reflection point, and outputs measurement data indicating the position of each reflection point.
  • the direction of arrival of reflected light and the distance are reflected in the position of each reflection point.
  • Data of measurement results may be referred to as "measurement data" or "sensor data”.
  • the positioning device stores sensor data in a storage device.
  • the sensor data accumulated in the storage device is transmitted to the external device.
  • the external device is, for example, a computer that has a signal processor and has a mapping program installed.
  • the signal processor of the external device superimposes sensor data obtained for each scan.
  • a map of the space S can be created by repeatedly performing the process of overlaying the signal processor.
  • the external device transmits the created map data to the AGV 10.
  • the AGV 10 stores the created map data in an internal storage device.
  • the external device may be the operation management device 50 or another device.
  • the AGV 10 may create the map instead of the external device.
  • the processing performed by the signal processing processor of the external device described above may be performed by a circuit such as a microcontroller unit (microcomputer) of the AGV 10.
  • a microcontroller unit microcomputer
  • the data capacity of sensor data is generally considered to be large. Since it is not necessary to transmit sensor data to an external device, occupation of the communication line can be avoided.
  • the movement in the movement space S for acquiring sensor data can be implement
  • the AGV 10 wirelessly receives a traveling instruction instructing movement in each of the front, rear, left, and right directions from the user via the terminal device 20.
  • the AGV 10 travels back and forth and left and right in the moving space S in accordance with a travel command to create a map.
  • the map may be created by traveling in the moving space S in the front, rear, left, and right according to a control signal from the steering apparatus.
  • the sensor data may be acquired by a person pushing on the measurement cart on which the laser range finder is mounted.
  • FIGS. 2 and 3 Although a plurality of AGVs 10 are shown in FIGS. 2 and 3, one AGV may be provided. When there are a plurality of AGVs 10, the user 1 can use the terminal device 20 to select one AGV 10 out of the plurality of registered AGVs and create a map of the moving space S.
  • each AGV 10 can automatically travel while estimating its own position using the map.
  • the description of the process of estimating the self position will be described later.
  • FIG. 5 is an external view of an exemplary AGV 10 according to the present embodiment.
  • the AGV 10 has two drive wheels 11a and 11b, four casters 11c, 11d, 11e and 11f, a frame 12, a transport table 13, a travel control device 14, and a laser range finder 15.
  • the two drive wheels 11a and 11b are provided on the right and left sides of the AGV 10, respectively.
  • the four casters 11 c, 11 d, 11 e and 11 f are disposed at the four corners of the AGV 10.
  • the AGV 10 also has a plurality of motors connected to the two drive wheels 11a and 11b, which are not shown in FIG. Further, FIG.
  • FIG. 5 shows one drive wheel 11a and two casters 11c and 11e located on the right side of the AGV 10 and a caster 11f located on the left rear, but the left drive wheel 11b and the left front
  • the caster 11 d is not shown because it is hidden by the frame 12.
  • the four casters 11c, 11d, 11e and 11f can pivot freely.
  • the drive wheel 11a and the drive wheel 11b are also referred to as a wheel 11a and a wheel 11b, respectively.
  • the travel control device 14 is a device that controls the operation of the AGV 10, and mainly includes an integrated circuit including a microcomputer (described later), an electronic component, and a substrate on which the components are mounted.
  • the traveling control device 14 performs transmission and reception of data with the terminal device 20 and the pre-processing calculation described above.
  • the laser range finder 15 is an optical device that measures, for example, the distance to a reflection point by emitting an infrared laser beam 15a and detecting the reflected light of the laser beam 15a.
  • the laser range finder 15 of the AGV 10 is, for example, a pulsed laser beam while changing the direction every 0.25 degree in a space within a range of 135 degrees (270 degrees in total) with reference to the front of the AGV 10
  • the light 15a is emitted, and the reflected light of each laser beam 15a is detected. This makes it possible to obtain data of the distance to the reflection point in the direction determined by the angle for a total of 1081 steps every 0.25 degrees.
  • the scan of the surrounding space performed by the laser range finder 15 is substantially parallel to the floor surface and planar (two-dimensional). However, scanning in the height direction may be performed.
  • the AGV 10 can create a map of the space S based on the position and attitude of the AGV 10 and the scan result of the laser range finder 15.
  • the map may reflect the surrounding walls of the AGV, structures such as columns, and the placement of objects placed on the floor. Map data is stored in a storage device provided in the AGV 10.
  • the position and posture of a mobile are called a pose.
  • the position and orientation of the moving body in a two-dimensional plane are represented by position coordinates (x, y) in the XY orthogonal coordinate system and an angle ⁇ with respect to the X axis.
  • the position and posture of the AGV 10, that is, the pose (x, y, ⁇ ) may be hereinafter simply referred to as "position”.
  • the position of the reflection point viewed from the emission position of the laser beam 15a can be expressed using polar coordinates determined by the angle and the distance.
  • the laser range finder 15 outputs sensor data represented by polar coordinates.
  • the laser range finder 15 may convert the position expressed in polar coordinates into orthogonal coordinates and output it.
  • the structure and the operating principle of the laser range finder are known, so a further detailed description will be omitted herein.
  • Examples of objects that can be detected by the laser range finder 15 are people, luggage, shelves, and walls.
  • the laser range finder 15 is an example of an external sensor for sensing surrounding space and acquiring sensor data.
  • an image sensor and an ultrasonic sensor can be considered.
  • the traveling control device 14 can estimate the current position of itself by comparing the measurement result of the laser range finder 15 with the map data held by itself.
  • maintained may be the map data which other AGV10 created.
  • FIG. 6A shows a first hardware configuration example of the AGV 10.
  • FIG. 6A also shows a specific configuration of the traveling control device 14.
  • the AGV 10 includes a travel control unit 14, a laser range finder 15, two motors 16a and 16b, a drive unit 17, wheels 11a and 11b, and two rotary encoders 18a and 18b (hereinafter simply referred to as “encoders 18a”). And “the encoder 18 b”).
  • the traveling control device 14 includes a microcomputer 14a, a memory 14b, a storage device 14c, a communication circuit 14d, and a positioning device 14e.
  • the microcomputer 14a, the memory 14b, the storage device 14c, the communication circuit 14d, and the positioning device 14e are connected by a communication bus 14f and can exchange data with each other.
  • the laser range finder 15 is also connected to the communication bus 14f via a communication interface (not shown), and transmits measurement data as a measurement result to the microcomputer 14a, the positioning device 14e and / or the memory 14b.
  • the microcomputer 14 a is a processor or control circuit (computer) that performs calculations for controlling the entire AGV 10 including the traveling control device 14.
  • the microcomputer 14a is a semiconductor integrated circuit.
  • the microcomputer 14a transmits a PWM (Pulse Width Modulation) signal, which is a control signal, to the drive unit 17 to control the drive unit 17 to adjust the voltage applied to the motor. This causes each of the motors 16a and 16b to rotate at a desired rotational speed.
  • PWM Pulse Width Modulation
  • control circuits for example, microcomputers
  • control circuits for controlling the drive of the left and right motors 16a and 16b may be provided independently of the microcomputer 14a.
  • the motor drive device 17 may be provided with two microcomputers for controlling the drive of the motors 16a and 16b, respectively. Those two microcomputers may perform coordinate calculation using encoder information output from the encoders 18a and 18b, respectively, to estimate the moving distance of the AGV 10 from a given initial position. Further, the two microcomputers may control the motor drive circuits 17a and 17b using encoder information.
  • the memory 14 b is a volatile storage device that stores a computer program executed by the microcomputer 14 a.
  • the memory 14b can also be used as a work memory when the microcomputer 14a and the positioning device 14e perform calculations.
  • the storage device 14 c is a non-volatile semiconductor memory device.
  • the storage device 14 c may be a magnetic recording medium represented by a hard disk, or an optical recording medium represented by an optical disk.
  • the storage device 14 c may include a head device for writing and / or reading data on any recording medium and a control device of the head device.
  • the storage device 14c stores map data M of the space S in which the vehicle travels and data (traveling route data) R of one or more traveling routes.
  • the map data M is created by the AGV 10 operating in the mapping mode and stored in the storage device 14c.
  • the travel route data R is transmitted from the outside after the map data M is created.
  • the map data M and the traveling route data R are stored in the same storage device 14c, but may be stored in different storage devices.
  • the AGV 10 receives traveling route data R indicating a traveling route from the tablet computer.
  • the travel route data R at this time includes marker data indicating the positions of a plurality of markers. “Marker” indicates the passing position (passing point) of the traveling AGV 10.
  • the travel route data R includes at least position information of a start marker indicating a travel start position and an end marker indicating a travel end position.
  • the travel route data R may further include positional information of markers at one or more intermediate waypoints. When the travel route includes one or more intermediate via points, a route from the start marker to the end marker via the travel via points in order is defined as the travel route.
  • the data of each marker may include, in addition to the coordinate data of the marker, data of the orientation (angle) and traveling speed of the AGV 10 until moving to the next marker.
  • the data of each marker is an acceleration time required to accelerate to the traveling speed, and / or It may include data of deceleration time required to decelerate from the traveling speed to a stop at the position of the next marker.
  • the operation management device 50 may control the movement of the AGV 10.
  • the operation management apparatus 50 may instruct the AGV 10 to move to the next marker each time the AGV 10 reaches the marker.
  • the AGV 10 receives, from the operation management apparatus 50, coordinate data of a target position to be headed to next, or data of a distance to the target position and data of an angle to be traveled as travel route data R indicating a travel route.
  • the AGV 10 can travel along the stored travel path while estimating its own position using the created map and the sensor data output from the laser range finder 15 acquired during travel.
  • the communication circuit 14d is, for example, a wireless communication circuit that performs wireless communication compliant with the Bluetooth (registered trademark) and / or the Wi-Fi (registered trademark) standard. Both standards include wireless communication standards using frequencies in the 2.4 GHz band. For example, in the mode in which the AGV 10 is run to create a map, the communication circuit 14d performs wireless communication conforming to the Bluetooth (registered trademark) standard, and communicates with the terminal device 20 on a one-to-one basis.
  • the positioning device 14 e performs map creation processing and estimation processing of the self position when traveling.
  • the positioning device 14e creates a map of the moving space S based on the position and attitude of the AGV 10 and the scanning result of the laser range finder.
  • the positioning device 14e receives sensor data from the laser range finder 15, and reads out the map data M stored in the storage device 14c.
  • Self-location (x, y, ⁇ ) on the map data M by matching local map data (sensor data) created from the scan result of the laser range finder 15 with the map data M in a wider range Identify
  • the positioning device 14 e generates “reliability” data indicating the degree to which the local map data matches the map data M.
  • the data of the self position (x, y, ⁇ ) and the reliability can be transmitted from the AGV 10 to the terminal device 20 or the operation management device 50.
  • the terminal device 20 or the operation management device 50 can receive each data of the self position (x, y, ⁇ ) and the reliability and can display it on a built-in or connected display device.
  • microcomputer 14a and the positioning device 14e are separate components in this embodiment, this is an example. It may be a single chip circuit or a semiconductor integrated circuit capable of independently performing each operation of the microcomputer 14a and the positioning device 14e.
  • FIG. 6A shows a chip circuit 14g including the microcomputer 14a and the positioning device 14e.
  • the microcomputer 14a and the positioning device 14e are provided separately and independently will be described.
  • Two motors 16a and 16b are attached to two wheels 11a and 11b, respectively, to rotate each wheel. That is, the two wheels 11a and 11b are respectively drive wheels.
  • the motor 16a and the motor 16b are described as being motors for driving the right and left wheels of the AGV 10, respectively.
  • the AGV 10 further includes an encoder unit 18 that measures the rotational position or rotational speed of the wheels 11a and 11b.
  • the encoder unit 18 includes a first rotary encoder 18a and a second rotary encoder 18b.
  • the first rotary encoder 18a measures the rotation at any position of the power transmission mechanism from the motor 16a to the wheel 11a.
  • the second rotary encoder 18 b measures the rotation at any position of the power transmission mechanism from the motor 16 b to the wheel 11 b.
  • the encoder unit 18 transmits the signals acquired by the rotary encoders 18a and 18b to the microcomputer 14a.
  • the microcomputer 14a can control movement of the AGV 10 using not only the signal received from the positioning device 14e but also the signal received from the encoder unit 18.
  • the drive device 17 has motor drive circuits 17a and 17b for adjusting the voltage applied to each of the two motors 16a and 16b.
  • Each of motor drive circuits 17a and 17b includes a so-called inverter circuit.
  • the motor drive circuits 17a and 17b turn on or off the current flowing to each motor by the PWM signal transmitted from the microcomputer 14a or the microcomputer in the motor drive circuit 17a, thereby adjusting the voltage applied to the motor.
  • FIG. 6B shows a second hardware configuration example of the AGV 10.
  • the second hardware configuration example differs from the first hardware configuration example (FIG. 6A) in that it has the laser positioning system 14 h and that the microcomputer 14 a is connected to each component on a one-to-one basis. Do.
  • the laser positioning system 14 h includes a positioning device 14 e and a laser range finder 15.
  • the positioning device 14e and the laser range finder 15 are connected by, for example, an Ethernet (registered trademark) cable.
  • the operations of the positioning device 14e and the laser range finder 15 are as described above.
  • the laser positioning system 14 h outputs information indicating the pose (x, y, ⁇ ) of the AGV 10 to the microcomputer 14 a.
  • the microcomputer 14a has various general purpose I / O interfaces or general purpose input / output ports (not shown).
  • the microcomputer 14a is directly connected to other components in the travel control device 14, such as the communication circuit 14d and the laser positioning system 14h, via the general-purpose input / output port.
  • the AGV 10 in the embodiment of the present disclosure may be equipped with a safety sensor such as an obstacle detection sensor and a bumper switch which are not shown.
  • the AGV 10 may include an inertial measurement device such as a gyro sensor.
  • an inertial measurement device such as a gyro sensor.
  • FIGS. 7A to 7F schematically show the AGV 10 moving while acquiring sensor data.
  • the user 1 may move the AGV 10 manually while operating the terminal device 20.
  • the unit provided with the travel control device 14 shown in FIGS. 6A and 6B, or the AGV 10 itself may be mounted on a carriage, and sensor data may be acquired by the user 1 manually pushing or holding the carriage.
  • FIG. 7A shows an AGV 10 that scans the surrounding space using a laser range finder 15. A laser beam is emitted for each predetermined step angle and scanning is performed.
  • the illustrated scan range is an example schematically shown, and is different from the total scan range of 270 degrees described above.
  • the position of the reflection point of the laser beam is schematically shown using a plurality of black points 4 represented by a symbol “ ⁇ ”.
  • the scanning of the laser beam is performed at short intervals while the position and attitude of the laser range finder 15 change. Therefore, the number of actual reflection points is much larger than the number of reflection points 4 shown.
  • the positioning device 14e stores, for example, in the memory 14b, the position of the black point 4 obtained as the vehicle travels.
  • the map data is gradually completed as the AGV 10 continues to scan while traveling.
  • FIGS. 7B-7E only the scan range is shown for simplicity.
  • the scan range is an example, and is different from the above-described example of 270 degrees in total.
  • the map may be created using the microcomputer 14a in the AGV 10 or an external computer based on the sensor data after acquiring the sensor data of the amount necessary for creating the map. Alternatively, a map may be created in real time based on sensor data acquired by the moving AGV 10.
  • FIG. 7F schematically shows a part of the completed map 40.
  • free space is partitioned by a point cloud (Point Cloud) corresponding to a collection of reflection points of the laser beam.
  • Point Cloud Point Cloud
  • Another example of the map is an occupied grid map that distinguishes space occupied by an object from free space in grid units.
  • the positioning device 14e stores map data (map data M) in the memory 14b or the storage device 14c.
  • map data M maps the illustrated number or density of black spots.
  • the map data thus obtained may be shared by multiple AGVs 10.
  • a typical example of an algorithm in which the AGV 10 estimates its own position based on map data is ICP (Iterative Closest Point) matching.
  • ICP Intelligent Closest Point
  • the local map data (sensor data) created from the scan result of the laser range finder 15 is matched (matched) with the map data M in a wider range, whereby the self-location on the map data M (x , Y, ⁇ ) can be estimated.
  • FIG. 8 shows a hardware configuration example of the operation management device 50.
  • the operation management apparatus 50 includes a CPU 51, a memory 52, a position database (position DB) 53, a communication circuit 54, a map database (map DB) 55, and an image processing circuit 56.
  • the CPU 51, the memory 52, the position DB 53, the communication circuit 54, the map DB 55, and the image processing circuit 56 are connected by a communication bus 57 and can exchange data with each other.
  • the CPU 51 is a signal processing circuit (computer) that controls the operation of the operation management device 50.
  • the CPU 51 is a semiconductor integrated circuit.
  • the memory 52 is a volatile storage device that stores a computer program that the CPU 51 executes.
  • the memory 52 can also be used as a work memory when the CPU 51 performs an operation.
  • the position DB 53 stores position data indicating each position that can be a destination of each AGV 10.
  • the position data may be represented, for example, by coordinates virtually set in the factory by the administrator. Location data is determined by the administrator.
  • the communication circuit 54 performs wired communication conforming to, for example, the Ethernet (registered trademark) standard.
  • the communication circuit 54 is connected to the access point 2 (FIG. 1) by wire, and can communicate with the AGV 10 via the access point 2.
  • the communication circuit 54 receives data to be transmitted to the AGV 10 from the CPU 51 via the bus 57.
  • the communication circuit 54 also transmits data (notification) received from the AGV 10 to the CPU 51 and / or the memory 52 via the bus 57.
  • the map DB 55 stores data of an internal map of a factory or the like on which the AGV 10 travels.
  • the map may be the same as or different from the map 40 (FIG. 7F).
  • the data format is not limited as long as the map has a one-to-one correspondence with the position of each AGV 10.
  • the map stored in the map DB 55 may be a map created by CAD.
  • the position DB 53 and the map DB 55 may be constructed on a non-volatile semiconductor memory, or may be constructed on a magnetic recording medium represented by a hard disk or an optical recording medium represented by an optical disc.
  • the image processing circuit 56 is a circuit that generates data of an image displayed on the monitor 58.
  • the image processing circuit 56 operates only when the administrator operates the operation management device 50. In the present embodiment, particularly the detailed description is omitted.
  • the monitor 59 may be integrated with the operation management device 50. Further, the CPU 51 may perform the processing of the image processing circuit 56.
  • FIG. 9 is a view schematically showing an example of the movement route of the AGV 10 determined by the operation management device 50. As shown in FIG.
  • position M n + 1 (a positive integer greater than or equal to n: 1) explain.
  • position DB 53 coordinate data indicating positions such as a position M 2 to be passed next to the position M 1 and a position M 3 to be passed next to the position M 2 are recorded.
  • CPU51 of traffic control device 50 reads out the coordinate data of the position M 2 with reference to the position DB 53, and generates a travel command to direct the position M 2.
  • the communication circuit 54 transmits a traveling command to the AGV 10 via the access point 2.
  • the CPU 51 periodically receives data indicating the current position and attitude from the AGV 10 via the access point 2.
  • the operation management device 50 can track the position of each AGV 10.
  • CPU51 determines that the current position of the AGV10 matches the position M 2, reads the coordinate data of the position M 3, and transmits the AGV10 generates a travel command to direct the position M 3. That is, when it is determined that the AGV 10 has reached a certain position, the operation management device 50 transmits a traveling command for directing to the next passing position.
  • the AGV 10 can reach the final target position Mn + 1 .
  • the passing position and the target position of the AGV 10 described above may be referred to as a “marker”.
  • FIG. 10 is a block diagram showing a configuration example of the AGV 10.
  • the configuration of FIG. 10 is the same as the configuration of FIG. 6B except that the second positioning device 19 and the display 30 are provided.
  • the second positioning device 19 is connected between the encoder unit 18 and the microcomputer 14a.
  • the display 30 is connected to the microcomputer 14a.
  • the positioning device 14 e will be referred to as “first positioning device 14 e” in order to distinguish it from the second positioning device 19.
  • the laser range finder 15 and the encoder unit 18 have functions as the first sensor 101 and the second sensor 102 in FIG. 1, respectively.
  • the microcomputer 14a corresponds to the arithmetic circuit 105 in FIG.
  • the second positioning device 19 includes, for example, a processing circuit such as a processor and a memory.
  • the second positioning device 19 acquires data output from the rotary encoders 18a and 18b, generates data (x, y, ⁇ ) indicating the position and attitude of the AGV 10, and outputs the data to the microcomputer 14a.
  • the functions of the second positioning device 19 may be integrated into the microcomputer 14a. In that case, the same configuration as the configuration shown in FIG. 6A or 6B is used.
  • the control circuit in the drive device 17 may have the function of the second positioning device 19.
  • FIG. 11 is a view schematically showing the flow of signals between components in the present embodiment.
  • the first positioning device 14 e performs a first estimation operation using data (first sensor data) output from the LRF 15 to estimate the position and orientation of the AGV 10.
  • the first estimation calculation in the present embodiment is processing of collating the first sensor data with the map data to generate data indicating coordinates (x, y), angle ⁇ , and reliability (unit:%). .
  • the first positioning device 14e sends data indicating the coordinates (x, y), the angle ⁇ , and the reliability to the microcomputer (arithmetic circuit) 14a.
  • the second positioning device 19 performs a second estimation operation using data (second sensor data) output from the two encoders 18 a and 18 b to estimate the position and orientation of the AGV 10.
  • the second sensor data includes information on the rotational state or rotational speed of the motor or the wheel. The travel distance of the wheel per unit time can be estimated from the rotational speed and the diameter of the wheel.
  • the second estimation operation includes a process of integrating the coordinate and angle change amounts calculated based on the outputs of the two encoders 18a and 18b with the initial values of the AGV 10 coordinates and angle, respectively. The initial values of coordinates and angles may be periodically updated, for example, with the values of coordinates and angles calculated by the first positioning device 14e.
  • the second positioning device 19 sends data indicating the coordinates (x, y) and the angle ⁇ to the microcomputer 14 a.
  • the coordinates and angles estimated by the first positioning device 14e may be collectively referred to as "LRF coordinates", and the coordinates and angles estimated by the second positioning device 19 may be collectively referred to as “encoder coordinates”. is there.
  • the microcomputer 14a uses the estimation result by the first positioning device 14e and the second positioning device 19 depending on whether the reliability data indicating the likelihood of the estimation result by the first positioning device 14e matches a predetermined condition.
  • One of the estimation results is selected as the AGV 10 coordinates and angle.
  • the microcomputer 14a notifies the drive unit 17 of the selected coordinates and angle.
  • the drive device 17 determines command values of rotational speeds of the motors 16a and 16b from the difference between the current coordinates and angles and the coordinates and angles at the destination. Drive device 17 controls motors 16a and 16b based on the determined command value.
  • the “reliability data” in the present embodiment includes the data of reliability (first reliability data) output from the first positioning device 14 e, the coordinates and angle estimated by the first positioning device 14 e, and the second positioning device And (19) data (second reliability data) indicating the difference between the coordinate estimated by 19 and the angle.
  • the microcomputer 14a basically controls the drive unit 17 to travel using LRF coordinates that are considered to be relatively reliable. At this time, encoder coordinates held by the second positioning device 19 are periodically overwritten with LRF coordinates. Thus, the coordinates of both are synchronized periodically.
  • the microcomputer 14a stops the synchronization of the coordinates, and continues the traveling of the AGV 10 using the encoder coordinates. In this case, the microcomputer 14a issues a command to cause the first positioning device 14e to execute initial position identification, and attempts to restore reliability. In other words, when the microcomputer 14a selects the estimation result by the second positioning device 19, the first positioning device 14e uses the first sensor data and the estimation result by the second positioning device to perform initial position identification ( The first estimation operation is performed.
  • the “initial position identification” refers to a process of searching where on the map the AGV 10 is located.
  • initial position identification matching between map data and LRF 15 data is performed over the entire area or a partial area (for example, an area of about 1 m ⁇ 1 m to 50 m ⁇ 50 m) of the map.
  • initial position identification is performed after the AGV 10 is powered on or after the map is switched.
  • position identification is performed to search a narrower range (for example, within a range of several tens of centimeters from the position) around the position.
  • This position identification may be performed, for example, every fixed time (for example, 100 milliseconds) while the AGV 10 is moving.
  • the position identification has a narrower search range and shorter execution time than the initial position identification.
  • both “initial position identification” and “position identification” correspond to the above-mentioned “first estimation operation”.
  • the microcomputer 14a switches between a mode of traveling using LRF coordinates and a mode of traveling using encoder coordinates based on the reliability data.
  • the microcomputer 14a switches these two modes, for example, in accordance with the conditions shown in Table 1 below.
  • the reliability output from the first positioning device 14e is lowered, but also when the difference between the X axis component of the LRF coordinate and the encoder coordinate or the difference between the Y axis component exceeds the allowable value. Also, the mode using LRF coordinates is switched to the mode using encoder coordinates. The reason for imposing the two conditions in this way is that, even if the first positioning device 14e outputs a high degree of reliability, a position significantly different from the actual position may be estimated as the current position. In the example of Table 1, in order to stabilize the operation, the recovery threshold value of the reliability is set higher than the switching threshold value.
  • FIG. 12 is a flowchart showing an example of the operation of the AGV 10.
  • the microcomputer 14a causes the first positioning device 14e to execute initial position identification (step S101).
  • the first positioning device 14e performs a search over the whole area or a part of the map (for example, a range of about 1 m ⁇ 1 m to 50 m ⁇ 50 m), and specifies the initial position of the AGV 10.
  • the microcomputer 14a causes the first positioning device 14e to perform position identification in a narrower area (for example, within a range of several tens of cm from the position) centered on the position (Step S102).
  • the microcomputer 14a determines whether or not the vehicle is traveling in the map switching area (step S103).
  • the map switching area refers to an area overlapping with another adjacent map in the map in use.
  • FIG. 13 is a diagram for explaining the map switching area.
  • FIG. 13 shows an example in which one map data covers a 50 m ⁇ 50 m area, and four map data M1, M2, M3 and M4 cover the entire area of one floor of one factory.
  • a rectangular overlapping area of 5 m in width is provided at the boundary between two adjacent maps. This overlapping area is the map switching area.
  • the size of the map data and the width of the overlapping area are not limited to this example, and may be set arbitrarily.
  • the microcomputer 14a when the microcomputer 14a determines that the AGV 10 is traveling in the map switching area, the microcomputer 14a performs processing for switching the map to be used to another adjacent map (step S121).
  • the map switching process will be described later with reference to FIGS. 17 and 18.
  • the microcomputer 14a determines whether the condition (A) in Table 1 described above is satisfied (step S104).
  • the microcomputer 14a overwrites the encoder coordinates held by the second positioning device 19 with LRF coordinates. Thereafter, after a predetermined time (for example, 100 milliseconds) has elapsed, the process returns to step S102, and the same operation is performed.
  • step S104 when one of the conditions (A) and (2) in Table 1 is satisfied, the microcomputer 14a switches from traveling using LRF coordinates to traveling using encoder coordinates (step S104). S111). Thereafter, the microcomputer 14a performs initial position identification every predetermined time (step S112). Based on the LRF coordinates estimated by this initial position identification, the microcomputer 14a determines whether the condition (B) in Table 1 is satisfied (step S113). Here, when the condition (B) is satisfied, it is determined that the reliability of the LRF coordinate is restored. In this case, the microcomputer 14a returns from traveling using encoder coordinates to traveling using encoder coordinates (step S114). Thereafter, the process returns to step S102, and the same operation is performed.
  • the microcomputer 14a selects the estimation result by the first positioning device 14e as the position of the AGV 10 as the position of the AGV 10.
  • the value of the first reliability data in the present embodiment, the first positioning data
  • the estimation result by the second positioning device 19 is selected as the position of the AGV 10.
  • the first positioning device 14 e uses the first sensor data and the estimation result (coordinates and angle) by the second positioning device 19 to perform an initial process. Position identification (first estimation operation) is performed.
  • the microcomputer 14a selects the estimation result by the second positioning device 19 as the position of the AGV 10
  • the value of the first reliability data becomes equal to or more than a predetermined return threshold, and the second reliability
  • the estimation result by the first positioning device 14e is selected as the position of the AGV 10.
  • the mode can be switched according to the reliability of the LRF coordinates, and stable traveling can be realized.
  • the microcomputer 14a may control the speed of the AGV 10 according to the reliability of LRF coordinates. For example, when the microcomputer 14a selects the estimation result by the second positioning device 19, the driving device moves the AGV 10 at a slower speed than when the estimation result by the first positioning device 14e is selected. You may instruct 17 Furthermore, when the value of the first reliability data (reliability) output from the first positioning device 14e after performing the first estimation operation (initial position identification) becomes equal to or greater than a predetermined return threshold value, the driving device 17 In addition, the speed of the AGV 10 may be further reduced, and the first positioning device 14e may perform the first estimation operation again.
  • the first reliability data reliability
  • the driving device 17 may increase the speed of the AGV 10 .
  • the driving device 17 increases the speed of the AGV 10 .
  • the first positioning device 14e may perform the first estimation operation again. Even when the first estimation calculation (in the present embodiment, initial position identification) is performed a plurality of times when "not above the return threshold value is maintained", the state in which the value of the first reliability data does not reach the return threshold is continuous. The case is included.
  • FIG. 14 schematically shows an example of the operation of the AGV 10.
  • FIG. 15 is a diagram showing the time change of the speed of the AGV 10 in this example.
  • FIG. 16 is a flowchart showing an operation of traveling using encoder coordinates in this example.
  • the AGV 10 travels while performing position identification at a first speed (for example, 50 m / min) using the LRF coordinates.
  • a first speed for example, 50 m / min
  • the microcomputer 14a uses the encoder coordinates. Switch to running.
  • the microcomputer 14a reduces the speed of the AGV 10 to a second speed (eg, 20 m / min) lower than the first speed (step S201). This is because when traveling at high speed using encoder coordinates, a collision or overrun is more likely to occur.
  • the second velocity is set too low, it may take a long time to get out of the section where the LRF coordinates become unreliable.
  • the second speed is set to a moderate value that is neither too low nor too high.
  • the microcomputer 14a instructs the first positioning device 14e to repeat the initial position identification until the reliability of the LRF coordinates is recovered.
  • the first positioning device 14e repeats the initial position identification until the reliability is recovered to the recovery threshold or more (steps S202 to S204).
  • the upper limit number of repetitions for example, 20 times
  • the microcomputer 14a stops the AGV 10 and transmits an error signal to the operation management device 50 or the terminal device 20 (step S205). .
  • the microcomputer 14a When the reliability of the LRF coordinates recovers to the recovery threshold or more by the initial position identification in step S202, the microcomputer 14a reduces the speed of the AGV 10 to a third speed (eg, 7.5 m / min) which is lower than the second speed. (Step S211). Then, the first positioning device 14e is made to execute initial position identification again (step S212). Also in this initial position identification, when the reliability is equal to or more than the return threshold (Yes in step S213), the microcomputer 14a determines that the difference between the X axis component and the Y axis component of LRF coordinates and encoder coordinates is an allowable value (eg, It is determined whether it is less than 30 cm (step S221).
  • a third speed eg, 7.5 m / min
  • the microcomputer 14a determines that the difference between the X axis component and the Y axis component of LRF coordinates and encoder coordinates is an allowable value (eg, It is determined whether
  • step S213 or S221 the microcomputer 14a repeats the initial position identification (step S211) until the determination is yes.
  • the upper limit number of the repetition is set to five.
  • the microcomputer 14a accelerates the speed of the AGV 10 to a fourth speed (for example, 20 m / min) (step S215).
  • the fourth velocity is the same as the second velocity, but may be different.
  • the process returns to step S201 again. By accelerating to the fourth speed, there is a high possibility that the section with low reliability can be pulled out early.
  • step S215 the process may transition to step S205 to stop the AGV 10 and transmit an error signal to the operation management device 50 or the terminal device 20.
  • step S230 the microcomputer 14a causes the first positioning device 14e to execute position identification processing.
  • the first positioning device 14e performs matching with LRF data in a relatively narrow area around the position determined by the initial position identification (for example, within a range of several tens of centimeters from the position). , Determine AGV 10 coordinates and angles.
  • the microcomputer 14a overwrites the encoder coordinates with LRF coordinates (step S231), and switches to traveling using LRF coordinates (Ste S232). Then, the speed is increased to a first speed (for example, 50 m / min) (step S233). After that, it returns to the normal operation.
  • a first speed for example, 50 m / min
  • the velocity is decelerated to the third velocity (7.5 m / min).
  • the search range for position identification after initial position identification is narrow.
  • the search range may be exceeded within several seconds. If it takes about several seconds, for example, until the microcomputer 14a instructs the first positioning device 14e to perform initial position identification and then position identification, there is a possibility that position identification can not be performed at 20 m / min. Therefore, in the present embodiment, the third speed is reduced to 7.5 m / min.
  • FIG. 17 is a diagram schematically showing map switching processing in a normal state in which the reliability of LRF coordinates is high.
  • FIG. 18 is a diagram schematically showing map switching processing in the case where the reliability of LRF coordinates decreases while traveling in the map switching area.
  • one map covers an area of 50 m ⁇ 50 m, and two adjacent maps have an overlapping area of 5 m in width.
  • the center of each map is the origin of the coordinates, and the area 20 m to 25 m away from the origin is the map switching area in each of the horizontal direction (X direction) and the vertical direction (Y direction).
  • the AGV 10 intrudes into the map switching area at a first velocity (50 m / min in this example) in the X direction.
  • the reliability of the LRF coordinates obtained by this position identification is also sufficiently high, and if the difference from the encoder coordinates is sufficiently low, the microcomputer 14a updates the values of the encoder coordinates with the values of the LRF coordinates, and the moving speed of the AGV 10 Is returned to the first speed of 50 m / min and switched to travel using LRF coordinates.
  • the first positioning device 14e performs initial position identification after map switching using encoder coordinates instead of LRF coordinates. Thereby, the success rate of the initial position identification after map switching can be improved.
  • the microcomputer 14a continues traveling using encoder coordinates until the reliability is recovered, as shown in FIG.
  • the map to be used is switched, and the first positioning device 14 e repeats the initial position identification and tries to restore the reliability of LRF coordinates.
  • the microcomputer 14a overwrites the encoder coordinates in LRF coordinates, increases the speed of the AGV 10 from the third speed to the first speed, and switches to traveling using the LRF coordinates.
  • the traveling when the reliability of the LRF coordinates decreases, the traveling is switched to using the encoder coordinates, and after the reliability is restored, the traveling is returned to using the LRF coordinates. Furthermore, by performing control of the speed as well, more stable traveling becomes possible.
  • the microcomputer 14a may be configured to output a signal indicating which of the estimation result by the first positioning device 14e and the estimation result by the second positioning device 19 is selected when the AGV 10 is moved. .
  • the signal may be output to the display 30 shown in FIG.
  • the display 30 can display information indicating which positioning method of the first positioning device 14e and the second positioning device 19 is selected.
  • the microcomputer 14a may transmit the signal to a device outside the AGV 10.
  • the external device may be, for example, the operation management device 50 or the terminal device 20.
  • the external device may be a device such as a light source or a speaker mounted on the AGV 10.
  • the external device can receive the signal and present, as light, sound, or character information, which positioning method is selected by the first positioning device 14e and the second positioning device 19. Thereby, the user can know which positioning method the AGV 10 currently operates.
  • the switching conditions in Table 1 above are an example, and other conditions can be applied.
  • the microcomputer 14a selects the estimation result by the second positioning device 19 as the position of the AGV 10 regardless of the conditions in Table 1 and in any of the following (1) and (2): Good.
  • the above determination is a determination as to whether or not the movement of LRF coordinates output from the first positioning device 14 e is similar to the movement of encoder coordinates.
  • This determination will be referred to as "reliability determination of LRF coordinates".
  • the difference between the movement distance calculated based on the coordinates output by the first positioning device 14e and the movement distance calculated based on the coordinates output by the second positioning device 19 per unit time is 20% Be less than or equal to
  • the amount of change in the angle calculated based on the coordinates output by the first positioning device 14e in a unit time (for example, 1 second) and the amount of change in the angle calculated based on the coordinates output by the second positioning device 19 The difference is 10% or less.
  • the absolute value of the difference between the angle output from the current first positioning device 14e and the angle output from the second positioning device 19 is 45 degrees or less.
  • the specific calculation formula is, for example, as follows. ⁇ Coordinates and angles output by the first positioning device 14e one second before (Xr1, Yr1, ⁇ r1), ⁇ Coordinates and angles output from the current first positioning device 14e (Xr2, Yr2, ⁇ r2), ⁇ Coordinates and angles output by the second positioning device 19 one second before (Xe1, Ye1, ⁇ e1), ⁇ Coordinates and angles output from the current second positioning device 19 (Xe2, Ye2, ⁇ e2), I assume.
  • FIG. 19 shows an example of these coordinates and angles. During normal driving, it is determined that the LRF coordinates are correct (pass) when all the following three inequalities (1) to (3) are satisfied.
  • the distance calculated from the coordinates of the first positioning device 14e outputs ((Xr2-Xr1) 2 + (Yr2-Yr1) 2) is within the normal swing range of the coordinate values of the first positioning device 14e It may be judged by whether or not it is included. For example, assuming that the square value of the normal swing of the first positioning device 14e coordinate value is 500 (mm), the following equation (4) may be used instead of the above equation (1). ((Xr2-Xr1) 2 + (Yr 2 -Yr1) 2 ) ⁇ 500 (mm) (4)
  • the microcomputer 14a detects encoder coordinates in LRF coordinates if all the following conditions are satisfied. And may return to travel by LRF coordinates. -The above-mentioned reliability judgment of LRF coordinates is pass.-The reliability of the present LRF coordinate is a return threshold (for example 40%) or more.-The average of the reliability at the time of position identification of the last predetermined number of times (for example 5) (For example, 40%) or more The difference between the X component and the Y component between LRF coordinates and encoder coordinates is less than a threshold (for example, 2 m).
  • the LRF is satisfied if either of the difference between the X component and the Y component of the LRF coordinate and the encoder coordinate is equal to or more than the allowable value (for example, 30 cm), the LRF is satisfied if the above-mentioned reliability determination is successful Return to running by coordinates. For this reason, it is more likely to return to traveling using LRF coordinates than when the conditions in Table 1 above are applied.
  • the moving body is a guideless AGV
  • the first sensor is a laser range finder
  • the second sensor includes two rotary encoders. Illustrated. However, the present disclosure is not limited to such an embodiment.
  • the moving body may be a "guided" moving body that moves along a magnetic tape provided on a road surface or a derivative such as a white line.
  • the first sensor or the second sensor may be a magnetic sensor that reads a magnetic tape or a camera that reads a white line by image recognition.
  • the positioning device may generate various pieces of information as reliability data, such as the degree of damage to the magnetic tape or the degree of white line stain, the matching degree in image processing.
  • An acceleration sensor or an angular acceleration sensor may be used as the first sensor or the second sensor.
  • the positioning device may generate various pieces of information as reliability data, such as the distribution of data output from these sensors, or the proportion of rapidly changing data.
  • an AGV traveling in a two-dimensional space is taken as an example.
  • the present disclosure can also be applied to a mobile object moving in three-dimensional space, such as a flying object (drone).
  • a drone creates a three-dimensional space map while flying, the two-dimensional space can be expanded to a three-dimensional space.
  • the processing executed by the arithmetic circuit or the microcomputer in each of the above-described embodiments may be implemented by a computer program (software) or a dedicated circuit (hardware).
  • the mobile body and mobile body management system of the present disclosure can be suitably used for moving and transporting objects such as luggage, parts, finished products, etc. in factories, warehouses, construction sites, logistics, hospitals and the like.
  • Mobile computer 21 CPU, 22 memory, 23 communication circuit, 24 image processing circuit, 25 display, 26 touch screen sensor, 30 display, 50 operation control device, 51 CPU, 52 Memory 53 location database (location DB) 54 communication circuit 55 map database (map DB) 56 image processing circuit 100 mobile management system 101 first sensor 102 second sensor 103 first positioning device 104 Second positioning device, 105 arithmetic circuit, 106 motor, 107 drive device

Abstract

The objective of the present invention is to stabilize the travel of a moving body provided with two types of positioning device employing different sensing methods. This moving body is provided with: a motor; a drive device which controls the motor to move the moving body; a first sensor and a second sensor which respectively output first sensor data and second sensor data indicating sensing results acquired in accordance with the movement of the moving body using mutually different sensing methods; a first positioning device which performs a first estimation calculation using the first sensor data to estimate the position of the moving body; a second positioning device which performs a second estimation calculation using the second sensor data to estimate the position of the moving body; and a calculating circuit which, in accordance with whether reliability data indicating a degree of certainty of the estimation result obtained by the first positioning device matches certain criteria, selects one of the estimation result obtained by the first positioning device and the estimation result obtained by the second positioning device as the position of the moving body.

Description

移動体およびコンピュータプログラムMobile and computer programs
 本開示は、移動体および当該移動体の移動を制御するためのコンピュータプログラムに関する。 The present disclosure relates to a mobile and a computer program for controlling movement of the mobile.
 ドローン(無人航空機)、自動運転カー、および自律移動ロボットなどの移動体(以下、単に「移動体」と称する)の位置を高い精度で推定する位置推定技術の開発が進められている。自己位置推定を行う移動体は、例えばレーザ測域センサなどの外界センサを備え、移動しながら周囲の空間をセンシングしてセンサデータを取得する。たとえば、センサデータから作成した移動体周囲の局所的地図データを、より広範囲の環境地図データと照合(マッチング)することにより、環境地図上における自己位置を同定することが可能である。 Development of a position estimation technique for estimating the position of a mobile body (hereinafter simply referred to as a “mobile body”) such as a drone (unmanned aerial vehicle), an autonomous car, and an autonomous mobile robot has been developed. A moving body that performs self-position estimation includes an external sensor such as a laser range-finding sensor, for example, and senses the surrounding space while moving to acquire sensor data. For example, it is possible to identify a self-location on an environmental map by matching local map data around a moving object created from sensor data with a wider range of environmental map data.
 特開2016-224680号公報は、第1自己位置推定部と第2自己位置推定部とを備え、ステップごとに推定処理を実行する自己位置推定装置を開示している。第1自己位置推定部は、センサデータおよび環境地図から移動体の最新位置の確率分布を求め、この確率分布に基づいて第1自己位置を推定する。第2自己位置推定部は、オドメトリによって取得される、前回のステップから現在のステップまでの移動距離および移動方向を、前回のステップで推定された最終自己位置に加算して第2自己位置を推定する。この自己位置推定装置では、第1自己位置および第2自己位置の重みづけ平均値が現在のステップにおける最終自己位置とされる。 Japanese Patent Laid-Open No. 2016-224680 discloses a self-position estimation apparatus that includes a first self-position estimation unit and a second self-position estimation unit, and executes estimation processing for each step. The first self-position estimation unit obtains a probability distribution of the latest position of the moving object from the sensor data and the environmental map, and estimates the first self-position based on the probability distribution. The second self-position estimating unit estimates the second self-position by adding the moving distance and the moving direction from the previous step to the current step, which are obtained by odometry, to the final self-position estimated in the previous step Do. In this self position estimation apparatus, the weighted average value of the first self position and the second self position is taken as the final self position in the current step.
 国際公開第2013/002067号は、パーティクルフィルタを用いた自律移動ロボットの自己位置姿勢推定システムを開示している。このシステムは、距離センサからの計測データと、地図データと、エンコーダからのオドメトリデータとを用いて、ロボットの位置姿勢を推定する。パーティクルの分散に基づいて、位置姿勢推定結果の信頼性の評価値が算出される。このシステムによれば、移動ロボットの位置姿勢推定が正常に行われているか否かを判定し、正常でない場合は、ロボットを減速させたり、緊急停止させたり、正常に行われていないことを示す信号を出力したりすることができる。 WO 2013/002067 discloses a self position and attitude estimation system for an autonomous mobile robot using a particle filter. This system estimates the position and orientation of a robot using measurement data from a distance sensor, map data, and odometry data from an encoder. An evaluation value of the reliability of the position and orientation estimation result is calculated based on the dispersion of the particles. According to this system, it is determined whether or not the position and orientation estimation of the mobile robot is normally performed. If it is not normal, the robot is decelerated, the emergency stop is performed, or it is indicated that the robot is not normally performed. It can output a signal.
特開2016-224680号公報JP, 2016-224680, A 国際公開第2013/002067号International Publication No. 2013/002067
 本開示は、センシング方法の異なる2種類の測位装置を備える移動体の走行をより安定化させる技術を提供する。 The present disclosure provides a technique for further stabilizing the traveling of a mobile including two types of positioning devices with different sensing methods.
 本開示の移動体は、例示的な実施形態において、少なくとも1つのモータと、前記少なくとも1つのモータを制御して前記移動体を移動させる駆動装置と、第1センシング方法によって前記移動体の移動に応じて取得したセンシング結果を示す第1センサデータを出力する第1センサと、前記第1センシング方法とは異なる第2センシング方法によって前記移動体の移動に応じて取得したセンシング結果を示す第2センサデータを出力する第2センサと、前記第1センサデータを用いて第1推定演算を行って前記移動体の位置を推定する第1測位装置と、前記第2センサデータを用いて前記第1推定演算とは異なる第2推定演算を行って前記移動体の位置を推定する第2測位装置と、前記第1測位装置による推定結果の確からしさを示す信頼性データが所定の条件に合致しているか否かに応じて、前記第1測位装置による推定結果および前記第2測位装置による推定結果の一方を前記移動体の位置として選択する演算回路と、を備える。 A mobile according to the present disclosure includes, in an exemplary embodiment, at least one motor, a drive that controls the at least one motor to move the mobile, and movement of the mobile according to a first sensing method. A first sensor that outputs first sensor data indicating a sensing result acquired according to the second sensing method, and a second sensor indicating a sensing result acquired according to the movement of the moving object by a second sensing method different from the first sensing method A second sensor that outputs data; a first positioning device that performs a first estimation operation using the first sensor data to estimate the position of the mobile object; and the first estimation using the second sensor data A second positioning device for estimating the position of the mobile body by performing a second estimation operation different from the operation, and a signal indicating the likelihood of the estimation result by the first positioning device And an arithmetic circuit for selecting one of the estimation result by the first positioning device and the estimation result by the second positioning device as the position of the moving object, depending on whether the polarity data matches a predetermined condition or not. Prepare.
 これらの包括的または具体的な態様は、システム、方法、集積回路、コンピュータプログラム、または、記録媒体によって実現されてもよい。あるいは、システム、装置、方法、集積回路、コンピュータプログラム、および記録媒体の任意な組み合わせによって実現されてもよい。 These general or specific aspects may be realized by a system, a method, an integrated circuit, a computer program, or a recording medium. Alternatively, the present invention may be realized by any combination of a system, an apparatus, a method, an integrated circuit, a computer program, and a storage medium.
 本発明の移動体の実施形態によれば、第1測位装置による推定結果の確からしさを示す信頼性データが所定の条件に合致しているか否かに応じて、第1測位装置による推定結果および第2測位装置による推定結果の一方が、移動体の位置として選択される。これにより、例えば第1測位装置による推定結果の信頼性が低い場合でも、第2測位装置による推定結果を用いて、より安定した動作が可能になる。 According to the embodiment of the mobile unit of the present invention, the estimation result by the first positioning device and the reliability data indicating the likelihood of the estimation result by the first positioning device match the predetermined condition and One of the estimation results by the second positioning device is selected as the position of the mobile body. Thereby, for example, even when the reliability of the estimation result by the first positioning device is low, more stable operation is possible using the estimation result by the second positioning device.
図1は、本開示の例示的な実施形態における移動体の基本構成例を示すブロック図である。FIG. 1 is a block diagram showing an example of a basic configuration of a mobile unit in an exemplary embodiment of the present disclosure. 図2は、本開示による、各AGVの走行を制御する制御システムの概要を示す図である。FIG. 2 is a diagram showing an outline of a control system that controls traveling of each AGV according to the present disclosure. 図3は、AGVが存在する移動空間Sの一例を示す図である。FIG. 3 is a view showing an example of a moving space S in which an AGV is present. 図4Aは、接続される前のAGVおよび牽引台車を示す図である。FIG. 4A shows the AGV and tow truck before being connected. 図4Bは、接続されたAGVおよび牽引台車を示す図である。FIG. 4B shows the connected AGV and tow truck. 図5は本実施形態にかかる例示的なAGVの外観図である。FIG. 5 is an external view of an exemplary AGV according to the present embodiment. 図6AはAGVの第1のハードウェア構成例を示す図である。FIG. 6A is a diagram showing an example of a first hardware configuration of an AGV. 図6BはAGVの第2のハードウェア構成例を示す図である。FIG. 6B is a diagram showing a second hardware configuration example of the AGV. 図7Aは移動しながら地図を生成するAGVを示す図である。FIG. 7A shows an AGV that generates a map while moving. 図7Bは移動しながら地図を生成するAGVを示す図である。FIG. 7B is a diagram showing an AGV that generates a map while moving. 図7Cは移動しながら地図を生成するAGVを示す図である。FIG. 7C is a diagram showing an AGV that generates a map while moving. 図7Dは移動しながら地図を生成するAGVを示す図である。FIG. 7D is a diagram showing an AGV that generates a map while moving. 図7Eは移動しながら地図を生成するAGVを示す図である。FIG. 7E is a diagram showing an AGV that generates a map while moving. 図7Fは完成した地図の一部を模式的に示す図である。FIG. 7F is a view schematically showing a part of the completed map. 図8は、運行管理装置のハードウェア構成例を示す図である。FIG. 8 is a diagram showing an example of a hardware configuration of the operation management device. 図9は、運行管理装置によって決定されたAGVの移動経路の一例を模式的に示す図である。FIG. 9 is a diagram schematically showing an example of the AGV movement route determined by the operation management device. 図10は、移動体10の構成例を示すブロック図である。FIG. 10 is a block diagram showing a configuration example of the mobile unit 10. 図11は、本実施形態における構成要素間の信号の流れを模式的に示す図である。FIG. 11 is a view schematically showing the flow of signals between components in the present embodiment. 図12は、移動体10の動作の例を示すフローチャートである。FIG. 12 is a flowchart showing an example of the operation of the mobile unit 10. 図13は、地図切替エリアを説明するための図である。FIG. 13 is a diagram for explaining the map switching area. 図14は、移動体10の動作の一例を模式的に示す図である。FIG. 14 is a diagram schematically showing an example of the operation of the mobile unit 10. 図15は、ある実施形態における移動体10の速度の時間変化を示す図である。FIG. 15 is a diagram showing temporal changes in velocity of the mobile unit 10 in an embodiment. 図16は、ある実施形態におけるエンコーダ座標を用いた走行の動作を示すフローチャートである。FIG. 16 is a flowchart illustrating an operation of traveling using encoder coordinates in an embodiment. 図17は、LRF座標の信頼性が高い通常時の地図切替処理を模式的に示す図である。FIG. 17 is a diagram schematically showing map switching processing in a normal state in which the reliability of LRF coordinates is high. 図18は、地図切替エリアを走行中にLRF座標の信頼性が低くなった場合の地図切替処理を模式的に示す図である。FIG. 18 is a diagram schematically showing map switching processing in the case where the reliability of LRF coordinates decreases while traveling in the map switching area. 図19は、LRF座標の変化およびエンコーダ座標の変化の一例を示す図である。FIG. 19 is a diagram illustrating an example of a change in LRF coordinates and a change in encoder coordinates.
<用語>
 本開示の実施形態を説明する前に、本明細書において使用する用語の定義を説明する。
<Term>
Before describing the embodiments of the present disclosure, definitions of terms used in the present specification will be described.
 「無人搬送車」(AGV)とは、本体に人手または自動で荷物を積み込み、指示された場所まで自動走行し、人手または自動で荷卸しをする無軌道車両を意味する。「無人搬送車」は、無人牽引車および無人フォークリフトを含む。 The term "unmanned transport vehicle" (AGV) means a trackless vehicle that manually or automatically loads a load on a main body, travels automatically to a designated location, and unloads manually or automatically. "Unmanned aerial vehicle" includes unmanned tow vehicles and unmanned forklifts.
 「無人」の用語は、車両の操舵に人を必要としないことを意味しており、無人搬送車が「人(たとえば荷物の積み下ろしを行う者)」を搬送することは除外しない。 The term "unmanned" means that the steering of the vehicle does not require a person, and does not exclude that the unmanned carrier conveys a "person (e.g., a person who unloads a package)".
 「無人牽引車」とは、人手または自動で荷物の積み込み荷卸しをする台車を牽引して,指示された場所まで自動走行する無軌道車両である。 The "unmanned tow truck" is a trackless vehicle that is tow to a designated location by automatically pulling a cart for loading and unloading a load manually or automatically.
 「無人フォークリフト」とは、荷物移載用のフォークなどを上下させるマストを備え,フォークなどに荷物を自動移載し指示された場所まで自動走行し,自動荷役作業をする無軌道車両である。 The “unmanned forklift” is a trackless vehicle equipped with a mast that raises and lowers a load transfer fork and the like, automatically transfers the load onto the fork and so on, and automatically travels to a designated location to perform an automatic cargo handling operation.
 「無軌道車両」とは、車輪と、車輪を回転させる電気モータまたはエンジンを備える移動体(vehicle)である。 A "trackless vehicle" is a vehicle that includes a wheel and an electric motor or engine that rotates the wheel.
 「移動体」とは、人または荷物を載せて移動する装置であり、移動のための駆動力(traction)を発生させる車輪、二足または多足歩行装置、プロペラなどの駆動装置を備える。本開示における「移動体」の用語は、狭義の無人搬送車のみならず、モバイルロボットおよびドローンを含む。 A "mobile" is a device that moves while carrying a person or a load, and includes a driving device such as a wheel, a biped or multi-legged walking device, or a propeller that generates a traction for movement. The term "mobile" in the present disclosure includes mobile robots and drone as well as unmanned transport vehicles in a narrow sense.
 「自動走行」は、無人搬送車が通信によって接続されるコンピュータの運行管理システムの指令に基づく走行と、無人搬送車が備える制御装置による自律的走行とを含む。自律的走行には、無人搬送車が所定の経路に沿って目的地に向かう走行のみならず、追尾目標に追従する走行も含まれる。また、無人搬送車は、一時的に作業者の指示に基づくマニュアル走行を行ってもよい。「自動走行」は、一般には「ガイド式」の走行および「ガイドレス式」の走行の両方を含むが、本開示では「ガイドレス式」の走行を意味する。 The “automatic traveling” includes traveling based on an instruction of an operation management system of a computer to which the automated guided vehicle is connected by communication, and autonomous traveling by a control device provided in the automated guided vehicle. The autonomous traveling includes not only traveling by the automated guided vehicle toward a destination along a predetermined route, but also traveling by following a tracking target. In addition, the automatic guided vehicle may perform manual traveling temporarily based on the instruction of the worker. Although "automatic travel" generally includes both "guided" travel and "guideless" travel, in the present disclosure, "guideless" travel is meant.
 「ガイド式」とは、誘導体を連続的または断続的に設置し、誘導体を利用して無人搬送車を誘導する方式である。 The “guided type” is a system in which a derivative is installed continuously or intermittently and a guided vehicle is guided using the derivative.
 「ガイドレス式」とは、誘導体を設置せずに誘導する方式である。本開示の実施形態における無人搬送車は、自己位置推定装置を備え、ガイドレス式で走行する。 The “guideless type” is a method of guiding without installing a derivative. The unmanned transfer vehicle according to the embodiment of the present disclosure includes a self-position estimation device and travels in a guideless manner.
 「自己位置推定装置」は、レーザレンジファインダなどの外界センサによって取得されたセンサデータに基づいて環境地図上における自己位置を推定する装置である。 The “self-position estimation device” is a device that estimates the self-location on the environment map based on sensor data acquired by an external sensor such as a laser range finder.
 「SLAM(スラム)」とは、Simultaneous Localization and Mappingの略語であり、自己位置推定と環境地図作成を同時に行うことを意味する。 "SLAM (Slam)" is an abbreviation for Simultaneous Localization and Mapping, and means that self-localization and environmental mapping are simultaneously performed.
<基本構成例>
 本開示による移動体の具体的な実施形態を説明する前に、本開示による移動体の基本構成例を説明する。
<Example of basic configuration>
Before describing specific embodiments of a mobile according to the present disclosure, a basic configuration example of the mobile according to the present disclosure will be described.
 図1は、本開示の例示的な実施形態における移動体の基本構成例を示すブロック図である。この例における移動体10は、第1センサ101と、第2センサ102と、第1測位装置103と、第2測位装置104と、演算回路105と、少なくとも1つの電気モータ(以下、単に「モータ」と称する)106と、駆動装置107とを備えている。第1測位装置103は、第1センサ101と演算回路105との間に接続されている。第2測位装置104は、第2センサ102と演算回路105との間に接続されている。駆動装置107は、少なくとも1つのモータ106を制御して移動体10を移動させる。 FIG. 1 is a block diagram showing an example of a basic configuration of a mobile unit in an exemplary embodiment of the present disclosure. The mobile unit 10 in this example includes a first sensor 101, a second sensor 102, a first positioning device 103, a second positioning device 104, an arithmetic circuit 105, and at least one electric motor (hereinafter simply referred to as "motor And a drive unit 107. The first positioning device 103 is connected between the first sensor 101 and the arithmetic circuit 105. The second positioning device 104 is connected between the second sensor 102 and the arithmetic circuit 105. The drive device 107 controls the at least one motor 106 to move the moving body 10.
 移動体10の典型例は、モータ106に対して機械的に結合した少なくとも1個の駆動輪(不図示)を有し、駆動輪のトラクションによって地上を走行することができる。 A typical example of the moving body 10 has at least one drive wheel (not shown) mechanically coupled to the motor 106, and can travel on the ground by the traction of the drive wheel.
 第1センサ101および第2センサ102は、移動体10が移動している間、互いに異なるセンシング方法によって移動体10の移動に応じた情報を取得する。それぞれのセンシング結果は、移動体10の位置推定に用いられる。第1センサ101および第2センサ102から出力されるデータを、それぞれ第1センサデータおよび第2センサデータと称する。 While the mobile unit 10 is moving, the first sensor 101 and the second sensor 102 acquire information corresponding to the movement of the mobile unit 10 by different sensing methods. Each sensing result is used for position estimation of the mobile unit 10. The data output from the first sensor 101 and the second sensor 102 will be referred to as first sensor data and second sensor data, respectively.
 第1センサ101および第2センサ102の各々は、外界センサであってもよいし、内界センサであってもよい。「外界センサ」は、移動体10の外部の状態をセンシングするセンサである。外界センサには、例えば、レーザレンジファインダ、カメラ(または撮像素子)、LIDAR(Light Detection and Ranging)、ミリ波レーダ、および磁気センサがある。「内界センサ」は、移動体10の内部の状態をセンシングするセンサである。内界センサには、例えばロータリエンコーダ(以下、単に「エンコーダ」と称することがある)、加速度センサ、および角加速度センサ(例えばジャイロセンサ)がある。 Each of the first sensor 101 and the second sensor 102 may be an external sensor or an internal sensor. The “external sensor” is a sensor that senses the external state of the mobile object 10. The external sensors include, for example, a laser range finder, a camera (or an imaging device), a light detection and ranging (LIDAR), a millimeter wave radar, and a magnetic sensor. The “internal sensor” is a sensor that senses the internal state of the mobile object 10. The internal sensors include, for example, a rotary encoder (hereinafter, may be simply referred to as an "encoder"), an acceleration sensor, and an angular acceleration sensor (for example, a gyro sensor).
 第1センサ101および第2センサ102は、異なる種類のセンサである。例えば、第1センサ101は外界センサであり、第2センサ102は内界センサであり得る。ある実施形態では、第1センサ101は、レーザレンジファインダ(以下、LRFと表記することがある)を含み、第2センサ102は、少なくとも1つのロータリエンコーダを含む。しかし、本開示はそのような形態に限定されない。第1センサ101および第2センサ102の各々は、移動体10の位置を推定するために利用されるデータを出力する限り、特定の種類のセンサに限定されない。第1センサ101および第2センサ102の各々は、例えば、カメラ、撮像装置、撮像素子、磁気センサ、LIDAR、ミリ波レーダ、角速度センサ、または加速度センサなどの機器であってもよい。 The first sensor 101 and the second sensor 102 are different types of sensors. For example, the first sensor 101 may be an external sensor, and the second sensor 102 may be an internal sensor. In one embodiment, the first sensor 101 includes a laser range finder (hereinafter also referred to as LRF), and the second sensor 102 includes at least one rotary encoder. However, the present disclosure is not limited to such a form. Each of the first sensor 101 and the second sensor 102 is not limited to a specific type of sensor as long as it outputs data used to estimate the position of the mobile object 10. Each of the first sensor 101 and the second sensor 102 may be, for example, a device such as a camera, an imaging device, an imaging device, a magnetic sensor, a LIDAR, a millimeter wave radar, an angular velocity sensor, or an acceleration sensor.
 移動体10が移動している間、第1測位装置103は、第1センサ101から出力された第1センサデータを用いて第1推定演算を行って移動体10の現在の位置を推定する。例えば第1センサ101がレーザレンジファインダである場合、第1測位装置103は、予め用意された地図データと、レーザレンジファインダによって取得されたデータとの照合を行い、地図上のどの位置に移動体が位置しているかを推定する。第1測位装置103は、移動体の位置だけでなく、向き(または姿勢)を推定してもよい。第1測位装置103は、推定結果を示すデータを、第1位置情報として出力する。 While the mobile unit 10 is moving, the first positioning device 103 performs a first estimation operation using the first sensor data output from the first sensor 101 to estimate the current position of the mobile unit 10. For example, when the first sensor 101 is a laser range finder, the first positioning device 103 collates map data prepared in advance with data acquired by the laser range finder, and moves the mobile object to any position on the map Estimate if is located. The first positioning device 103 may estimate not only the position of the mobile body but also the orientation (or attitude). The first positioning device 103 outputs data indicating the estimation result as first position information.
 第2測位装置104は、第2センサ102から出力された第2センサデータを用いて第2推定演算を行って移動体10の現在の位置を推定する。例えば第2センサ102が少なくとも1つのロータリエンコーダを含む場合、第2測位装置104は、予めメモリなどの記録媒体に記録された初期位置の情報と、ロータリエンコーダから出力された車輪の回転状態を示す情報とから、現在の位置を推定することができる。第2測位装置104も、移動体の位置だけでなく、向きを推定してもよい。第2測位装置104は、推定結果を示すデータを、第2位置情報として出力する。 The second positioning device 104 performs a second estimation operation using the second sensor data output from the second sensor 102 to estimate the current position of the mobile object 10. For example, when the second sensor 102 includes at least one rotary encoder, the second positioning device 104 indicates the information of the initial position previously recorded on a recording medium such as a memory and the rotational state of the wheel output from the rotary encoder. From the information, the current position can be estimated. The second positioning device 104 may also estimate the direction as well as the position of the mobile body. The second positioning device 104 outputs data indicating the estimation result as second position information.
 移動体10は、レーザレンジファインダから周期的に出力されたセンサデータに基づいて予め作成された地図データを記憶する記憶装置をさらに備えていてもよい。地図データの作成に使用されるレーザレンジファインダ(LRF)は、移動体10に搭載されたLRF(第1センサ101)でもよいし、他のLRFでもよい。この場合、第1測位装置103は、第1センサデータと地図データとの照合を行って移動体10の位置を推定する。この動作を「自己位置推定」と称する。自己位置推定は、座標だけでなく、基準軸からの角度の推定を含んでいてもよい。 The mobile unit 10 may further include a storage device for storing map data created in advance based on sensor data periodically output from the laser range finder. The laser range finder (LRF) used to create map data may be an LRF (first sensor 101) mounted on the moving object 10 or another LRF. In this case, the first positioning device 103 collates the first sensor data with the map data to estimate the position of the mobile object 10. This operation is called "self-position estimation". Self-position estimation may include not only coordinates but also estimation of an angle from a reference axis.
 移動体10は、第1車輪および第2車輪を含む複数の車輪を備える車両であってもよい。その場合、少なくとも1つのモータ106は、第1車輪に機械的に接続された第1モータと、第2車輪に機械的に接続された第2モータとを含み得る。移動体10は、第1モータから第1車輪までの動力伝達機構のいずれかの位置における回転を計測する第1ロータリエンコーダと、第2モータから第2車輪までの動力伝達機構のいずれかの位置における回転を計測する第2ロータリエンコーダとを備えていてもよい。「回転を計測する」とは、「回転方向」および(回転数を考慮した)「回転位置」を少なくとも計測することを意味する。 The moving body 10 may be a vehicle provided with a plurality of wheels including a first wheel and a second wheel. In that case, the at least one motor 106 may include a first motor mechanically connected to the first wheel and a second motor mechanically connected to the second wheel. The moving body 10 has any one position of a first rotary encoder that measures rotation at any position of the power transmission mechanism from the first motor to the first wheel, and any position of the power transmission mechanism from the second motor to the second wheel. And a second rotary encoder for measuring the rotation of the motor. “To measure rotation” means to measure at least “rotational direction” and “rotational position (in consideration of the number of rotations)”.
 ある実施形態において、第1ロータリエンコーダおよび第2ロータリエンコーダは、それぞれ第1車輪および第2車輪の回転を計測する。その場合、第2測位装置104は、第1ロータリエンコーダおよび第2ロータリエンコーダの各々から出力された第2センサデータを用いて所与の初期位置からの相対的な変位量を計測し、初期位置から変位量だけ移動した位置を、移動体10の位置として推定することができる。初期位置は、移動体10の走行中、定期的にまたは不定期に更新され得る。例えば、演算回路105は、第1測位装置103によって推定された位置(座標)の値で、上記の初期位置の値を更新してもよい。移動体10の走行中、演算回路105は、この初期位置の更新を所定の周期で行ってもよいし、非周期的に行ってもよい。 In one embodiment, the first and second rotary encoders measure the rotation of the first and second wheels, respectively. In that case, the second positioning device 104 measures a relative displacement amount from a given initial position using the second sensor data output from each of the first rotary encoder and the second rotary encoder, and performs an initial position. The position moved by the displacement amount can be estimated as the position of the moving body 10 from the above. The initial position may be updated periodically or irregularly while the mobile object 10 is traveling. For example, the arithmetic circuit 105 may update the value of the initial position described above with the value of the position (coordinates) estimated by the first positioning device 103. While the moving object 10 is traveling, the arithmetic circuit 105 may perform the update of the initial position at a predetermined cycle or aperiodically.
 一般に、第1位置情報および第2位置情報の信頼性には差違がある。例えば、第1センサ101がLRFを含み、第2センサ102がエンコーダを含む場合、LRFを用いて取得された第1位置情報の方が、エンコーダを用いて取得された第2位置情報よりも高い信頼性を有する傾向にある。これは、路面状態に依存して生じる車輪の空転、または段差によるずれなどの理由により、エンコーダから出力されるオドメトリデータには誤差が生じ易く、その誤差が蓄積され易いからである。このような信頼性の不一致は、LRFとエンコーダとの組み合わせに限らず、他の2種類のセンサ(例えばカメラとジャイロセンサ等)の組み合わせにおいても生じ得る。このため、第1位置情報および第2位置情報のうち、信頼性が高い方が主に使用され、他方は補助的に使用される。 Generally, there is a difference in the reliability of the first position information and the second position information. For example, when the first sensor 101 includes an LRF and the second sensor 102 includes an encoder, the first position information acquired using the LRF is higher than the second position information acquired using the encoder. It tends to be reliable. This is because the odometry data output from the encoder is likely to have an error, and the error is likely to be accumulated, due to slippage of wheels caused by road surface conditions or a shift due to a step. Such a mismatch in reliability may occur not only in the combination of LRF and encoder but also in the combination of two other types of sensors (for example, a camera and a gyro sensor). Therefore, among the first position information and the second position information, the one with higher reliability is mainly used, and the other is used auxiliary.
 しかし、第1位置情報の方が第2位置情報よりも信頼性が低くなる場合もあり得る。例えば、第1測位装置103がLRFからの第1センサデータと地図データとのマッチングによって自己位置推定を行う形態では、第1測位装置103が実際とは全く異なる座標を誤って出力することがある。これは、例えば、同様の特徴点を含む箇所が経路上に複数存在する場合や、地図作成時には存在しなかった物体(特に壁等と混同し易い物体)が存在する場合に生じ易い。このような場合に第1位置情報を用いた自己位置推定を継続すると、正確な経路を走行できなくなる。その結果、目的の地点に到達できなくなるだけでなく、オーバーランまたは衝突のリスクが生じる。 However, the first position information may be less reliable than the second position information. For example, in a mode in which the first positioning device 103 performs self-position estimation by matching the first sensor data from the LRF with the map data, the first positioning device 103 may erroneously output coordinates which are completely different from the actual ones. . This is likely to occur, for example, when there are a plurality of locations including similar feature points on the route, or when there is an object (in particular, an object that is easily confused with a wall or the like) that did not exist at the time of mapping. In such a case, if self-position estimation using the first position information is continued, it is not possible to travel an accurate route. As a result, not only can the destination point not be reached, there is a risk of overruns or collisions.
 そこで、本開示の実施形態では、移動体10の移動中、演算回路105が、第1測位装置103および第2測位装置104の推定結果のうち、より正確度が高いと推定される推定結果を選択して走行を制御する。これにより、例えば通常時には第1測位装置103によって推定された位置情報を用いて走行し、第1測位装置103による位置情報の信頼性が低いと判定された場合には、第2測位装置04による位置情報を用いた走行に切り替えることができる。 Therefore, in the embodiment of the present disclosure, during the movement of the mobile object 10, the arithmetic circuit 105 estimates an estimation result estimated to be more accurate among the estimation results of the first positioning device 103 and the second positioning device 104. Select to control travel. Accordingly, for example, when it is determined that the vehicle travels normally using the position information estimated by the first positioning device 103 and it is determined that the reliability of the position information by the first positioning device 103 is low, the second positioning device 04 It is possible to switch to travel using position information.
 演算回路105は、第1位置情報と第2位置情報とに基づいて、移動体10の現在の位置を決定し、駆動装置107を制御する。演算回路105は、第1および第2の位置情報に加えて第1測位装置103による推定結果の確からしさを示す信頼性データを取得する。演算回路105は、信頼性データが所定の条件に合致しているか否かに応じて、第1測位装置103による推定結果および第2測位装置104による推定結果の一方を移動体10の位置として選択する。演算回路105は、例えば外部の装置から行き先の指示を受け付け、選択した移動体10の位置を利用して駆動装置107を制御し、当該行き先に向かって移動体10を移動させる。 The arithmetic circuit 105 determines the current position of the moving body 10 based on the first position information and the second position information, and controls the drive device 107. The arithmetic circuit 105 acquires reliability data indicating the likelihood of the estimation result by the first positioning device 103 in addition to the first and second position information. The arithmetic circuit 105 selects one of the estimation result by the first positioning device 103 and the estimation result by the second positioning device 104 as the position of the mobile object 10 according to whether or not the reliability data conforms to a predetermined condition. Do. The arithmetic circuit 105 receives an instruction of a destination from, for example, an external device, controls the drive device 107 using the position of the selected mobile unit 10, and moves the mobile unit 10 toward the destination.
 信頼性データは、第1測位装置103から出力されてもよいし、演算回路105が自ら生成してもよい。例えば第1センサ101がLRFを含む形態では、第1測位装置103は、第1センサデータと地図データとの一致度を示すデータを、第1信頼性データとして出力してもよい。この場合、演算回路105は、第1測位装置103による推定結果を移動体10の位置として選択しているときにおいて、第1信頼性データの値が切替閾値以下になった場合に、第2測位装置104による推定結果を移動体10の位置として選択することができる。逆に、演算回路105は、第2測位装置104による推定結果を移動体10の位置として選択しているときにおいて、第1信頼性データの値が復帰閾値以上になった場合に、第1測位装置103による推定結果を移動体10の位置として選択する状態に戻すことができる。復帰閾値は、切替閾値と同じ値でもよいが、切替閾値よりも大きい値にしてもよい。例えば、第1信頼性データが「%」を単位とする数値で表される場合、復帰閾値を、切替閾値よりも数%から30%程度高い値にすることで、動作をより安定させることができる。 The reliability data may be output from the first positioning device 103 or may be generated by the arithmetic circuit 105 itself. For example, in a form in which the first sensor 101 includes LRF, the first positioning device 103 may output data indicating the degree of coincidence between the first sensor data and the map data as the first reliability data. In this case, when the calculation circuit 105 selects the estimation result of the first positioning device 103 as the position of the mobile object 10, the second positioning is performed when the value of the first reliability data becomes equal to or less than the switching threshold. The estimation result by the device 104 can be selected as the position of the moving body 10. On the contrary, when the calculation circuit 105 selects the estimation result of the second positioning device 104 as the position of the mobile object 10, the first positioning is performed when the value of the first reliability data becomes equal to or more than the recovery threshold. It is possible to return to the state of selecting the estimation result by the device 103 as the position of the moving body 10. The return threshold may be the same value as the switching threshold, or may be a value larger than the switching threshold. For example, when the first reliability data is represented by a numerical value in the unit of “%”, the operation can be made more stable by setting the recovery threshold to a value that is several% to 30% higher than the switching threshold. it can.
 第1信頼性データの値が復帰閾値以上になった場合であっても、演算回路105は、第1位置情報が示す座標の動きと第2位置情報が示す座標の動きとが近似していない場合には、第2位置情報が示す位置を移動体10の位置として選択してもよい。第1位置情報が示す座標の動きと第2位置情報が示す座標の動きとが近似していない場合には、以下の2つの場合があり得る。
(1)第1測位装置103による推定結果に基づいて推定した一定時間内(例えば数秒間)における移動体10の移動距離と、第2測位装置104による推定結果に基づいて推定した当該一定時間内における移動体10の移動距離との差が、第1閾値よりも大きい場合
(2)第1測位装置103による推定結果に基づいて推定した当該一定時間内における移動体10の角度変化量と、第2測位装置104による推定結果に基づいて推定した当該一定時間内における移動体10の角度変化量との差が、第2閾値よりも大きい場合
Even when the value of the first reliability data becomes equal to or greater than the return threshold, the arithmetic circuit 105 does not approximate the movement of the coordinates indicated by the first position information and the movement of the coordinates indicated by the second position information. In this case, the position indicated by the second position information may be selected as the position of the moving body 10. When the movement of the coordinates indicated by the first position information and the movement of the coordinates indicated by the second position information do not approximate each other, the following two cases may occur.
(1) Within the fixed time estimated based on the moving distance of the moving object 10 within a fixed time (for example, several seconds) estimated based on the estimation result by the first positioning device 103 and the estimated result by the second positioning device 104 When the difference between the moving object 10 and the moving distance of the moving object 10 is larger than the first threshold (2) The angle change amount of the moving object 10 within the predetermined time estimated based on the estimation result by the first positioning device 103 2 When the difference between the amount of change in angle of the moving object 10 within the predetermined time estimated based on the estimation result by the positioning device 104 is larger than the second threshold
 演算回路105は、上記(1)および(2)の少なくとも一方に該当する場合には、第1位置情報の信頼度が復帰閾値よりも高い場合でも、第2測位装置104による推定結果を移動体10の位置として選択し、運行を継続してもよい。 When the arithmetic circuit 105 corresponds to at least one of the above (1) and (2), even if the reliability of the first position information is higher than the recovery threshold, the estimation result by the second positioning device 104 is a mobile object It may be selected as 10 positions and the operation may be continued.
 信頼性データは、第1位置情報が示す座標と、第2位置情報が示す座標との差を示すデータ(「第2信頼性データ」と称する)を含んでいてもよい。この場合、演算回路105は、第1測位装置103による推定結果として得られた位置と第2測位装置104による推定結果として得られた位置との差を第2信頼性データとして出力する。第1位置情報が示す座標を(x1,x1)とし、第2位置情報が示す座標を(x2,y2)とするとき、第2信頼性データは、例えば、(x1-x2)の絶対値、(y1-y2)の絶対値、または(x1-x2)2+(y1-y2)2の値もしくはその平方根を示すデータであり得る。演算回路105は、第1測位装置103による推定結果を移動体10の位置として選択しているときにおいて、第2信頼性データの値が予め定められた許容値以上になったとき、第2測位装置104による推定結果を移動体10の位置として選択することができる。逆に、演算回路105は、第2測位装置104による推定結果を移動体10の位置として選択しているときにおいて、第2信頼性データの値が当該許容値またはそれよりも小さい値未満になったとき、第1測位装置103による測定結果を移動体10の位置として選択する状態に戻すことができる。 The reliability data may include data (referred to as “second reliability data”) indicating the difference between the coordinates indicated by the first position information and the coordinates indicated by the second position information. In this case, the arithmetic circuit 105 outputs the difference between the position obtained as the estimation result of the first positioning device 103 and the position obtained as the estimation result of the second positioning device 104 as second reliability data. When the coordinates indicated by the first position information are (x1, x1) and the coordinates indicated by the second position information are (x2, y2), the second reliability data is, for example, an absolute value of (x1-x2), the absolute value of (y1-y2), or (x1-x2) may be a 2 + (y1-y2) data indicating a value of 2 or a square root. When the calculation circuit 105 selects the estimation result of the first positioning device 103 as the position of the mobile object 10, the second positioning is performed when the value of the second reliability data becomes equal to or greater than a predetermined allowable value. The estimation result by the device 104 can be selected as the position of the moving body 10. Conversely, when the calculation circuit 105 selects the estimation result by the second positioning device 104 as the position of the mobile object 10, the value of the second reliability data becomes less than the allowable value or a value smaller than that value. At this time, it is possible to return to the state of selecting the measurement result by the first positioning device 103 as the position of the mobile object 10.
 本開示は、移動体における演算回路によって実行されるコンピュータプログラムも含む。そのようなプログラムは、移動体が備えるメモリに格納される。当該コンピュータプログラムは、演算回路に、第1測位装置による推定結果の確からしさを示す信頼性データが所定の条件に合致しているか否かに応じて、前記第1測位装置による推定結果および前記第2測位装置による推定結果の一方を前記移動体の位置として選択させる。 The present disclosure also includes a computer program executed by an arithmetic circuit in a mobile. Such programs are stored in the memory of the mobile. The computer program causes the arithmetic circuit to calculate the estimation result by the first positioning device and the first estimation device depending on whether reliability data indicating the likelihood of the estimation result by the first positioning device matches a predetermined condition. 2) One of the estimation results by the positioning device is selected as the position of the mobile unit.
<例示的な実施形態>
 以下、添付の図面を参照しながら、本開示による移動体および移動体システムのより具体的な実施形態を説明する。なお、必要以上に詳細な説明は省略する場合がある。たとえば、既によく知られた事項の詳細説明や実質的に同一の構成に対する重複説明を省略する場合がある。これは、以下の説明が不必要に冗長になるのを避け、当業者の理解を容易にするためである。本発明者らは、当業者が本開示を十分に理解するために添付図面および以下の説明を提供する。これらによって特許請求の範囲に記載の主題を限定することを意図しない。
Exemplary Embodiment
Hereinafter, more specific embodiments of the mobile body and mobile body system according to the present disclosure will be described with reference to the accompanying drawings. In addition, detailed description more than necessary may be omitted. For example, detailed description of already well-known matters and redundant description of substantially the same configuration may be omitted. This is to avoid unnecessary redundancy in the following description and to facilitate understanding by those skilled in the art. The inventors provide the attached drawings and the following description so that those skilled in the art can fully understand the present disclosure. They are not intended to limit the claimed subject matter by these.
 本実施形態は、移動体の一例として無人搬送車を備えたシステムに関する。以下の説明では、略語を用いて、無人搬送車を「AGV」と記述する。本実施形態では、第1センサ101がレーザレンジファインダを含み、第2センサ102が、2つの車輪の回転速度(単位時間当たりの回転数)を計測する2つのロータリエンコーダを含んでいる。 The present embodiment relates to a system provided with an unmanned transport vehicle as an example of a mobile object. In the following description, an unmanned carrier is described as "AGV" using abbreviations. In the present embodiment, the first sensor 101 includes a laser range finder, and the second sensor 102 includes two rotary encoders that measure rotational speeds (rotations per unit time) of the two wheels.
(1)システムの基本構成
 図2は、本開示による例示的な移動体管理システム100の基本構成例を示している。移動体管理システム100は、少なくとも1台のAGV10と、ユーザ1によって操作される端末装置20と、AGV10の運行管理を行う運行管理装置50とを含む。
(1) Basic Configuration of System FIG. 2 shows an example of the basic configuration of an exemplary mobile management system 100 according to the present disclosure. The mobile management system 100 includes at least one AGV 10, a terminal device 20 operated by the user 1, and an operation management device 50 that performs operation management of the AGV 10.
 AGV10は、走行に磁気テープなどの誘導体が不要な「ガイドレス式」走行が可能な無人搬送台車である。AGV10は、自己位置推定を行い、推定の結果を端末装置20および運行管理装置50に送信することができる。AGV10は、運行管理装置50からの指令に従って移動空間S内を自動走行することが可能である。 The AGV 10 is an unmanned transport carriage capable of "guideless" traveling, which does not require a derivative such as a magnetic tape for traveling. The AGV 10 can perform self-position estimation, and can transmit the result of estimation to the terminal device 20 and the operation management device 50. The AGV 10 can automatically travel in the moving space S in accordance with a command from the operation management device 50.
 運行管理装置50は各AGV10の位置をトラッキングし、各AGV10の走行を管理するコンピュータシステムである。運行管理装置50は、デスクトップ型PC、ノート型PC、および/または、サーバコンピュータであり得る。運行管理装置50は、複数のアクセスポイント2を介して、各AGV10と通信する。たとえば、運行管理装置50は、各AGV10が次に向かうべき位置の座標のデータを各AGV10に送信する。各AGV10は、定期的に、たとえば100ミリ秒ごとに自身の位置および姿勢を示すデータを運行管理装置50に送信する。指示した位置にAGV10が到達すると、運行管理装置50は、さらに次に向かうべき位置の座標のデータを送信する。AGV10は、端末装置20に入力されたユーザ1の操作に応じて移動空間S内を走行することも可能である。端末装置20の一例はタブレットコンピュータである。典型的には、端末装置20を利用したAGV10の走行は地図作成時に行われ、運行管理装置50を利用したAGV10の走行は地図作成後に行われる。 The operation management device 50 is a computer system that tracks the position of each AGV 10 and manages traveling of each AGV 10. The operation management device 50 may be a desktop PC, a laptop PC, and / or a server computer. The operation management apparatus 50 communicates with each AGV 10 via the plurality of access points 2. For example, the operation management device 50 transmits, to each AGV 10, data of coordinates of a position to which each AGV 10 should go next. Each AGV 10 periodically transmits data indicating its position and attitude to the operation management device 50, for example, every 100 milliseconds. When the AGV 10 reaches the designated position, the operation management device 50 transmits data of coordinates of a position to be further advanced. The AGV 10 can also travel in the moving space S in accordance with the operation of the user 1 input to the terminal device 20. An example of the terminal device 20 is a tablet computer. Typically, travel of the AGV 10 using the terminal device 20 is performed at the time of map creation, and travel of the AGV 10 using the operation management device 50 is performed after the map creation.
 図3は、3台のAGV10a,10bおよび10cが存在する移動空間Sの一例を示している。いずれのAGVも図中の奥行き方向に走行しているとする。AGV10aおよび10bは天板に載置された荷物を搬送中である。AGV10cは、前方のAGV10bに追従して走行している。なお、説明の便宜のため、図3では参照符号10a,10bおよび10cを付したが、以下では、「AGV10」と記述する。 FIG. 3 shows an example of a moving space S in which three AGVs 10a, 10b and 10c exist. All AGVs are assumed to travel in the depth direction in the figure. The AGVs 10a and 10b are carrying the load placed on the top plate. The AGV 10 c runs following the front AGV 10 b. In addition, although the referential mark 10a, 10b and 10c were attached | subjected in FIG. 3 for the facilities of description, it describes as "AGV10" below.
 AGV10は、天板に載置された荷物を搬送する方法以外に、自身と接続された牽引台車を利用して荷物を搬送することも可能である。図4Aは接続される前のAGV10および牽引台車5を示している。牽引台車5の各足にはキャスターが設けられている。AGV10は牽引台車5と機械的に接続される。図4Bは、接続されたAGV10および牽引台車5を示している。AGV10が走行すると、牽引台車5はAGV10に牽引される。牽引台車5を牽引することにより、AGV10は、牽引台車5に載置された荷物を搬送できる。 The AGV 10 can also transfer a load using a tow truck connected to itself, in addition to the method of transferring the load placed on the top plate. FIG. 4A shows the AGV 10 and the tow truck 5 before being connected. Each leg of the tow truck 5 is provided with a caster. The AGV 10 is mechanically connected to the tow truck 5. FIG. 4B shows the connected AGV 10 and tow truck 5. When the AGV 10 travels, the tow truck 5 is pulled by the AGV 10. By pulling the tow truck 5, the AGV 10 can transport the load placed on the tow truck 5.
 AGV10と牽引台車5との接続方法は任意である。一例を説明する。AGV10の天板にはプレート6が固定されている。牽引台車5には、スリットを有するガイド7が設けられている。AGV10は牽引台車5に接近し、プレート6をガイド7のスリットに差し込む。差し込みが完了すると、AGV10は、図示されない電磁ロック式ピンをプレート6およびガイド7に貫通させ、電磁ロックをかける。これにより、AGV10と牽引台車5とが物理的に接続される。 The connection method of AGV10 and the pulling truck 5 is arbitrary. An example will be described. A plate 6 is fixed to the top plate of the AGV 10. The tow truck 5 is provided with a guide 7 having a slit. The AGV 10 approaches the tow truck 5 and inserts the plate 6 into the slit of the guide 7. When the insertion is completed, the AGV 10 penetrates the plate 6 and the guide 7 with an electromagnetic lock type pin (not shown) to lock the electromagnetic lock. Thereby, AGV10 and the pulling truck 5 are physically connected.
 再び図2を参照する。各AGV10と端末装置20とは、たとえば1対1で接続されてBluetooth(登録商標)規格に準拠した通信を行うことができる。各AGV10と端末装置20とは、1または複数のアクセスポイント2を利用してWi-Fi(登録商標)に準拠した通信を行うこともできる。複数のアクセスポイント2は、たとえばスイッチングハブ3を介して互いに接続されている。図2には2台のアクセスポイント2a,2bが記載されている。AGV10はアクセスポイント2aと無線で接続されている。端末装置20はアクセスポイント2bと無線で接続されている。AGV10が送信したデータはアクセスポイント2aで受信され、スイッチングハブ3を介してアクセスポイント2bに転送され、アクセスポイント2bから端末装置20に送信される。また、端末装置20が送信したデータは、アクセスポイント2bで受信され、スイッチングハブ3を介してアクセスポイント2aに転送され、アクセスポイント2aからAGV10に送信される。これにより、AGV10および端末装置20の間の双方向通信が実現される。複数のアクセスポイント2はスイッチングハブ3を介して運行管理装置50とも接続されている。これにより、運行管理装置50と各AGV10との間でも双方向通信が実現される。 Refer again to FIG. Each AGV 10 and the terminal device 20 can be connected, for example, on a one-to-one basis to perform communication conforming to the Bluetooth (registered trademark) standard. Each AGV 10 and the terminal device 20 can also perform communication conforming to Wi-Fi (registered trademark) using one or more access points 2. The plurality of access points 2 are connected to one another via, for example, a switching hub 3. Two access points 2a and 2b are shown in FIG. The AGV 10 is wirelessly connected to the access point 2a. The terminal device 20 is wirelessly connected to the access point 2b. The data transmitted by the AGV 10 is received by the access point 2 a, transferred to the access point 2 b via the switching hub 3, and transmitted from the access point 2 b to the terminal device 20. The data transmitted by the terminal device 20 is received by the access point 2 b, transferred to the access point 2 a via the switching hub 3, and transmitted from the access point 2 a to the AGV 10. Thereby, bi-directional communication between the AGV 10 and the terminal device 20 is realized. The plurality of access points 2 are also connected to the operation management device 50 via the switching hub 3. Thereby, bidirectional communication is realized also between the operation management device 50 and each of the AGVs 10.
(2)環境地図の作成
 自己位置を推定しながらAGV10が走行できるようにするため、移動空間S内の地図が作成される。AGV10には後述の測位装置およびレーザレンジファインダが搭載されており、レーザレンジファインダの出力を利用して地図を作成できる。
(2) Creation of Environment Map In order to allow the AGV 10 to travel while estimating its own position, a map in the moving space S is created. The AGV 10 is equipped with a positioning device and a laser range finder described later, and a map can be created using the output of the laser range finder.
 AGV10は、ユーザの操作によってデータ取得モードに遷移する。データ取得モードにおいて、AGV10はレーザレンジファインダを用いたセンサデータの取得を開始する。レーザレンジファインダは周期的に例えば赤外線または可視光のレーザビームを周囲に放射して周囲の空間Sをスキャンする。レーザビームは、たとえば、壁、柱等の構造物、床の上に置かれた物体等の表面で反射される。レーザレンジファインダは、レーザビームの反射光を受けて各反射点までの距離を計算し、各反射点の位置が示された測定結果のデータを出力する。各反射点の位置には、反射光の到来方向および距離が反映されている。測定結果のデータは「計測データ」または「センサデータ」と呼ばれることがある。 The AGV 10 transitions to the data acquisition mode by the operation of the user. In the data acquisition mode, the AGV 10 starts acquiring sensor data using a laser range finder. The laser range finder periodically scans the surrounding space S by emitting a laser beam of, for example, infrared or visible light to the surroundings. The laser beam is reflected by, for example, a surface such as a wall, a structure such as a pillar, or an object placed on the floor. The laser range finder receives the reflected light of the laser beam, calculates the distance to each reflection point, and outputs measurement data indicating the position of each reflection point. The direction of arrival of reflected light and the distance are reflected in the position of each reflection point. Data of measurement results may be referred to as "measurement data" or "sensor data".
 測位装置は、センサデータを記憶装置に蓄積する。移動空間S内のセンサデータの取得が完了すると、記憶装置に蓄積されたセンサデータが外部装置に送信される。外部装置は、たとえば信号処理プロセッサを有し、かつ、地図作成プログラムがインストールされたコンピュータである。 The positioning device stores sensor data in a storage device. When acquisition of sensor data in the movement space S is completed, the sensor data accumulated in the storage device is transmitted to the external device. The external device is, for example, a computer that has a signal processor and has a mapping program installed.
 外部装置の信号処理プロセッサは、スキャンごとに得られたセンサデータ同士を重ね合わせる。信号処理プロセッサが重ね合わせる処理を繰り返し行うことにより、空間Sの地図を作成することができる。外部装置は、作成した地図のデータをAGV10に送信する。AGV10は、作成した地図のデータを内部の記憶装置に保存する。外部装置は、運行管理装置50であってもよいし、他の装置であってもよい。 The signal processor of the external device superimposes sensor data obtained for each scan. A map of the space S can be created by repeatedly performing the process of overlaying the signal processor. The external device transmits the created map data to the AGV 10. The AGV 10 stores the created map data in an internal storage device. The external device may be the operation management device 50 or another device.
 外部装置ではなくAGV10が地図の作成を行ってもよい。上述した外部装置の信号処理プロセッサが行った処理を、AGV10のマイクロコントローラユニット(マイコン)などの回路が行えばよい。AGV10内で地図を作成する場合には、蓄積されたセンサデータを外部装置に送信する必要が無くなる。センサデータのデータ容量は一般には大きいと考えられる。センサデータを外部装置に送信する必要がないため、通信回線の占有を回避できる。 The AGV 10 may create the map instead of the external device. The processing performed by the signal processing processor of the external device described above may be performed by a circuit such as a microcontroller unit (microcomputer) of the AGV 10. When creating a map within the AGV 10, there is no need to transmit the accumulated sensor data to an external device. The data capacity of sensor data is generally considered to be large. Since it is not necessary to transmit sensor data to an external device, occupation of the communication line can be avoided.
 なお、センサデータを取得するための移動空間S内の移動は、ユーザの操作に従ってAGV10が走行することによって実現し得る。たとえば、AGV10は、端末装置20を介して無線でユーザから前後左右の各方向への移動を指示する走行指令を受け取る。AGV10は走行指令にしたがって移動空間S内を前後左右に走行し、地図を作成する。AGV10がジョイスティック等の操縦装置と有線で接続されている場合には、当該操縦装置からの制御信号にしたがって移動空間S内を前後左右に走行し、地図を作成してもよい。レーザレンジファインダを搭載した計測台車を人が押し歩くことによってセンサデータを取得してもよい。 In addition, the movement in the movement space S for acquiring sensor data can be implement | achieved when AGV10 drive | works according to a user's operation. For example, the AGV 10 wirelessly receives a traveling instruction instructing movement in each of the front, rear, left, and right directions from the user via the terminal device 20. The AGV 10 travels back and forth and left and right in the moving space S in accordance with a travel command to create a map. When the AGV 10 is connected to a steering apparatus such as a joystick by wire, the map may be created by traveling in the moving space S in the front, rear, left, and right according to a control signal from the steering apparatus. The sensor data may be acquired by a person pushing on the measurement cart on which the laser range finder is mounted.
 なお、図2および図3には複数台のAGV10が示されているが、AGVは1台であってもよい。複数台のAGV10が存在する場合、ユーザ1は端末装置20を利用して、登録された複数のAGVのうちから一台のAGV10を選択して、移動空間Sの地図を作成させることができる。 Although a plurality of AGVs 10 are shown in FIGS. 2 and 3, one AGV may be provided. When there are a plurality of AGVs 10, the user 1 can use the terminal device 20 to select one AGV 10 out of the plurality of registered AGVs and create a map of the moving space S.
 地図が作成されると、以後、各AGV10は当該地図を利用して自己位置を推定しながら自動走行することができる。自己位置を推定する処理の説明は後述する。 After the map is created, each AGV 10 can automatically travel while estimating its own position using the map. The description of the process of estimating the self position will be described later.
(3)AGVの構成
 図5は、本実施形態にかかる例示的なAGV10の外観図である。AGV10は、2つの駆動輪11aおよび11bと、4つのキャスター11c、11d、11e、および11fと、フレーム12と、搬送テーブル13と、走行制御装置14と、レーザレンジファインダ15とを有する。2つの駆動輪11aおよび11bは、AGV10の右側および左側にそれぞれ設けられている。4つのキャスター11c、11d、11e、および11fは、AGV10の4隅に配置されている。なお、AGV10は2つの駆動輪11aおよび11bに接続される複数のモータも有するが図5には示されていない。また、図5には、AGV10の右側に位置する1つの駆動輪11aおよび2つのキャスター11cおよび11eと、左後部に位置するキャスター11fが示されているが、左側の駆動輪11bおよび左前部のキャスター11dはフレーム12の蔭に隠れているため明示されていない。4つのキャスター11c、11d、11e、および11fは、自由に旋回することができる。以下の説明では、駆動輪11aおよび駆動輪11bを、それぞれ車輪11aおよび車輪11bとも称する。
(3) Configuration of AGV FIG. 5 is an external view of an exemplary AGV 10 according to the present embodiment. The AGV 10 has two drive wheels 11a and 11b, four casters 11c, 11d, 11e and 11f, a frame 12, a transport table 13, a travel control device 14, and a laser range finder 15. The two drive wheels 11a and 11b are provided on the right and left sides of the AGV 10, respectively. The four casters 11 c, 11 d, 11 e and 11 f are disposed at the four corners of the AGV 10. The AGV 10 also has a plurality of motors connected to the two drive wheels 11a and 11b, which are not shown in FIG. Further, FIG. 5 shows one drive wheel 11a and two casters 11c and 11e located on the right side of the AGV 10 and a caster 11f located on the left rear, but the left drive wheel 11b and the left front The caster 11 d is not shown because it is hidden by the frame 12. The four casters 11c, 11d, 11e and 11f can pivot freely. In the following description, the drive wheel 11a and the drive wheel 11b are also referred to as a wheel 11a and a wheel 11b, respectively.
 走行制御装置14は、AGV10の動作を制御する装置であり、主としてマイコン(後述)を含む集積回路、電子部品およびそれらが搭載された基板を含む。走行制御装置14は、上述した、端末装置20とのデータの送受信、および、前処理演算を行う。 The travel control device 14 is a device that controls the operation of the AGV 10, and mainly includes an integrated circuit including a microcomputer (described later), an electronic component, and a substrate on which the components are mounted. The traveling control device 14 performs transmission and reception of data with the terminal device 20 and the pre-processing calculation described above.
 レーザレンジファインダ15は、たとえば赤外のレーザビーム15aを放射し、当該レーザビーム15aの反射光を検出することにより、反射点までの距離を測定する光学機器である。本実施形態では、AGV10のレーザレンジファインダ15は、たとえばAGV10の正面を基準として左右135度(合計270度)の範囲の空間に、0.25度ごとに方向を変化させながらパルス状のレーザビーム15aを放射し、各レーザビーム15aの反射光を検出する。これにより、0.25度ごと、合計1081ステップ分の角度で決まる方向における反射点までの距離のデータを得ることができる。なお、本実施形態では、レーザレンジファインダ15が行う周囲の空間のスキャンは実質的に床面に平行であり、平面的(二次元的)であることを想定している。しかしながら、高さ方向のスキャンを行ってもよい。 The laser range finder 15 is an optical device that measures, for example, the distance to a reflection point by emitting an infrared laser beam 15a and detecting the reflected light of the laser beam 15a. In the present embodiment, the laser range finder 15 of the AGV 10 is, for example, a pulsed laser beam while changing the direction every 0.25 degree in a space within a range of 135 degrees (270 degrees in total) with reference to the front of the AGV 10 The light 15a is emitted, and the reflected light of each laser beam 15a is detected. This makes it possible to obtain data of the distance to the reflection point in the direction determined by the angle for a total of 1081 steps every 0.25 degrees. In the present embodiment, it is assumed that the scan of the surrounding space performed by the laser range finder 15 is substantially parallel to the floor surface and planar (two-dimensional). However, scanning in the height direction may be performed.
 AGV10の位置および姿勢と、レーザレンジファインダ15のスキャン結果とにより、AGV10は、空間Sの地図を作成することができる。地図には、AGVの周囲の壁、柱等の構造物、床の上に載置された物体の配置が反映され得る。地図のデータは、AGV10内に設けられた記憶装置に格納される。 The AGV 10 can create a map of the space S based on the position and attitude of the AGV 10 and the scan result of the laser range finder 15. The map may reflect the surrounding walls of the AGV, structures such as columns, and the placement of objects placed on the floor. Map data is stored in a storage device provided in the AGV 10.
 一般に、移動体の位置および姿勢は、ポーズ(pose)と呼ばれる。二次元面内における移動体の位置および姿勢は、XY直交座標系における位置座標(x, y)と、X軸に対する角度θによって表現される。AGV10の位置および姿勢、すなわちポーズ(x, y, θ)を、以下、単に「位置」と呼ぶことがある。 Generally, the position and posture of a mobile are called a pose. The position and orientation of the moving body in a two-dimensional plane are represented by position coordinates (x, y) in the XY orthogonal coordinate system and an angle θ with respect to the X axis. The position and posture of the AGV 10, that is, the pose (x, y, θ) may be hereinafter simply referred to as "position".
 なお、レーザビーム15aの放射位置から見た反射点の位置は、角度および距離によって決定される極座標を用いて表現され得る。本実施形態では、レーザレンジファインダ15は極座標で表現されたセンサデータを出力する。ただし、レーザレンジファインダ15は、極座標で表現された位置を直交座標に変換して出力してもよい。 The position of the reflection point viewed from the emission position of the laser beam 15a can be expressed using polar coordinates determined by the angle and the distance. In the present embodiment, the laser range finder 15 outputs sensor data represented by polar coordinates. However, the laser range finder 15 may convert the position expressed in polar coordinates into orthogonal coordinates and output it.
 レーザレンジファインダの構造および動作原理は公知であるため、本明細書ではこれ以上の詳細な説明は省略する。なお、レーザレンジファインダ15によって検出され得る物体の例は、人、荷物、棚、壁である。 The structure and the operating principle of the laser range finder are known, so a further detailed description will be omitted herein. Examples of objects that can be detected by the laser range finder 15 are people, luggage, shelves, and walls.
 レーザレンジファインダ15は、周囲の空間をセンシングしてセンサデータを取得するための外界センサの一例である。そのような外界センサの他の例としては、イメージセンサおよび超音波センサが考えられる。 The laser range finder 15 is an example of an external sensor for sensing surrounding space and acquiring sensor data. As another example of such an external sensor, an image sensor and an ultrasonic sensor can be considered.
 走行制御装置14は、レーザレンジファインダ15の測定結果と、自身が保持する地図データとを比較して、自身の現在位置を推定することができる。なお、保持されている地図データは、他のAGV10が作成した地図データであってもよい。 The traveling control device 14 can estimate the current position of itself by comparing the measurement result of the laser range finder 15 with the map data held by itself. In addition, the map data currently hold | maintained may be the map data which other AGV10 created.
 図6Aは、AGV10の第1のハードウェア構成例を示している。また図6Aは、走行制御装置14の具体的な構成も示している。 FIG. 6A shows a first hardware configuration example of the AGV 10. FIG. 6A also shows a specific configuration of the traveling control device 14.
 AGV10は、走行制御装置14と、レーザレンジファインダ15と、2台のモータ16aおよび16bと、駆動装置17と、車輪11aおよび11bと、2つのロータリエンコーダ18a、18b(以下、単に「エンコーダ18a」および「エンコーダ18b」と称することがある)とを備えている。 The AGV 10 includes a travel control unit 14, a laser range finder 15, two motors 16a and 16b, a drive unit 17, wheels 11a and 11b, and two rotary encoders 18a and 18b (hereinafter simply referred to as "encoders 18a"). And “the encoder 18 b”).
 走行制御装置14は、マイコン14aと、メモリ14bと、記憶装置14cと、通信回路14dと、測位装置14eとを有している。マイコン14a、メモリ14b、記憶装置14c、通信回路14dおよび測位装置14eは通信バス14fで接続されており、相互にデータを授受することが可能である。レーザレンジファインダ15もまた通信インタフェース(図示せず)を介して通信バス14fに接続されており、計測結果である計測データを、マイコン14a、測位装置14eおよび/またはメモリ14bに送信する。 The traveling control device 14 includes a microcomputer 14a, a memory 14b, a storage device 14c, a communication circuit 14d, and a positioning device 14e. The microcomputer 14a, the memory 14b, the storage device 14c, the communication circuit 14d, and the positioning device 14e are connected by a communication bus 14f and can exchange data with each other. The laser range finder 15 is also connected to the communication bus 14f via a communication interface (not shown), and transmits measurement data as a measurement result to the microcomputer 14a, the positioning device 14e and / or the memory 14b.
 マイコン14aは、走行制御装置14を含むAGV10の全体を制御するための演算を行うプロセッサまたは制御回路(コンピュータ)である。典型的にはマイコン14aは半導体集積回路である。マイコン14aは、制御信号であるPWM(Pulse Width Modulation)信号を駆動装置17に送信して駆動装置17を制御し、モータに印加する電圧を調整させる。これによりモータ16aおよび16bの各々が所望の回転速度で回転する。なお、左右のモータ16aおよび16bの駆動を制御する1つ以上の制御回路(例えばマイコン)を、マイコン14aとは独立して設けてもよい。例えば、モータ駆動装置17が、モータ16aおよび16bの駆動をそれぞれ制御する2つのマイコンを備えていてもよい。それらの2つのマイコンは、エンコーダ18aおよび18bから出力されたエンコーダ情報を用いた座標計算をそれぞれ行い、所与の初期位置からのAGV10の移動距離を推定してもよい。また、当該2つのマイコンは、エンコーダ情報を利用してモータ駆動回路17aおよび17bを制御してもよい。 The microcomputer 14 a is a processor or control circuit (computer) that performs calculations for controlling the entire AGV 10 including the traveling control device 14. Typically, the microcomputer 14a is a semiconductor integrated circuit. The microcomputer 14a transmits a PWM (Pulse Width Modulation) signal, which is a control signal, to the drive unit 17 to control the drive unit 17 to adjust the voltage applied to the motor. This causes each of the motors 16a and 16b to rotate at a desired rotational speed. Note that one or more control circuits (for example, microcomputers) for controlling the drive of the left and right motors 16a and 16b may be provided independently of the microcomputer 14a. For example, the motor drive device 17 may be provided with two microcomputers for controlling the drive of the motors 16a and 16b, respectively. Those two microcomputers may perform coordinate calculation using encoder information output from the encoders 18a and 18b, respectively, to estimate the moving distance of the AGV 10 from a given initial position. Further, the two microcomputers may control the motor drive circuits 17a and 17b using encoder information.
 メモリ14bは、マイコン14aが実行するコンピュータプログラムを記憶する、揮発性の記憶装置である。メモリ14bは、マイコン14aおよび測位装置14eが演算を行う際のワークメモリとしても利用され得る。 The memory 14 b is a volatile storage device that stores a computer program executed by the microcomputer 14 a. The memory 14b can also be used as a work memory when the microcomputer 14a and the positioning device 14e perform calculations.
 記憶装置14cは、不揮発性の半導体メモリ装置である。ただし、記憶装置14cは、ハードディスクに代表される磁気記録媒体、または、光ディスクに代表される光学式記録媒体であってもよい。さらに、記憶装置14cは、いずれかの記録媒体にデータを書き込みおよび/または読み出すためのヘッド装置および当該ヘッド装置の制御装置を含んでもよい。 The storage device 14 c is a non-volatile semiconductor memory device. However, the storage device 14 c may be a magnetic recording medium represented by a hard disk, or an optical recording medium represented by an optical disk. Furthermore, the storage device 14 c may include a head device for writing and / or reading data on any recording medium and a control device of the head device.
 記憶装置14cは、走行する空間Sの地図データM、および、1または複数の走行経路のデータ(走行経路データ)Rを記憶する。地図データMは、AGV10が地図作成モードで動作することによって作成され記憶装置14cに記憶される。走行経路データRは、地図データMが作成された後に外部から送信される。本実施形態では、地図データMおよび走行経路データRは同じ記憶装置14cに記憶されているが、異なる記憶装置に記憶されてもよい。 The storage device 14c stores map data M of the space S in which the vehicle travels and data (traveling route data) R of one or more traveling routes. The map data M is created by the AGV 10 operating in the mapping mode and stored in the storage device 14c. The travel route data R is transmitted from the outside after the map data M is created. In the present embodiment, the map data M and the traveling route data R are stored in the same storage device 14c, but may be stored in different storage devices.
 走行経路データRの例を説明する。 An example of the travel route data R will be described.
 端末装置20がタブレットコンピュータである場合には、AGV10はタブレットコンピュータから走行経路を示す走行経路データRを受信する。このときの走行経路データRは、複数のマーカの位置を示すマーカデータを含む。「マーカ」は走行するAGV10の通過位置(経由点)を示す。走行経路データRは、走行開始位置を示す開始マーカおよび走行終了位置を示す終了マーカの位置情報を少なくとも含む。走行経路データRは、さらに、1以上の中間経由点のマーカの位置情報を含んでもよい。走行経路が1以上の中間経由点を含む場合には、開始マーカから、当該走行経由点を順に経由して終了マーカに至る経路が、走行経路として定義される。各マーカのデータは、そのマーカの座標データに加えて、次のマーカに移動するまでのAGV10の向き(角度)および走行速度のデータを含み得る。AGV10が各マーカの位置で一旦停止し、自己位置推定および端末装置20への通知などを行う場合には、各マーカのデータは、当該走行速度に達するまでの加速に要する加速時間、および/または、当該走行速度から次のマーカの位置で停止するまでの減速に要する減速時間のデータを含み得る。 When the terminal device 20 is a tablet computer, the AGV 10 receives traveling route data R indicating a traveling route from the tablet computer. The travel route data R at this time includes marker data indicating the positions of a plurality of markers. “Marker” indicates the passing position (passing point) of the traveling AGV 10. The travel route data R includes at least position information of a start marker indicating a travel start position and an end marker indicating a travel end position. The travel route data R may further include positional information of markers at one or more intermediate waypoints. When the travel route includes one or more intermediate via points, a route from the start marker to the end marker via the travel via points in order is defined as the travel route. The data of each marker may include, in addition to the coordinate data of the marker, data of the orientation (angle) and traveling speed of the AGV 10 until moving to the next marker. When the AGV 10 temporarily stops at each marker position and performs self-position estimation and notification to the terminal device 20, the data of each marker is an acceleration time required to accelerate to the traveling speed, and / or It may include data of deceleration time required to decelerate from the traveling speed to a stop at the position of the next marker.
 端末装置20ではなく、運行管理装置50(例えば、PCおよび/またはサーバコンピュータ)がAGV10の移動を制御してもよい。その場合には、運行管理装置50は、AGV10がマーカに到達する度に、次のマーカへの移動をAGV10に指示してもよい。例えば、AGV10は、運行管理装置50から、次に向かうべき目的位置の座標データ、または、当該目的位置までの距離および進むべき角度のデータを、走行経路を示す走行経路データRとして受信する。 Instead of the terminal device 20, the operation management device 50 (for example, a PC and / or a server computer) may control the movement of the AGV 10. In that case, the operation management apparatus 50 may instruct the AGV 10 to move to the next marker each time the AGV 10 reaches the marker. For example, the AGV 10 receives, from the operation management apparatus 50, coordinate data of a target position to be headed to next, or data of a distance to the target position and data of an angle to be traveled as travel route data R indicating a travel route.
 AGV10は、作成された地図と走行中に取得されたレーザレンジファインダ15が出力したセンサデータとを利用して自己位置を推定しながら、記憶された走行経路に沿って走行することができる。 The AGV 10 can travel along the stored travel path while estimating its own position using the created map and the sensor data output from the laser range finder 15 acquired during travel.
 通信回路14dは、たとえば、Bluetooth(登録商標)および/またはWi-Fi(登録商標)規格に準拠した無線通信を行う無線通信回路である。いずれの規格も、2.4GHz帯の周波数を利用した無線通信規格を含む。たとえばAGV10を走行させて地図を作成するモードでは、通信回路14dは、Bluetooth(登録商標)規格に準拠した無線通信を行い、1対1で端末装置20と通信する。 The communication circuit 14d is, for example, a wireless communication circuit that performs wireless communication compliant with the Bluetooth (registered trademark) and / or the Wi-Fi (registered trademark) standard. Both standards include wireless communication standards using frequencies in the 2.4 GHz band. For example, in the mode in which the AGV 10 is run to create a map, the communication circuit 14d performs wireless communication conforming to the Bluetooth (registered trademark) standard, and communicates with the terminal device 20 on a one-to-one basis.
 測位装置14eは、地図の作成処理、および、走行時には自己位置の推定処理を行う。測位装置14eは、AGV10の位置および姿勢とレーザレンジファインダのスキャン結果とにより、移動空間Sの地図を作成する。走行時には、測位装置14eは、レーザレンジファインダ15からセンサデータを受け取り、また、記憶装置14cに記憶された地図データMを読み出す。レーザレンジファインダ15のスキャン結果から作成された局所的地図データ(センサデータ)を、より広範囲の地図データMと照合(マッチング)することにより、地図データM上における自己位置(x, y, θ)を同定する。測位装置14eは、局所的地図データが地図データMに一致した程度を表す「信頼度」のデータを生成する。自己位置(x, y, θ)、および、信頼度の各データは、AGV10から端末装置20または運行管理装置50に送信され得る。端末装置20または運行管理装置50は、自己位置(x, y, θ)、および、信頼度の各データを受信して、内蔵または接続された表示装置に表示することができる。 The positioning device 14 e performs map creation processing and estimation processing of the self position when traveling. The positioning device 14e creates a map of the moving space S based on the position and attitude of the AGV 10 and the scanning result of the laser range finder. During traveling, the positioning device 14e receives sensor data from the laser range finder 15, and reads out the map data M stored in the storage device 14c. Self-location (x, y, θ) on the map data M by matching local map data (sensor data) created from the scan result of the laser range finder 15 with the map data M in a wider range Identify The positioning device 14 e generates “reliability” data indicating the degree to which the local map data matches the map data M. The data of the self position (x, y, θ) and the reliability can be transmitted from the AGV 10 to the terminal device 20 or the operation management device 50. The terminal device 20 or the operation management device 50 can receive each data of the self position (x, y, θ) and the reliability and can display it on a built-in or connected display device.
 本実施形態では、マイコン14aと測位装置14eとは別個の構成要素であるとしているが、これは一例である。マイコン14aおよび測位装置14eの各動作を独立して行うことが可能な1つのチップ回路または半導体集積回路であってもよい。図6Aには、マイコン14aおよび測位装置14eを包括するチップ回路14gが示されている。以下では、マイコン14aおよび測位装置14eが別個独立に設けられている例を説明する。 Although the microcomputer 14a and the positioning device 14e are separate components in this embodiment, this is an example. It may be a single chip circuit or a semiconductor integrated circuit capable of independently performing each operation of the microcomputer 14a and the positioning device 14e. FIG. 6A shows a chip circuit 14g including the microcomputer 14a and the positioning device 14e. Hereinafter, an example in which the microcomputer 14a and the positioning device 14e are provided separately and independently will be described.
 2台のモータ16aおよび16bは、それぞれ2つの車輪11aおよび11bに取り付けられ、各車輪を回転させる。つまり、2つの車輪11aおよび11bはそれぞれ駆動輪である。本明細書では、モータ16aおよびモータ16bは、それぞれAGV10の右輪および左輪を駆動するモータであるとして説明する。 Two motors 16a and 16b are attached to two wheels 11a and 11b, respectively, to rotate each wheel. That is, the two wheels 11a and 11b are respectively drive wheels. In the present specification, the motor 16a and the motor 16b are described as being motors for driving the right and left wheels of the AGV 10, respectively.
 AGV10は、さらに、車輪11aおよび11bの回転位置または回転速度を測定するエンコーダユニット18をさらに備えている。エンコーダユニット18は、第1ロータリエンコーダ18aおよび第2ロータリエンコーダ18bを含む。第1ロータリエンコーダ18aは、モータ16aから車輪11aまでの動力伝達機構のいずれかの位置における回転を計測する。第2ロータリエンコーダ18bは、モータ16bから車輪11bまでの動力伝達機構のいずれかの位置における回転を計測する。エンコーダユニット18は、ロータリエンコーダ18aおよび18bによって取得された信号を、マイコン14aに送信する。マイコン14aは、測位装置14eから受信した信号だけでなく、エンコーダユニット18から受信した信号を利用して、AGV10の移動を制御することもできる。 The AGV 10 further includes an encoder unit 18 that measures the rotational position or rotational speed of the wheels 11a and 11b. The encoder unit 18 includes a first rotary encoder 18a and a second rotary encoder 18b. The first rotary encoder 18a measures the rotation at any position of the power transmission mechanism from the motor 16a to the wheel 11a. The second rotary encoder 18 b measures the rotation at any position of the power transmission mechanism from the motor 16 b to the wheel 11 b. The encoder unit 18 transmits the signals acquired by the rotary encoders 18a and 18b to the microcomputer 14a. The microcomputer 14a can control movement of the AGV 10 using not only the signal received from the positioning device 14e but also the signal received from the encoder unit 18.
 駆動装置17は、2台のモータ16aおよび16bの各々に印加される電圧を調整するためのモータ駆動回路17aおよび17bを有する。モータ駆動回路17aおよび17bの各々はいわゆるインバータ回路を含む。モータ駆動回路17aおよび17bは、マイコン14aまたはモータ駆動回路17a内のマイコンから送信されたPWM信号によって各モータに流れる電流をオンまたはオフし、それによりモータに印加される電圧を調整する。 The drive device 17 has motor drive circuits 17a and 17b for adjusting the voltage applied to each of the two motors 16a and 16b. Each of motor drive circuits 17a and 17b includes a so-called inverter circuit. The motor drive circuits 17a and 17b turn on or off the current flowing to each motor by the PWM signal transmitted from the microcomputer 14a or the microcomputer in the motor drive circuit 17a, thereby adjusting the voltage applied to the motor.
 図6Bは、AGV10の第2のハードウェア構成例を示している。第2のハードウェア構成例は、レーザ測位システム14hを有する点、および、マイコン14aが各構成要素と1対1で接続されている点において、第1のハードウェア構成例(図6A)と相違する。 FIG. 6B shows a second hardware configuration example of the AGV 10. The second hardware configuration example differs from the first hardware configuration example (FIG. 6A) in that it has the laser positioning system 14 h and that the microcomputer 14 a is connected to each component on a one-to-one basis. Do.
 レーザ測位システム14hは、測位装置14eおよびレーザレンジファインダ15を有する。測位装置14eおよびレーザレンジファインダ15は、たとえばイーサネット(登録商標)ケーブルで接続されている。測位装置14eおよびレーザレンジファインダ15の各動作は上述した通りである。レーザ測位システム14hは、AGV10のポーズ(x, y, θ)を示す情報をマイコン14aに出力する。 The laser positioning system 14 h includes a positioning device 14 e and a laser range finder 15. The positioning device 14e and the laser range finder 15 are connected by, for example, an Ethernet (registered trademark) cable. The operations of the positioning device 14e and the laser range finder 15 are as described above. The laser positioning system 14 h outputs information indicating the pose (x, y, θ) of the AGV 10 to the microcomputer 14 a.
 マイコン14aは、種々の汎用I/Oインタフェースまたは汎用入出力ポート(図示せず)を有している。マイコン14aは、通信回路14d、レーザ測位システム14h等の、走行制御装置14内の他の構成要素と、当該汎用入出力ポートを介して直接接続されている。 The microcomputer 14a has various general purpose I / O interfaces or general purpose input / output ports (not shown). The microcomputer 14a is directly connected to other components in the travel control device 14, such as the communication circuit 14d and the laser positioning system 14h, via the general-purpose input / output port.
 図6Bに関して上述した構成以外は、図6Aの構成と共通である。よって共通の構成の説明は省略する。 Except the configuration described above with reference to FIG. 6B, the configuration is the same as the configuration of FIG. Therefore, the description of the common configuration is omitted.
 本開示の実施形態におけるAGV10は、図示されていない障害物検知センサおよびバンパースイッチなどのセーフティセンサを備えていてもよい。AGV10は、ジャイロセンサなどの慣性計測装置を備えていてもよい。ロータリエンコーダ18aおよび18bまたは慣性計測装置などの内界センサによる測定データを利用すれば、AGV10の移動距離および姿勢の変化量(角度)を推定することができる。これらの距離および角度の推定値は、オドメトリデータと呼ばれ、測位装置14eによって得られる位置および姿勢の情報を補助する機能を発揮し得る。 The AGV 10 in the embodiment of the present disclosure may be equipped with a safety sensor such as an obstacle detection sensor and a bumper switch which are not shown. The AGV 10 may include an inertial measurement device such as a gyro sensor. By using measurement data from an internal sensor such as the rotary encoders 18a and 18b or an inertial measurement device, it is possible to estimate the amount of change (angle) of the movement distance and posture of the AGV 10. These distance and angle estimates may be referred to as odometry data, and may exert a function of assisting the position and orientation information obtained by the positioning device 14e.
(4)地図データ
 図7A~図7Fは、センサデータを取得しながら移動するAGV10を模式的に示す。ユーザ1は、端末装置20を操作しながらマニュアルでAGV10を移動させてもよい。あるいは、図6Aおよび6Bに示される走行制御装置14を備えるユニット、または、AGV10そのものを台車に載置し、台車をユーザ1が手で押す、または牽くことによってセンサデータを取得してもよい。
(4) Map Data FIGS. 7A to 7F schematically show the AGV 10 moving while acquiring sensor data. The user 1 may move the AGV 10 manually while operating the terminal device 20. Alternatively, the unit provided with the travel control device 14 shown in FIGS. 6A and 6B, or the AGV 10 itself may be mounted on a carriage, and sensor data may be acquired by the user 1 manually pushing or holding the carriage.
 図7Aには、レーザレンジファインダ15を用いて周囲の空間をスキャンするAGV10が示されている。所定のステップ角毎にレーザビームが放射され、スキャンが行われる。なお、図示されたスキャン範囲は模式的に示した例であり、上述した合計270度のスキャン範囲とは異なっている。 FIG. 7A shows an AGV 10 that scans the surrounding space using a laser range finder 15. A laser beam is emitted for each predetermined step angle and scanning is performed. The illustrated scan range is an example schematically shown, and is different from the total scan range of 270 degrees described above.
 図7A~図7Fの各々では、レーザビームの反射点の位置が、記号「・」で表される複数の黒点4を用いて模式的に示されている。レーザビームのスキャンは、レーザレンジファインダ15の位置および姿勢が変化する間に短い周期で実行される。このため、現実の反射点の個数は、図示されている反射点4の個数よも遥かに多い。測位装置14eは、走行に伴って得られる黒点4の位置を、たとえばメモリ14bに蓄積する。AGV10が走行しながらスキャンを継続して行うことにより、地図データが徐々に完成されてゆく。図7Bから図7Eでは、簡略化のためスキャン範囲のみが示されている。当該スキャン範囲は例示であり、上述した合計270度の例とは異なる。 In each of FIGS. 7A to 7F, the position of the reflection point of the laser beam is schematically shown using a plurality of black points 4 represented by a symbol “·”. The scanning of the laser beam is performed at short intervals while the position and attitude of the laser range finder 15 change. Therefore, the number of actual reflection points is much larger than the number of reflection points 4 shown. The positioning device 14e stores, for example, in the memory 14b, the position of the black point 4 obtained as the vehicle travels. The map data is gradually completed as the AGV 10 continues to scan while traveling. In FIGS. 7B-7E, only the scan range is shown for simplicity. The scan range is an example, and is different from the above-described example of 270 degrees in total.
 地図は、地図作成に必要な量のセンサデータを取得した後、そのセンサデータに基づいて、このAGV10内のマイコン14aまたは外部のコンピュータを用いて作成してもよい。あるいは、移動しつつあるAGV10が取得したセンサデータに基づいてリアルタイムで地図を作成してもよい。 The map may be created using the microcomputer 14a in the AGV 10 or an external computer based on the sensor data after acquiring the sensor data of the amount necessary for creating the map. Alternatively, a map may be created in real time based on sensor data acquired by the moving AGV 10.
 図7Fは、完成した地図40の一部を模式的に示す。図7Fに示される地図では、レーザビームの反射点の集まりに相当する点群(Point Cloud)によって自由空間が仕切られている。地図の他の例は、物体が占有している空間と自由空間とをグリッド単位で区別する占有格子地図である。測位装置14eは、地図のデータ(地図データM)をメモリ14bまたは記憶装置14cに蓄積する。なお図示されている黒点の数または密度は一例である。 FIG. 7F schematically shows a part of the completed map 40. In the map shown in FIG. 7F, free space is partitioned by a point cloud (Point Cloud) corresponding to a collection of reflection points of the laser beam. Another example of the map is an occupied grid map that distinguishes space occupied by an object from free space in grid units. The positioning device 14e stores map data (map data M) in the memory 14b or the storage device 14c. The illustrated number or density of black spots is an example.
 こうして得られた地図データは、複数のAGV10によって共有され得る。 The map data thus obtained may be shared by multiple AGVs 10.
 AGV10が地図データに基づいて自己位置を推定するアルゴリズムの典型例は、ICP(Iterative Closest Point)マッチングである。前述したように、レーザレンジファインダ15のスキャン結果から作成された局所的地図データ(センサデータ)を、より広範囲の地図データMと照合(マッチング)することにより、地図データM上における自己位置(x, y, θ)を推定することができる。 A typical example of an algorithm in which the AGV 10 estimates its own position based on map data is ICP (Iterative Closest Point) matching. As described above, the local map data (sensor data) created from the scan result of the laser range finder 15 is matched (matched) with the map data M in a wider range, whereby the self-location on the map data M (x , Y, θ) can be estimated.
(5)運行管理装置の構成例
 図8は、運行管理装置50のハードウェア構成例を示している。運行管理装置50は、CPU51と、メモリ52と、位置データベース(位置DB)53と、通信回路54と、地図データベース(地図DB)55と、画像処理回路56とを有する。
(5) Configuration Example of Operation Management Device FIG. 8 shows a hardware configuration example of the operation management device 50. The operation management apparatus 50 includes a CPU 51, a memory 52, a position database (position DB) 53, a communication circuit 54, a map database (map DB) 55, and an image processing circuit 56.
 CPU51、メモリ52、位置DB53、通信回路54、地図DB55および画像処理回路56は通信バス57で接続されており、相互にデータを授受することが可能である。 The CPU 51, the memory 52, the position DB 53, the communication circuit 54, the map DB 55, and the image processing circuit 56 are connected by a communication bus 57 and can exchange data with each other.
 CPU51は、運行管理装置50の動作を制御する信号処理回路(コンピュータ)である。典型的にはCPU51は半導体集積回路である。 The CPU 51 is a signal processing circuit (computer) that controls the operation of the operation management device 50. Typically, the CPU 51 is a semiconductor integrated circuit.
 メモリ52は、CPU51が実行するコンピュータプログラムを記憶する、揮発性の記憶装置である。メモリ52は、CPU51が演算を行う際のワークメモリとしても利用され得る。 The memory 52 is a volatile storage device that stores a computer program that the CPU 51 executes. The memory 52 can also be used as a work memory when the CPU 51 performs an operation.
 位置DB53は、各AGV10の行き先となり得る各位置を示す位置データを格納する。位置データは、たとえば管理者によって工場内に仮想的に設定された座標によって表され得る。位置データは管理者によって決定される。 The position DB 53 stores position data indicating each position that can be a destination of each AGV 10. The position data may be represented, for example, by coordinates virtually set in the factory by the administrator. Location data is determined by the administrator.
 通信回路54は、たとえばイーサネット(登録商標)規格に準拠した有線通信を行う。通信回路54はアクセスポイント2(図1)と有線で接続されており、アクセスポイント2を介して、AGV10と通信することができる。通信回路54は、AGV10に送信すべきデータを、バス57を介してCPU51から受信する。また通信回路54は、AGV10から受信したデータ(通知)を、バス57を介してCPU51および/またはメモリ52に送信する。 The communication circuit 54 performs wired communication conforming to, for example, the Ethernet (registered trademark) standard. The communication circuit 54 is connected to the access point 2 (FIG. 1) by wire, and can communicate with the AGV 10 via the access point 2. The communication circuit 54 receives data to be transmitted to the AGV 10 from the CPU 51 via the bus 57. The communication circuit 54 also transmits data (notification) received from the AGV 10 to the CPU 51 and / or the memory 52 via the bus 57.
 地図DB55は、AGV10が走行する工場等の内部の地図のデータを格納する。当該地図は、地図40(図7F)と同じであってもよいし、異なっていてもよい。各AGV10の位置と1対1で対応関係を有する地図であれば、データの形式は問わない。たとえば地図DB55に格納される地図は、CADによって作成された地図であってもよい。 The map DB 55 stores data of an internal map of a factory or the like on which the AGV 10 travels. The map may be the same as or different from the map 40 (FIG. 7F). The data format is not limited as long as the map has a one-to-one correspondence with the position of each AGV 10. For example, the map stored in the map DB 55 may be a map created by CAD.
 位置DB53および地図DB55は、不揮発性の半導体メモリ上に構築されてもよいし、ハードディスクに代表される磁気記録媒体、または光ディスクに代表される光学式記録媒体上に構築されてもよい。 The position DB 53 and the map DB 55 may be constructed on a non-volatile semiconductor memory, or may be constructed on a magnetic recording medium represented by a hard disk or an optical recording medium represented by an optical disc.
 画像処理回路56はモニタ58に表示される映像のデータを生成する回路である。画像処理回路56は、専ら、管理者が運行管理装置50を操作する際に動作する。本実施形態では特にこれ以上の詳細な説明は省略する。なお、モニタ59は運行管理装置50と一体化されていてもよい。また画像処理回路56の処理をCPU51が行ってもよい。 The image processing circuit 56 is a circuit that generates data of an image displayed on the monitor 58. The image processing circuit 56 operates only when the administrator operates the operation management device 50. In the present embodiment, particularly the detailed description is omitted. The monitor 59 may be integrated with the operation management device 50. Further, the CPU 51 may perform the processing of the image processing circuit 56.
(6)運行管理装置の動作
 図9を参照しながら、運行管理装置50の動作の概要を説明する。図9は、運行管理装置50によって決定されたAGV10の移動経路の一例を模式的に示す図である。
(6) Operation of Operation Management Device The outline of the operation of the operation management device 50 will be described with reference to FIG. FIG. 9 is a view schematically showing an example of the movement route of the AGV 10 determined by the operation management device 50. As shown in FIG.
 AGV10および運行管理装置50の動作の概要は以下のとおりである。以下では、あるAGV10が現在、位置M1におり、幾つかの位置を通過して、最終的な目的地である位置Mn+1(n:1以上の正の整数)まで走行する例を説明する。なお、位置DB53には位置M1の次に通過すべき位置M2、位置M2の次に通過すべき位置M3等の各位置を示す座標データが記録されている。 The outline of the operation of the AGV 10 and the operation management device 50 is as follows. In the following, an example in which an AGV 10 is currently at position M 1 and travels through several positions to a final destination, position M n + 1 (a positive integer greater than or equal to n: 1) explain. In the position DB 53, coordinate data indicating positions such as a position M 2 to be passed next to the position M 1 and a position M 3 to be passed next to the position M 2 are recorded.
 運行管理装置50のCPU51は、位置DB53を参照して位置M2の座標データを読み出し、位置M2に向かわせる走行指令を生成する。通信回路54は、アクセスポイント2を介して走行指令をAGV10に送信する。 CPU51 of traffic control device 50 reads out the coordinate data of the position M 2 with reference to the position DB 53, and generates a travel command to direct the position M 2. The communication circuit 54 transmits a traveling command to the AGV 10 via the access point 2.
 CPU51は、AGV10から、アクセスポイント2を介して、定期的に現在位置および姿勢を示すデータを受信する。こうして運行管理装置50は、各AGV10の位置をトラッキングすることができる。CPU51は、AGV10の現在位置が位置M2に一致したと判定すると、位置M3の座標データを読み出し、位置M3に向かわせる走行指令を生成してAGV10に送信する。つまり運行管理装置50は、AGV10がある位置に到達したと判定すると、次に通過すべき位置に向かわせる走行指令を送信する。これにより、AGV10は最終的な目的位置Mn+1に到達することができる。上述した、AGV10の通過位置および目的位置は「マーカ」と呼ばれることがある。 The CPU 51 periodically receives data indicating the current position and attitude from the AGV 10 via the access point 2. Thus, the operation management device 50 can track the position of each AGV 10. CPU51 determines that the current position of the AGV10 matches the position M 2, reads the coordinate data of the position M 3, and transmits the AGV10 generates a travel command to direct the position M 3. That is, when it is determined that the AGV 10 has reached a certain position, the operation management device 50 transmits a traveling command for directing to the next passing position. Thus, the AGV 10 can reach the final target position Mn + 1 . The passing position and the target position of the AGV 10 described above may be referred to as a “marker”.
(7)オドメトリデータを利用した走行制御の例
 次に、ロータリエンコーダ18aおよび18bからのオドメトリデータを利用した走行制御の例を説明する。以下の説明では、AGV10が図10に示す構成を備えている。図10は、AGV10の構成例を示すブロック図である。図10の構成は、第2測位装置19およびディスプレイ30が設けられている点を除き、図6Bの構成と同じである。第2測位装置19は、エンコーダユニット18とマイコン14aとの間に接続されている。ディスプレイ30は、マイコン14aに接続されている。以下の説明では、測位装置14eを、第2測位装置19と区別するために「第1測位装置14e」と称する。この実施形態では、レーザレンジファインダ15およびエンコーダユニット18は、それぞれ、図1における第1センサ101および第2センサ102としての機能を有する。マイコン14aは、図1における演算回路105に相当する。
(7) Example of Traveling Control Using Odometry Data Next, an example of traveling control using odometry data from the rotary encoders 18a and 18b will be described. In the following description, the AGV 10 has the configuration shown in FIG. FIG. 10 is a block diagram showing a configuration example of the AGV 10. As shown in FIG. The configuration of FIG. 10 is the same as the configuration of FIG. 6B except that the second positioning device 19 and the display 30 are provided. The second positioning device 19 is connected between the encoder unit 18 and the microcomputer 14a. The display 30 is connected to the microcomputer 14a. In the following description, the positioning device 14 e will be referred to as “first positioning device 14 e” in order to distinguish it from the second positioning device 19. In this embodiment, the laser range finder 15 and the encoder unit 18 have functions as the first sensor 101 and the second sensor 102 in FIG. 1, respectively. The microcomputer 14a corresponds to the arithmetic circuit 105 in FIG.
 第2測位装置19は、例えばプロセッサなどの処理回路と、メモリとを備える。第2測位装置19は、ロータリエンコーダ18aおよび18bから出力されるデータを取得し、AGV10の位置および姿勢を示すデータ(x, y, θ)を生成してマイコン14aに出力する。第2測位装置19の機能は、マイコン14aに集約されていてもよい。その場合、図6Aまたは図6Bに示す構成と同様の構成が用いられる。第2測位装置19の機能を、駆動装置17における制御回路が備えていてもよい。 The second positioning device 19 includes, for example, a processing circuit such as a processor and a memory. The second positioning device 19 acquires data output from the rotary encoders 18a and 18b, generates data (x, y, θ) indicating the position and attitude of the AGV 10, and outputs the data to the microcomputer 14a. The functions of the second positioning device 19 may be integrated into the microcomputer 14a. In that case, the same configuration as the configuration shown in FIG. 6A or 6B is used. The control circuit in the drive device 17 may have the function of the second positioning device 19.
 図11は、本実施形態における構成要素間の信号の流れを模式的に示す図である。第1測位装置14eは、LRF15から出力されたデータ(第1センサデータ)を用いて第1推定演算を行い、AGV10の位置および姿勢を推定する。本実施形態における第1推定演算は、第1センサデータと地図データとを照合して、座標(x,y)、角度θ、および信頼度(単位:%)を示すデータを生成する処理である。第1測位装置14eは、座標(x,y)、角度θ、および信頼度を示すデータを、マイコン(演算回路)14aに送る。 FIG. 11 is a view schematically showing the flow of signals between components in the present embodiment. The first positioning device 14 e performs a first estimation operation using data (first sensor data) output from the LRF 15 to estimate the position and orientation of the AGV 10. The first estimation calculation in the present embodiment is processing of collating the first sensor data with the map data to generate data indicating coordinates (x, y), angle θ, and reliability (unit:%). . The first positioning device 14e sends data indicating the coordinates (x, y), the angle θ, and the reliability to the microcomputer (arithmetic circuit) 14a.
 第2測位装置19は、2つのエンコーダ18aおよび18bから出力されたデータ(第2センサデータ)を用いて第2推定演算を行い、AGV10の位置および姿勢を推定する。第2センサデータは、モータまたは車輪の回転状態または回転速度に関する情報を含む。回転速度と車輪の径とから、単位時間当たりの車輪の移動距離を推定できる。第2推定演算は、AGV10の座標および角度の初期値に、2つのエンコーダ18aおよび18bの出力に基づいて計算される座標および角度の変化量をそれぞれ積算する処理を含む。座標および角度の初期値は、例えば第1測位装置14eによって計算された座標および角度の値で定期的に更新され得る。第2測位装置19は、座標(x,y)および角度θを示すデータを、マイコン14aに送る。 The second positioning device 19 performs a second estimation operation using data (second sensor data) output from the two encoders 18 a and 18 b to estimate the position and orientation of the AGV 10. The second sensor data includes information on the rotational state or rotational speed of the motor or the wheel. The travel distance of the wheel per unit time can be estimated from the rotational speed and the diameter of the wheel. The second estimation operation includes a process of integrating the coordinate and angle change amounts calculated based on the outputs of the two encoders 18a and 18b with the initial values of the AGV 10 coordinates and angle, respectively. The initial values of coordinates and angles may be periodically updated, for example, with the values of coordinates and angles calculated by the first positioning device 14e. The second positioning device 19 sends data indicating the coordinates (x, y) and the angle θ to the microcomputer 14 a.
 以下の説明において、第1測位装置14eが推定した座標および角度を、まとめて「LRF座標」と称し、第2測位装置19が推定した座標および角度を、まとめて「エンコーダ座標」と称することがある。 In the following description, the coordinates and angles estimated by the first positioning device 14e may be collectively referred to as "LRF coordinates", and the coordinates and angles estimated by the second positioning device 19 may be collectively referred to as "encoder coordinates". is there.
 マイコン14aは、第1測位装置14eによる推定結果の確からしさを示す信頼性データが所定の条件に合致しているか否かに応じて、第1測位装置14eによる推定結果および第2測位装置19による推定結果の一方をAGV10の座標および角度として選択する。マイコン14aは、選択した座標および角度を駆動装置17に通知する。駆動装置17は、現在の座標および角度と、目的地における座標および角度との差分から、モータ16aおよび16bのそれぞれの回転速度の指令値を決定する。駆動装置17は、決定した指令値に基づいて、モータ16aおよび16bを制御する。 The microcomputer 14a uses the estimation result by the first positioning device 14e and the second positioning device 19 depending on whether the reliability data indicating the likelihood of the estimation result by the first positioning device 14e matches a predetermined condition. One of the estimation results is selected as the AGV 10 coordinates and angle. The microcomputer 14a notifies the drive unit 17 of the selected coordinates and angle. The drive device 17 determines command values of rotational speeds of the motors 16a and 16b from the difference between the current coordinates and angles and the coordinates and angles at the destination. Drive device 17 controls motors 16a and 16b based on the determined command value.
 本実施形態における「信頼性データ」は、第1測位装置14eから出力される信頼度のデータ(第1信頼性データ)と、第1測位装置14eによって推定された座標および角度と第2測位装置19によって推定された座標および角度とのそれぞれの差を示すデータ(第2信頼性データ)とを含む。マイコン14aは、基本的には、相対的に信頼性が高いと考えられるLRF座標を用いて走行するように駆動装置17を制御する。その際、第2測位装置19が保持するエンコーダ座標をLRF座標で定期的に上書きする。これにより、両者の座標は定期的に同期する。しかし、第1測位装置14eの出力の信頼性が低いと考えられる状況下では、マイコン14aは、座標の同期を停止し、エンコーダ座標を使用してAGV10の走行を継続する。この場合、マイコン14aは、第1測位装置14eに初期位置同定を実行させるコマンドを発行し、信頼性の回復を試みる。言い換えれば、マイコン14aが第2測位装置19による推定結果を選択しているときは、第1測位装置14eは、第1センサデータと第2測位装置による推定結果とを利用して初期位置同定(第1推定演算)を行う。 The “reliability data” in the present embodiment includes the data of reliability (first reliability data) output from the first positioning device 14 e, the coordinates and angle estimated by the first positioning device 14 e, and the second positioning device And (19) data (second reliability data) indicating the difference between the coordinate estimated by 19 and the angle. The microcomputer 14a basically controls the drive unit 17 to travel using LRF coordinates that are considered to be relatively reliable. At this time, encoder coordinates held by the second positioning device 19 are periodically overwritten with LRF coordinates. Thus, the coordinates of both are synchronized periodically. However, under a situation where the reliability of the output of the first positioning device 14e is considered to be low, the microcomputer 14a stops the synchronization of the coordinates, and continues the traveling of the AGV 10 using the encoder coordinates. In this case, the microcomputer 14a issues a command to cause the first positioning device 14e to execute initial position identification, and attempts to restore reliability. In other words, when the microcomputer 14a selects the estimation result by the second positioning device 19, the first positioning device 14e uses the first sensor data and the estimation result by the second positioning device to perform initial position identification ( The first estimation operation is performed.
 「初期位置同定」とは、AGV10が地図上のどの場所に位置しているかを探索する処理を指す。初期位置同定では、地図の全域または一部のエリア(例えば1m×1mから50m×50m程度のエリア)にわたって、地図データとLRF15のデータとのマッチングが行われる。本実施形態においては、AGV10の電源投入後または地図の切替後などに、初期位置同定が行われる。初期位置同定によってAGV10の位置が特定されると、その位置を中心とするより狭い範囲(例えば当該位置から数十cm程度の範囲内)を探索する「位置同定」が行われる。この位置同定は、AGV10の移動中に、例えば一定時間(例えば100ミリ秒)ごとに行われ得る。位置同定は、初期位置同定よりも探索範囲が狭く、かつ実行時間も短い。本実施形態では、「初期位置同定」および「位置同定」のいずれも、前述の「第1推定演算」に該当する。 The “initial position identification” refers to a process of searching where on the map the AGV 10 is located. In initial position identification, matching between map data and LRF 15 data is performed over the entire area or a partial area (for example, an area of about 1 m × 1 m to 50 m × 50 m) of the map. In the present embodiment, initial position identification is performed after the AGV 10 is powered on or after the map is switched. When the position of the AGV 10 is specified by the initial position identification, “position identification” is performed to search a narrower range (for example, within a range of several tens of centimeters from the position) around the position. This position identification may be performed, for example, every fixed time (for example, 100 milliseconds) while the AGV 10 is moving. The position identification has a narrower search range and shorter execution time than the initial position identification. In the present embodiment, both “initial position identification” and “position identification” correspond to the above-mentioned “first estimation operation”.
 マイコン14aは、走行中、信頼性データに基づいて、LRF座標を使用して走行するモードと、エンコーダ座標を使用して走行するモードとを切り替える。マイコン14aは、例えば以下の表1に示す条件に従ってこれらの2つのモードを切り替える。 During traveling, the microcomputer 14a switches between a mode of traveling using LRF coordinates and a mode of traveling using encoder coordinates based on the reliability data. The microcomputer 14a switches these two modes, for example, in accordance with the conditions shown in Table 1 below.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1の条件では、第1測位装置14eから出力される信頼度が低下した場合だけでなく、LRF座標およびエンコーダ座標のX軸成分の差またはY軸成分の差が許容値以上になった場合にもLRF座標を使用するモードからエンコーダ座標を使用するモードに切り替えられる。このように2つの条件を課す理由は、第1測位装置14eが出力する信頼度が高い場合であっても、実際とは大きく異なる位置が現在の位置として推定される場合があるためである。なお、表1の例では、動作を安定化させるため、信頼度の復帰閾値が切替閾値よりも高く設定されている。 Under the conditions of Table 1, not only when the reliability output from the first positioning device 14e is lowered, but also when the difference between the X axis component of the LRF coordinate and the encoder coordinate or the difference between the Y axis component exceeds the allowable value. Also, the mode using LRF coordinates is switched to the mode using encoder coordinates. The reason for imposing the two conditions in this way is that, even if the first positioning device 14e outputs a high degree of reliability, a position significantly different from the actual position may be estimated as the current position. In the example of Table 1, in order to stabilize the operation, the recovery threshold value of the reliability is set higher than the switching threshold value.
 次に、図12を参照して、AGV10の動作を説明する。図12は、AGV10の動作の例を示すフローチャートである。AGV10の電源が投入されると、マイコン14aは、第1測位装置14eに、初期位置同定を実行させる(ステップS101)。第1測位装置14eは、地図の全域または一部(例えば1m×1mから50m×50m程度の範囲)にわたって探索を行い、AGV10の初期位置を特定する。AGV10の初期位置が特定されると、マイコン14aは、第1測位装置14eに、その位置を中心とするより狭い領域(例えば当該位置から数十cmの範囲内)について位置同定を実行させる(ステップS102)。この位置同定により、AGV10の位置および姿勢(x,y,θ)が決定されると、マイコン14aは、地図切替エリアを走行しているか否かの判定を行う(ステップS103)。地図切替エリアとは、使用中の地図において、隣接する他の地図と重なる領域を指す。 Next, the operation of the AGV 10 will be described with reference to FIG. FIG. 12 is a flowchart showing an example of the operation of the AGV 10. When the power of the AGV 10 is turned on, the microcomputer 14a causes the first positioning device 14e to execute initial position identification (step S101). The first positioning device 14e performs a search over the whole area or a part of the map (for example, a range of about 1 m × 1 m to 50 m × 50 m), and specifies the initial position of the AGV 10. When the initial position of the AGV 10 is specified, the microcomputer 14a causes the first positioning device 14e to perform position identification in a narrower area (for example, within a range of several tens of cm from the position) centered on the position (Step S102). When the position and attitude (x, y, θ) of the AGV 10 are determined by this position identification, the microcomputer 14a determines whether or not the vehicle is traveling in the map switching area (step S103). The map switching area refers to an area overlapping with another adjacent map in the map in use.
 図13は、地図切替エリアを説明するための図である。図13は、1つの地図データが50m×50mの領域をカバーし、4つの地図データM1、M2、M3、M4によって1つの工場の1フロアの全域がカバーされる場合の例を示している。この例では、隣接する2つの地図の境界部分に、幅5mの矩形の重複領域が設けられている。この重複領域が地図切替エリアである。なお、地図データのサイズおよび重複領域の幅は、この例に限定されず、任意に設定してよい。 FIG. 13 is a diagram for explaining the map switching area. FIG. 13 shows an example in which one map data covers a 50 m × 50 m area, and four map data M1, M2, M3 and M4 cover the entire area of one floor of one factory. In this example, a rectangular overlapping area of 5 m in width is provided at the boundary between two adjacent maps. This overlapping area is the map switching area. The size of the map data and the width of the overlapping area are not limited to this example, and may be set arbitrarily.
 本実施形態では、マイコン14aは、AGV10が地図切替エリアを走行していると判断すると、使用する地図を隣接する他の地図に切り替える処理を行う(ステップS121)。この地図切替処理については図17および図18を参照して後述する。 In the present embodiment, when the microcomputer 14a determines that the AGV 10 is traveling in the map switching area, the microcomputer 14a performs processing for switching the map to be used to another adjacent map (step S121). The map switching process will be described later with reference to FIGS. 17 and 18.
 マイコン14aは、AGV10が地図切替エリアを走行していないと判断すると、上記の表1の条件(A)が満たされているかを判断する(ステップS104)。ここで、条件(A)の(1)、(2)のいずれも満たされていない場合には、LRF座標の信頼性が十分に高いといえる。この場合、マイコン14aは、第2測位装置19が保持するエンコーダ座標を、LRF座標で上書きする。その後、所定時間(例えば100ミリ秒)経過後、ステップS102に戻り、以下、同様の動作を実行する。 If the microcomputer 14a determines that the AGV 10 is not traveling in the map switching area, it determines whether the condition (A) in Table 1 described above is satisfied (step S104). Here, when neither of the conditions (A) (1) and (2) is satisfied, it can be said that the reliability of LRF coordinates is sufficiently high. In this case, the microcomputer 14a overwrites the encoder coordinates held by the second positioning device 19 with LRF coordinates. Thereafter, after a predetermined time (for example, 100 milliseconds) has elapsed, the process returns to step S102, and the same operation is performed.
 ステップS104において、表1の条件(A)の(1)、(2)のいずれかが満たされている場合、マイコン14aは、LRF座標を用いた走行からエンコーダ座標を用いた走行に切り替える(ステップS111)。その後、マイコン14aは、所定時間ごとに、初期位置同定を行う(ステップS112)。この初期位置同定によって推定したLRF座標に基づいて、マイコン14aは、表1の条件(B)が満たされているかを判断する(ステップS113)。ここで条件(B)が満たされている場合には、LRF座標の信頼性が回復したと判断される。この場合、マイコン14aは、エンコーダ座標を用いた走行からエンコーダ座標を用いた走行に戻す(ステップS114)。以後、ステップS102に戻り、同様の動作を実行する。 In step S104, when one of the conditions (A) and (2) in Table 1 is satisfied, the microcomputer 14a switches from traveling using LRF coordinates to traveling using encoder coordinates (step S104). S111). Thereafter, the microcomputer 14a performs initial position identification every predetermined time (step S112). Based on the LRF coordinates estimated by this initial position identification, the microcomputer 14a determines whether the condition (B) in Table 1 is satisfied (step S113). Here, when the condition (B) is satisfied, it is determined that the reliability of the LRF coordinate is restored. In this case, the microcomputer 14a returns from traveling using encoder coordinates to traveling using encoder coordinates (step S114). Thereafter, the process returns to step S102, and the same operation is performed.
 このように、図12に示す例では、マイコン14aは、第1測位装置14eによる推定結果をAGV10の位置として選択しているときにおいて、第1信頼性データの値(本実施形態では第1測位装置14eが算出する信頼度)が切替閾値以下になると第2測位装置19による推定結果をAGV10の位置として選択する。また、マイコン14aは、第1測位装置14eによる推定結果をAGV10の位置として選択しているときにおいて、第2信頼性データの値(本実施形態ではLRF座標とエンコーダ座標との差)が予め定められた許容値以上になると第2測位装置19による推定結果をAGV10の位置として選択する。マイコン14aが第2測位装置19による推定結果を選択しているときは、第1測位装置14eは、第1センサデータと第2測位装置19による推定結果(座標および角度)とを利用して初期位置同定(第1推定演算)を行う。他方、マイコン14aは、第2測位装置19による推定結果をAGV10の位置として選択しているときにおいて、第1信頼性データの値が予め定められた復帰閾値以上になり、かつ、第2信頼性データの値が予め定められた許容値未満になると、第1測位装置14eによる推定結果をAGV10の位置として選択する。 As described above, in the example illustrated in FIG. 12, when the microcomputer 14a selects the estimation result by the first positioning device 14e as the position of the AGV 10, the value of the first reliability data (in the present embodiment, the first positioning data) When the reliability calculated by the device 14e becomes equal to or less than the switching threshold value, the estimation result by the second positioning device 19 is selected as the position of the AGV 10. Further, when the microcomputer 14a selects the estimation result by the first positioning device 14e as the position of the AGV 10, the value of the second reliability data (the difference between the LRF coordinates and the encoder coordinates in this embodiment) is previously determined. If it becomes more than the allowance, the estimation result by the second positioning device 19 is selected as the position of the AGV 10. When the microcomputer 14 a selects the estimation result by the second positioning device 19, the first positioning device 14 e uses the first sensor data and the estimation result (coordinates and angle) by the second positioning device 19 to perform an initial process. Position identification (first estimation operation) is performed. On the other hand, when the microcomputer 14a selects the estimation result by the second positioning device 19 as the position of the AGV 10, the value of the first reliability data becomes equal to or more than a predetermined return threshold, and the second reliability When the value of the data becomes less than a predetermined allowable value, the estimation result by the first positioning device 14e is selected as the position of the AGV 10.
 このような動作により、LRF座標の信頼性に応じてモードを切り替え、安定した走行を実現することができる。 By such an operation, the mode can be switched according to the reliability of the LRF coordinates, and stable traveling can be realized.
 図12の動作に加えて、マイコン14aは、AGV10の速度を、LRF座標の信頼性に応じて制御してもよい。例えば、マイコン14aは、第2測位装置19による推定結果を選択しているときは、第1測位装置14eによる推定結果を選択しているときよりも遅い速度でAGV10を移動させるように、駆動装置17に指示してもよい。さらに、第1推定演算(初期位置同定)を行って第1測位装置14eが出力した第1信頼性データ(信頼度)の値が予め定められた復帰閾値以上になったときは、駆動装置17に、AGV10の速度をさらに低下させ、第1測位装置14eに、第1推定演算を再度実行させてもよい。第1推定演算を再度行って第1測位装置14eが再度出力した第1信頼性データの値が復帰閾値以上を維持しているときは、駆動装置17に、AGV10の速度を増加させてもよい。他方、第1推定演算を再度行って第1測位装置14eが再度出力した第1信頼性データの値が復帰閾値以上を維持していないときは、駆動装置17に、AGV10の速度を増加させ、所定時間経過後、第1測位装置14eに、第1推定演算を再度実行させてもよい。「復帰閾値以上を維持していないとき」には、第1推定演算(本実施形態では初期位置同定)を複数回行っても、第1信頼性データの値が復帰閾値に満たない状態が連続する場合が含まれる。 In addition to the operation of FIG. 12, the microcomputer 14a may control the speed of the AGV 10 according to the reliability of LRF coordinates. For example, when the microcomputer 14a selects the estimation result by the second positioning device 19, the driving device moves the AGV 10 at a slower speed than when the estimation result by the first positioning device 14e is selected. You may instruct 17 Furthermore, when the value of the first reliability data (reliability) output from the first positioning device 14e after performing the first estimation operation (initial position identification) becomes equal to or greater than a predetermined return threshold value, the driving device 17 In addition, the speed of the AGV 10 may be further reduced, and the first positioning device 14e may perform the first estimation operation again. When the value of the first reliability data output from the first positioning device 14 e is maintained at or above the recovery threshold value by performing the first estimation calculation again, the driving device 17 may increase the speed of the AGV 10 . On the other hand, when the first estimation calculation is performed again and the value of the first reliability data output again by the first positioning device 14e does not maintain the recovery threshold or more, the driving device 17 increases the speed of the AGV 10, After the predetermined time has elapsed, the first positioning device 14e may perform the first estimation operation again. Even when the first estimation calculation (in the present embodiment, initial position identification) is performed a plurality of times when "not above the return threshold value is maintained", the state in which the value of the first reliability data does not reach the return threshold is continuous. The case is included.
 以下、図14から図16を参照しながら、より具体的な動作の例を説明する。 Hereinafter, an example of a more specific operation will be described with reference to FIGS. 14 to 16.
 図14は、AGV10の動作の一例を模式的に示す図である。図15は、この例におけるAGV10の速度の時間変化を示す図である。図16は、この例におけるエンコーダ座標を用いた走行の動作を示すフローチャートである。 FIG. 14 schematically shows an example of the operation of the AGV 10. As shown in FIG. FIG. 15 is a diagram showing the time change of the speed of the AGV 10 in this example. FIG. 16 is a flowchart showing an operation of traveling using encoder coordinates in this example.
 この例では、AGV10は、LRF座標の信頼性が高いと判断される場合には、LRF座標を用いて第1の速度(例えば50m/分)で位置同定を行いながら走行する。この状態で、LRF座標の信頼度が低下したりLRF座標とエンコーダ座標との差分が突然大きくなったりして上記の切り替え条件(A)を満たすようになると、マイコン14aは、エンコーダ座標を用いた走行に切り替える。このとき、マイコン14aは、AGV10の速度を第1の速度よりも低い第2の速度(例えば20m/分)に低下させる(ステップS201)。これは、エンコーダ座標を用いた走行を高速で行うと、衝突またはオーバーランが生じる可能性が高くなるためである。しかし、第2の速度を小さく設定しすぎると、LRF座標の信頼性が低くなる区間を抜け出すのに長い時間を要する可能性がある。よって、第2の速度は、低すぎず、高すぎない適度な値に設定される。 In this example, when it is determined that the reliability of the LRF coordinates is high, the AGV 10 travels while performing position identification at a first speed (for example, 50 m / min) using the LRF coordinates. In this state, when the reliability of the LRF coordinates decreases or the difference between the LRF coordinates and the encoder coordinates suddenly increases and the above switching condition (A) is satisfied, the microcomputer 14a uses the encoder coordinates. Switch to running. At this time, the microcomputer 14a reduces the speed of the AGV 10 to a second speed (eg, 20 m / min) lower than the first speed (step S201). This is because when traveling at high speed using encoder coordinates, a collision or overrun is more likely to occur. However, if the second velocity is set too low, it may take a long time to get out of the section where the LRF coordinates become unreliable. Thus, the second speed is set to a moderate value that is neither too low nor too high.
 AGV10が第2の速度で走行している間、マイコン14aは、第1測位装置14eに、LRF座標の信頼性が回復するまで、初期位置同定を繰り返すように指示する。第1測位装置14eは、この指示を受け、信頼度が復帰閾値以上に回復するまで初期位置同定を繰り返す(ステップS202-S204)。この例では、繰り返しの上限回数(例えば20回)が設定されている。設定された上限回数だけ初期位置同定を繰り返しても信頼度が復帰閾値まで回復しない場合、マイコン14aは、AGV10を停止させ、運行管理装置50または端末装置20にエラー信号を送信する(ステップS205)。 While the AGV 10 is traveling at the second speed, the microcomputer 14a instructs the first positioning device 14e to repeat the initial position identification until the reliability of the LRF coordinates is recovered. In response to the instruction, the first positioning device 14e repeats the initial position identification until the reliability is recovered to the recovery threshold or more (steps S202 to S204). In this example, the upper limit number of repetitions (for example, 20 times) is set. If the reliability does not recover to the recovery threshold even if the initial position identification is repeated the set upper limit number of times, the microcomputer 14a stops the AGV 10 and transmits an error signal to the operation management device 50 or the terminal device 20 (step S205). .
 ステップS202の初期位置同定によってLRF座標の信頼度が復帰閾値以上に回復すると、マイコン14aは、AGV10の速度を第2の速度よりもさらに低い第3の速度(例えば7.5m/分)に低下させる(ステップS211)。そして、第1測位装置14eに初期位置同定を再度実行させる(ステップS212)。この初期位置同定においても信頼度が復帰閾値以上である場合(ステップS213におけるYes)、マイコン14aは、LRF座標およびエンコーダ座標のX軸成分の差およびY軸成分の差が、許容値(例:30cm)未満であるかを判定する(ステップS221)。ステップS213またはS221の判定がNoである場合、マイコン14aは、これらの判定がYesになるまで、初期位置同定(ステップS211)を繰り返す。本実施形態では、この繰り返しの上限回数が5回に設定されている。5回繰り返してもステップS221の条件が満たされない場合、マイコン14aは、AGV10の速度を第4の速度(例えば20m/分)に加速させる(ステップS215)。この例では、第4の速度は第2の速度と同じであるが、異なっていてもよい。その後、再度ステップS201に戻る。第4の速度に加速させることで、信頼性が低くなる区間を早期に抜け出せる可能性が高くなる。なお、ステップS215の代わりに、ステップS205に遷移して、AGV10を停止させ、運行管理装置50または端末装置20にエラー信号を送信してもよい。 When the reliability of the LRF coordinates recovers to the recovery threshold or more by the initial position identification in step S202, the microcomputer 14a reduces the speed of the AGV 10 to a third speed (eg, 7.5 m / min) which is lower than the second speed. (Step S211). Then, the first positioning device 14e is made to execute initial position identification again (step S212). Also in this initial position identification, when the reliability is equal to or more than the return threshold (Yes in step S213), the microcomputer 14a determines that the difference between the X axis component and the Y axis component of LRF coordinates and encoder coordinates is an allowable value (eg, It is determined whether it is less than 30 cm (step S221). If the determination in step S213 or S221 is No, the microcomputer 14a repeats the initial position identification (step S211) until the determination is yes. In the present embodiment, the upper limit number of the repetition is set to five. If the condition of step S221 is not satisfied even after repeating five times, the microcomputer 14a accelerates the speed of the AGV 10 to a fourth speed (for example, 20 m / min) (step S215). In this example, the fourth velocity is the same as the second velocity, but may be different. Thereafter, the process returns to step S201 again. By accelerating to the fourth speed, there is a high possibility that the section with low reliability can be pulled out early. Instead of step S215, the process may transition to step S205 to stop the AGV 10 and transmit an error signal to the operation management device 50 or the terminal device 20.
 ステップS221における判定がYesの場合、マイコン14aは、第1測位装置14eに位置同定処理を実行させる(ステップS230)。位置同定処理において、第1測位装置14eは、初期位置同定によって決定された位置の周辺の比較的狭いエリア(例えば当該位置から数十cm程度の範囲内)について、LRFのデータとのマッチングを行い、AGV10の座標および角度を決定する。この位置同定の結果、上記の「エンコーダ→LRF」の切り替え条件が満足される場合には、マイコン14aは、エンコーダ座標をLRF座標で上書きし(ステップS231)、LRF座標を用いた走行に切り替える(ステップS232)。そして、速度を第1の速度(例えば50m/分)に増加させる(ステップS233)。以後、通常の動作に戻る。 If the determination in step S221 is YES, the microcomputer 14a causes the first positioning device 14e to execute position identification processing (step S230). In the position identification process, the first positioning device 14e performs matching with LRF data in a relatively narrow area around the position determined by the initial position identification (for example, within a range of several tens of centimeters from the position). , Determine AGV 10 coordinates and angles. As a result of this position identification, when the above-mentioned "encoder → LRF" switching condition is satisfied, the microcomputer 14a overwrites the encoder coordinates with LRF coordinates (step S231), and switches to traveling using LRF coordinates ( Step S232). Then, the speed is increased to a first speed (for example, 50 m / min) (step S233). After that, it returns to the normal operation.
 本実施形態では、第2の速度(20m/分)による初期位置同定が成功した後、第3の速度(7.5m/分)に減速させている。この理由は、初期位置同定後の位置同定の探索範囲が狭いことに起因している。位置同定の探索範囲が起点となる座標から数十cm程度の範囲内である場合、AGV10が20m/分で走行すると、数秒以内に探索範囲を超えてしまうおそれがある。マイコン14aが第1測位装置14eに初期位置同定を指示してから位置同定を指示するまでに、例えば数秒程度の時間を要する場合、20m/分のままでは位置同定ができない可能性がある。したがって、本実施形態では、第3の速度として7.5m/分に減速させている。 In this embodiment, after the initial position identification by the second velocity (20 m / min) is successful, the velocity is decelerated to the third velocity (7.5 m / min). The reason for this is that the search range for position identification after initial position identification is narrow. In the case where the AGV 10 travels at 20 m / min when the search range of position identification is within a range of several tens of centimeters from the coordinates as the starting point, the search range may be exceeded within several seconds. If it takes about several seconds, for example, until the microcomputer 14a instructs the first positioning device 14e to perform initial position identification and then position identification, there is a possibility that position identification can not be performed at 20 m / min. Therefore, in the present embodiment, the third speed is reduced to 7.5 m / min.
 次に、図17および図18を参照しながら、地図切替処理(図12におけるステップS121)の例を説明する。図17は、LRF座標の信頼性が高い通常時の地図切替処理を模式的に示す図である。図18は、地図切替エリアを走行中にLRF座標の信頼性が低くなった場合の地図切替処理を模式的に示す図である。この例では、1つの地図が50m×50mの領域をカバーし、隣接する2つの地図が5mの幅の重複領域を有している。各地図の中心が座標の原点であり、横方向(X方向)および縦方向(Y方向)のそれぞれについて、原点から20mから25m離れたエリアが、地図切替エリアである。AGV10は、X方向に第1の速度(この例では50m/分)で地図切替エリアに侵入する。 Next, an example of the map switching process (step S121 in FIG. 12) will be described with reference to FIG. 17 and FIG. FIG. 17 is a diagram schematically showing map switching processing in a normal state in which the reliability of LRF coordinates is high. FIG. 18 is a diagram schematically showing map switching processing in the case where the reliability of LRF coordinates decreases while traveling in the map switching area. In this example, one map covers an area of 50 m × 50 m, and two adjacent maps have an overlapping area of 5 m in width. The center of each map is the origin of the coordinates, and the area 20 m to 25 m away from the origin is the map switching area in each of the horizontal direction (X direction) and the vertical direction (Y direction). The AGV 10 intrudes into the map switching area at a first velocity (50 m / min in this example) in the X direction.
 図17に示すように、AGV10がX=22.5mの地点を超えると、マイコン14aは、AGV10の速度を第3の速度(7.5m/分)に低下させる。その後、X=23.75mの地点を超えると、マイコン14aは、使用する座標をLRF座標からエンコーダ座標に切り替え、切替後の地図を用いた初期位置同定を第1測位装置14eに指示する。この初期位置同定によって得られたLRF座標の信頼度が十分に高く、エンコーダ座標との差が十分に低ければ、マイコン14aは、続けて位置同定を第1測位装置14eに指示する。この位置同定によって得られたLRF座標についても信頼度が十分に高く、エンコーダ座標との差が十分に低ければ、マイコン14aは、エンコーダ座標の値をLRF座標の値で更新し、AGV10の移動速度を第1の速度である50m/分に戻し、LRF座標を用いた走行に切り替える。 As shown in FIG. 17, when the AGV 10 exceeds the point of X = 22.5 m, the microcomputer 14 a reduces the speed of the AGV 10 to the third speed (7.5 m / min). Thereafter, when the point X = 23.75 m is exceeded, the microcomputer 14a switches the coordinates to be used from LRF coordinates to encoder coordinates, and instructs the first positioning device 14e to perform initial position identification using the switched map. If the reliability of the LRF coordinates obtained by the initial position identification is sufficiently high and the difference from the encoder coordinates is sufficiently low, the microcomputer 14a continuously instructs the first positioning device 14e to perform position identification. The reliability of the LRF coordinates obtained by this position identification is also sufficiently high, and if the difference from the encoder coordinates is sufficiently low, the microcomputer 14a updates the values of the encoder coordinates with the values of the LRF coordinates, and the moving speed of the AGV 10 Is returned to the first speed of 50 m / min and switched to travel using LRF coordinates.
 本実施形態では、第1測位装置14eは、地図切替後の初期位置同定を、LRF座標ではなくエンコーダ座標を用いて実行する。これにより、地図切替後の初期位置同定の成功率を高めることができる。 In the present embodiment, the first positioning device 14e performs initial position identification after map switching using encoder coordinates instead of LRF coordinates. Thereby, the success rate of the initial position identification after map switching can be improved.
 他方、地図切替処理の際にLRF座標の信頼性が低い場合、マイコン14aは、図18に示すように、信頼性が回復するまで、エンコーダ座標を用いた走行を継続する。AGV10がX=23.75mの地点を超えると、使用する地図を切り替え、第1測位装置14eは、初期位置同定を繰り返してLRF座標の信頼性の回復を試みる。信頼性が回復すると、マイコン14aは、LRF座標でエンコーダ座標を上書きし、AGV10の速度を第3の速度から第1の速度に増加させ、LRF座標を用いた走行に切り替える。 On the other hand, when the reliability of LRF coordinates is low at the time of map switching processing, the microcomputer 14a continues traveling using encoder coordinates until the reliability is recovered, as shown in FIG. When the AGV 10 exceeds the point of X = 23.75 m, the map to be used is switched, and the first positioning device 14 e repeats the initial position identification and tries to restore the reliability of LRF coordinates. When the reliability recovers, the microcomputer 14a overwrites the encoder coordinates in LRF coordinates, increases the speed of the AGV 10 from the third speed to the first speed, and switches to traveling using the LRF coordinates.
 以上のように、本実施形態によれば、LRF座標の信頼性が低下した場合に、エンコーダ座標を用いた走行に切り替え、信頼性が回復した後、LRF座標を用いた走行に戻す。さらに、速度の制御も併せて行うことにより、さらに安定した走行が可能になる。 As described above, according to the present embodiment, when the reliability of the LRF coordinates decreases, the traveling is switched to using the encoder coordinates, and after the reliability is restored, the traveling is returned to using the LRF coordinates. Furthermore, by performing control of the speed as well, more stable traveling becomes possible.
 マイコン14aは、AGV10を移動させているとき、第1測位装置14eによる推定結果および第2測位装置19による推定結果のいずれを選択しているかを示す信号を出力するように構成されていてもよい。例えば、図10に示すディスプレイ30に、当該信号を出力してもよい。ディスプレイ30は、当該信号を受けて、第1測位装置14eおよび第2測位装置19のいずれの測位方式が選択されているかを示す情報を表示することができる。マイコン14aは、AGV10の外部の装置に当該信号を送信してもよい。外部の装置は、例えば、運行管理装置50または端末装置20であり得る。外部の装置は、AGV10に搭載された光源またはスピーカなどの装置であってもよい。外部の装置は、上記信号を受けて、第1測位装置14eおよび第2測位装置19のいずれの測位方式が選択されているかを、光、音、または文字の情報として提示することができる。これにより、ユーザは、AGV10が現在どの測位方式で運行しているのかを知ることができる。 The microcomputer 14a may be configured to output a signal indicating which of the estimation result by the first positioning device 14e and the estimation result by the second positioning device 19 is selected when the AGV 10 is moved. . For example, the signal may be output to the display 30 shown in FIG. In response to the signal, the display 30 can display information indicating which positioning method of the first positioning device 14e and the second positioning device 19 is selected. The microcomputer 14a may transmit the signal to a device outside the AGV 10. The external device may be, for example, the operation management device 50 or the terminal device 20. The external device may be a device such as a light source or a speaker mounted on the AGV 10. The external device can receive the signal and present, as light, sound, or character information, which positioning method is selected by the first positioning device 14e and the second positioning device 19. Thereby, the user can know which positioning method the AGV 10 currently operates.
 (変形例)
 次に、本実施形態の変形例を説明する。
(Modification)
Next, a modification of this embodiment will be described.
 上記の表1の切り替え条件は一例であり、他の条件を適用することもできる。例えば、マイコン14aは、表1の条件によらず、以下の(1)、(2)のいずれかに該当する場合には、第2測位装置19による推定結果をAGV10の位置として選択してもよい。
(1)第1測位装置14eによる推定結果に基づいて推定した一定時間内におけるAGV10の移動距離と、第2測位装置19による推定結果に基づいて推定した一定時間内におけるAGV10の移動距離との差または比が、第1閾値よりも大きい場合
(2)第1測位装置14eによる推定結果に基づいて推定した一定時間内におけるAGV10の角度変化量と、第2測位装置19による推定結果に基づいて推定した上記一定時間内におけるAGV10の角度変化量との差または比が、第2閾値よりも大きい場合
The switching conditions in Table 1 above are an example, and other conditions can be applied. For example, the microcomputer 14a selects the estimation result by the second positioning device 19 as the position of the AGV 10 regardless of the conditions in Table 1 and in any of the following (1) and (2): Good.
(1) A difference between the moving distance of the AGV 10 within a fixed time estimated based on the estimation result of the first positioning device 14 e and the moving distance of the AGV 10 within a fixed time estimated based on the estimation result of the second positioning device 19 Or when the ratio is larger than the first threshold (2) estimated based on the angle change amount of the AGV 10 within a fixed time estimated based on the estimation result by the first positioning device 14 e and the estimation result by the second positioning device 19 When the difference or ratio with the angle change amount of AGV 10 within the above-mentioned fixed time is larger than the second threshold
 上記の判定は、第1測位装置14eが出力するLRF座標の動きとエンコーダ座標の動きとが近似しているか否かの判定であるといえる。この判定を「LRF座標の信頼性判定」と称することにする。この判定を行うことにより、第1測位装置14eが出力する信頼度が比較的高い場合でも、位置推定が正確ではないという状況の発生を抑制することができる。他方、両者の座標の差が大きい場合(例えば30cm以上)であっても、上記の(1)、(2)の両方を満足している場合には、第1測位装置14eの座標が正しいとし、第1測位装置14eの座標でエンコーダ座標を上書きしてもよい。 It can be said that the above determination is a determination as to whether or not the movement of LRF coordinates output from the first positioning device 14 e is similar to the movement of encoder coordinates. This determination will be referred to as "reliability determination of LRF coordinates". By performing this determination, even when the reliability output from the first positioning device 14e is relatively high, it is possible to suppress the occurrence of a situation in which position estimation is not accurate. On the other hand, even if the difference between the two coordinates is large (for example, 30 cm or more), if both of the above (1) and (2) are satisfied, it is assumed that the coordinates of the first positioning device 14e are correct. The encoder coordinates may be overwritten with the coordinates of the first positioning device 14e.
 より具体的には、下記3つの条件の全てを満たす場合には、第1測位装置14eの座標が正しいと判定してもよい。
・単位時間(例えば1秒間)で、第1測位装置14eが出力する座標を元に計算した移動距離と、第2測位装置19が出力する座標を元に計算した移動距離との差が20%以下であること。
・単位時間(例えば1秒間)で、第1測位装置14eが出力する座標を元に計算した角度の変化量と、第2測位装置19が出力する座標を元に計算した角度の変化量との差が10%以下であること。
・現在の第1測位装置14eが出力する角度と、第2測位装置19が出力する角度との差の絶対値が45度以下であること。
More specifically, when all of the following three conditions are satisfied, it may be determined that the coordinates of the first positioning device 14e are correct.
The difference between the movement distance calculated based on the coordinates output by the first positioning device 14e and the movement distance calculated based on the coordinates output by the second positioning device 19 per unit time (for example, 1 second) is 20% Be less than or equal to
The amount of change in the angle calculated based on the coordinates output by the first positioning device 14e in a unit time (for example, 1 second) and the amount of change in the angle calculated based on the coordinates output by the second positioning device 19 The difference is 10% or less.
The absolute value of the difference between the angle output from the current first positioning device 14e and the angle output from the second positioning device 19 is 45 degrees or less.
 具体的な計算式は、例えば以下のとおりである。
・1秒前の第1測位装置14eが出力した座標、角度を(Xr1, Yr1, θr1)、
・現在の第1測位装置14eが出力した座標、角度を(Xr2, Yr2, θr2)、
・1秒前の第2測位装置19が出力した座標、角度を(Xe1, Ye1, θe1)、
・現在の第2測位装置19が出力した座標、角度を(Xe2, Ye2, θe2)、
とする。図19は、これらの座標および角度の例を示している。通常走行時においては、以下の3つの不等式(1)~(3)を全て満たす場合に、LRF座標が正しい(合格)と判定する。
 0.64 ≦((Xr2-Xr1)2+(Yr2-Yr1)2) /( (Xe2-Xe1)2+(Ye2-Ye1)2) ≦ 1.44  (1)
 |(θe2-θe1)-(θr2-θr1)| ≦ 10°  (2)
 |θe2 -θr2|≦ 45°  (3)
ただし、エンコーダ座標から計算した距離((Xe2-Xe1)2+(Ye2-Ye1)2)が停止中とみなせるほど小さい場合は、距離の割合で判断することが不適当である。その場合は、第1測位装置14eが出力する座標から計算される距離((Xr2-Xr1)2+(Yr2-Yr1)2)が第1測位装置14eの座標値の通常の揺れの範囲内に入っているか否かで判断してもよい。例えば、第1測位装置14e座標値の通常の揺れの二乗値を500(mm)とすると、上記の式(1)に代えて、次の式(4)を用いてもよい。
 ((Xr2-Xr1)2+(Yr2-Yr1)2) ≦ 500 (mm)      (4)
The specific calculation formula is, for example, as follows.
・ Coordinates and angles output by the first positioning device 14e one second before (Xr1, Yr1, θr1),
· Coordinates and angles output from the current first positioning device 14e (Xr2, Yr2, θr2),
・ Coordinates and angles output by the second positioning device 19 one second before (Xe1, Ye1, θe1),
· Coordinates and angles output from the current second positioning device 19 (Xe2, Ye2, θe2),
I assume. FIG. 19 shows an example of these coordinates and angles. During normal driving, it is determined that the LRF coordinates are correct (pass) when all the following three inequalities (1) to (3) are satisfied.
0.64 ≦ ((Xr2-Xr1) 2 + (Yr2-Yr1) 2) / ((Xe2-Xe1) 2 + (Ye2-Ye1) 2) ≦ 1.44 (1)
| (θe2-θe1)-(θr2-θr1) | ≦ 10 ° (2)
| θe2-θr2 | ≦ 45 ° (3)
However, if the distance ((Xe2−Xe1) 2 + (Ye2−Ye1) 2 ) calculated from the encoder coordinates is so small that it can be regarded as stopping, it is inappropriate to judge by the ratio of the distance. In that case, the distance calculated from the coordinates of the first positioning device 14e outputs ((Xr2-Xr1) 2 + (Yr2-Yr1) 2) is within the normal swing range of the coordinate values of the first positioning device 14e It may be judged by whether or not it is included. For example, assuming that the square value of the normal swing of the first positioning device 14e coordinate value is 500 (mm), the following equation (4) may be used instead of the above equation (1).
((Xr2-Xr1) 2 + (Yr 2 -Yr1) 2 ) ≦ 500 (mm) (4)
 マイコン14aは、エンコーダ座標による走行時に、上記の表1(B)(2)の復帰条件を満たしていない場合であっても、以下の条件を全て満たしている場合には、LRF座標でエンコーダ座標を上書きし、LRF座標による走行に復帰してもよい。
・前述のLRF座標の信頼性判定が合格
・現在のLRF座標の信頼度が復帰閾値(例えば40%)以上
・直近の所定回数(例えば5回)の位置同定時の信頼度の平均が復帰閾値(例えば40%)以上
・LRF座標とエンコーダ座標とのX成分およびY成分の差が、いずれも閾値(例えば2m)未満である。
Even when the return conditions in Table 1 (B) (2) above are not satisfied during traveling by encoder coordinates, the microcomputer 14a detects encoder coordinates in LRF coordinates if all the following conditions are satisfied. And may return to travel by LRF coordinates.
-The above-mentioned reliability judgment of LRF coordinates is pass.-The reliability of the present LRF coordinate is a return threshold (for example 40%) or more.-The average of the reliability at the time of position identification of the last predetermined number of times (for example 5) (For example, 40%) or more The difference between the X component and the Y component between LRF coordinates and encoder coordinates is less than a threshold (for example, 2 m).
 この条件によれば、LRF座標とエンコーダ座標とのX成分およびY成分の差のいずれかが許容値(例えば30cm)以上であっても、上記の信頼性判定が合格である場合には、LRF座標による走行に復帰する。このため、上記の表1の条件を適用した場合よりも、LRF座標を用いた走行に復帰し易い傾向にある。 According to this condition, even if either of the difference between the X component and the Y component of the LRF coordinate and the encoder coordinate is equal to or more than the allowable value (for example, 30 cm), the LRF is satisfied if the above-mentioned reliability determination is successful Return to running by coordinates. For this reason, it is more likely to return to traveling using LRF coordinates than when the conditions in Table 1 above are applied.
(8)他の実施形態
 これまでの説明では、主に、移動体がガイドレス式のAGVであり、第1センサがレーザレンジファインダであり、第2センサが2つのロータリエンコーダを含む実施形態を例示した。しかし、本開示は、そのような実施形態に限定されない。
(8) Other Embodiments In the above description, mainly, the moving body is a guideless AGV, the first sensor is a laser range finder, and the second sensor includes two rotary encoders. Illustrated. However, the present disclosure is not limited to such an embodiment.
 例えば、移動体は、路面に設けられた磁気テープまたは白線などの誘導体に沿って移動する「ガイド式」の移動体であってもよい。その場合、第1センサまたは第2センサは、磁気テープを読み取る磁気センサまたは白線を画像認識によって読み取るカメラであってもよい。測位装置は、磁気テープの破損の程度、または白線の汚れの程度、画像処理の際のマッチングの一致度などの様々な情報を信頼性データとして生成し得る。 For example, the moving body may be a "guided" moving body that moves along a magnetic tape provided on a road surface or a derivative such as a white line. In that case, the first sensor or the second sensor may be a magnetic sensor that reads a magnetic tape or a camera that reads a white line by image recognition. The positioning device may generate various pieces of information as reliability data, such as the degree of damage to the magnetic tape or the degree of white line stain, the matching degree in image processing.
 加速度センサまたは角加速度センサを第1センサまたは第2センサとして利用してもよい。測位装置は、これらのセンサから出力されるデータの分散、または急峻に変化するデータの割合などの様々な情報を信頼性データとして生成し得る。 An acceleration sensor or an angular acceleration sensor may be used as the first sensor or the second sensor. The positioning device may generate various pieces of information as reliability data, such as the distribution of data output from these sensors, or the proportion of rapidly changing data.
 上述の実施形態の説明では、一例として二次元空間(床面)を走行するAGVを挙げた。しかしながら本開示は三次元空間を移動する移動体、たとえば飛行体(ドローン)、にも適用され得る。ドローンが飛行しながら三次元空間地図を作成する場合には、二次元空間を三次元空間に拡張することができる。 In the above description of the embodiment, an AGV traveling in a two-dimensional space (floor surface) is taken as an example. However, the present disclosure can also be applied to a mobile object moving in three-dimensional space, such as a flying object (drone). When a drone creates a three-dimensional space map while flying, the two-dimensional space can be expanded to a three-dimensional space.
 以上の各実施形態における演算回路またはマイコンによって実行される処理は、全て、コンピュータプログラム(ソフトウェア)によっても専用の回路(ハードウェア)によっても実現され得る。 The processing executed by the arithmetic circuit or the microcomputer in each of the above-described embodiments may be implemented by a computer program (software) or a dedicated circuit (hardware).
 本開示の移動体および移動体管理システムは、工場、倉庫、建設現場、物流、病院などで荷物、部品、完成品などの物の移動および搬送に好適に利用され得る。 The mobile body and mobile body management system of the present disclosure can be suitably used for moving and transporting objects such as luggage, parts, finished products, etc. in factories, warehouses, construction sites, logistics, hospitals and the like.
 1 ユーザ、  2a、2b アクセスポイント、  10 AGV(移動体)、  11a、11b 駆動輪(車輪)、  11c、11d、11e、11f キャスター、  14 走行制御装置、  14a マイコン(演算回路)、  14b メモリ、  14c 記憶装置、  14d 通信回路、  14e 測位装置、  16a、16b モータ、  15 レーザレンジファインダ、  17 駆動装置、  17a、17b モータ駆動回路、  18 エンコーダユニット、  18a、18b ロータリエンコーダ、  20 端末装置(タブレットコンピュータなどのモバイルコンピュータ)、  21 CPU、  22 メモリ、  23 通信回路、  24 画像処理回路、  25 ディスプレイ、  26 タッチスクリーンセンサ、  30 ディスプレイ、  50 運行管理装置、  51 CPU、  52 メモリ、  53 位置データベース(位置DB)、  54 通信回路、  55 地図データベース(地図DB)、  56 画像処理回路、  100 移動体管理システム、  101 第1センサ、  102 第2センサ、  103 第1測位装置、  104 第2測位装置、  105 演算回路、  106 モータ、  107 駆動装置
                                                                        
DESCRIPTION OF SYMBOLS 1 user, 2a, 2b access point, 10 AGV (moving body), 11a, 11b driving wheel (wheel), 11c, 11d, 11e, 11f caster, 14 traveling control apparatus, 14a microcomputer (arithmetic circuit), 14b memory, 14c Memory device, 14d communication circuit, 14e positioning device, 16a, 16b motor, 15 laser range finder, 17 drive device, 17a, 17b motor drive circuit, 18 encoder unit, 18a, 18b rotary encoder, 20 terminal devices (table computer etc. Mobile computer), 21 CPU, 22 memory, 23 communication circuit, 24 image processing circuit, 25 display, 26 touch screen sensor, 30 display, 50 operation control device, 51 CPU, 52 Memory 53 location database (location DB) 54 communication circuit 55 map database (map DB) 56 image processing circuit 100 mobile management system 101 first sensor 102 second sensor 103 first positioning device 104 Second positioning device, 105 arithmetic circuit, 106 motor, 107 drive device

Claims (24)

  1.  移動体であって、
     少なくとも1つのモータと、
     前記少なくとも1つのモータを制御して前記移動体を移動させる駆動装置と、
     第1センシング方法によって前記移動体の移動に応じて取得したセンシング結果を示す第1センサデータを出力する第1センサと、
     前記第1センシング方法とは異なる第2センシング方法によって前記移動体の移動に応じて取得したセンシング結果を示す第2センサデータを出力する第2センサと、
     前記第1センサデータを用いて第1推定演算を行って前記移動体の位置を推定する第1測位装置と、
     前記第2センサデータを用いて前記第1推定演算とは異なる第2推定演算を行って前記移動体の位置を推定する第2測位装置と、
     前記第1測位装置による推定結果の確からしさを示す信頼性データが所定の条件に合致しているか否かに応じて、前記第1測位装置による推定結果および前記第2測位装置による推定結果の一方を前記移動体の位置として選択する演算回路と
     を備えた移動体。
    It is a mobile and
    At least one motor,
    A driving device that controls the at least one motor to move the moving body;
    A first sensor that outputs first sensor data indicating a sensing result acquired according to the movement of the moving object by a first sensing method;
    A second sensor that outputs second sensor data indicating a sensing result obtained according to the movement of the moving object by a second sensing method different from the first sensing method;
    A first positioning device that performs a first estimation operation using the first sensor data to estimate the position of the mobile object;
    A second positioning device that performs a second estimation operation different from the first estimation operation using the second sensor data to estimate the position of the mobile object;
    One of the estimation result by the first positioning device and the estimation result by the second positioning device depending on whether reliability data indicating the likelihood of the estimation result by the first positioning device matches a predetermined condition. An arithmetic circuit for selecting the position of the movable body as the position of the movable body.
  2.  前記第1センサはレーザレンジファインダであり、前記第2センサは少なくとも1つのロータリエンコーダである、請求項1に記載の移動体。 The mobile according to claim 1, wherein the first sensor is a laser range finder, and the second sensor is at least one rotary encoder.
  3.  前記レーザレンジファインダまたは他のレーザレンジファインダから周期的に出力されたセンサデータに基づいて予め作成された地図データを記憶する記憶装置をさらに備え、
     前記第1測位装置は、前記第1センサデータと前記地図データとの照合を行って前記移動体の位置を推定する、請求項2に記載の移動体。
    It further comprises a storage device for storing map data created in advance based on sensor data periodically output from the laser range finder or another laser range finder,
    The mobile body according to claim 2, wherein the first positioning device collates the first sensor data with the map data to estimate a position of the mobile body.
  4.  第1車輪および第2車輪をさらに備え、
     前記少なくとも1つのモータは、第1モータおよび第2モータを含み、
     前記第1モータと前記第1車輪とは機械的に接続されており、
     前記第2モータと前記第2車輪とは機械的に接続されており、
     前記少なくとも1つのロータリエンコーダは、前記第1モータから前記第1車輪までの動力伝達機構のいずれかの位置における回転を計測する第1ロータリエンコーダ、および、前記第2モータから前記第2車輪までの動力伝達機構のいずれかの位置における回転を計測する第2ロータリエンコーダを含む、請求項3に記載の移動体。
    Further comprising a first wheel and a second wheel,
    The at least one motor includes a first motor and a second motor,
    The first motor and the first wheel are mechanically connected,
    The second motor and the second wheel are mechanically connected,
    The at least one rotary encoder is a first rotary encoder that measures rotation at any position of the power transmission mechanism from the first motor to the first wheel, and the second motor to the second wheel The movable body according to claim 3, further comprising a second rotary encoder that measures rotation at any position of the power transmission mechanism.
  5.  前記第1ロータリエンコーダおよび前記第2ロータリエンコーダは、それぞれ前記第1車輪および前記第2車輪の回転を計測する、請求項4に記載の移動体。 The mobile according to claim 4, wherein the first rotary encoder and the second rotary encoder respectively measure rotation of the first wheel and the second wheel.
  6.  前記第2測位装置は、前記第1ロータリエンコーダおよび前記第2ロータリエンコーダの各々から出力された前記第2センサデータを用いて所与の初期位置からの相対的な変位量を計測し、前記初期位置から前記変位量だけ移動した位置を、前記移動体の位置として推定する、請求項4または5に記載の移動体。 The second positioning device measures a relative displacement amount from a given initial position using the second sensor data output from each of the first rotary encoder and the second rotary encoder, and the initial position The movable body according to claim 4 or 5, wherein the position moved from the position by the displacement amount is estimated as the position of the movable body.
  7.  前記演算回路は、前記第1測位装置によって推定された位置で、前記初期位置を更新する、請求項6に記載の移動体。 The mobile unit according to claim 6, wherein the arithmetic circuit updates the initial position at a position estimated by the first positioning device.
  8.  前記演算回路は、所定の周期で前記初期位置を更新する、請求項6または7に記載の移動体。 The mobile unit according to claim 6, wherein the arithmetic circuit updates the initial position at a predetermined cycle.
  9.  前記第1測位装置は、前記第1センサデータと前記地図データとの一致度を示すデータを、第1信頼性データとして出力する、請求項3から8のいずれかに記載の移動体。 The mobile unit according to any one of claims 3 to 8, wherein the first positioning device outputs data indicating a degree of coincidence between the first sensor data and the map data as first reliability data.
  10.  前記演算回路は、前記第1測位装置による推定結果を前記移動体の位置として選択しているときにおいて、前記第1信頼性データの値が切替閾値以下になると前記第2測位装置による推定結果を前記移動体の位置として選択する、請求項9に記載の移動体。 The arithmetic circuit selects the estimation result by the second positioning device when the value of the first reliability data becomes equal to or less than the switching threshold when the estimation result by the first positioning device is selected as the position of the mobile body. The mobile according to claim 9, which is selected as the position of the mobile.
  11.  前記演算回路は、前記第1測位装置による推定結果として得られた位置と前記第2測位装置による推定結果として得られた位置との差を第2信頼性データとして出力する、請求項9または10に記載の移動体。 The arithmetic circuit outputs, as second reliability data, a difference between a position obtained as an estimation result by the first positioning device and a position obtained as an estimation result by the second positioning device. The moving body described in.
  12.  前記演算回路は、前記第1測位装置による推定結果を前記移動体の位置として選択しているときにおいて、前記第2信頼性データの値が予め定められた許容値以上になると前記第2測位装置による推定結果を前記移動体の位置として選択する、請求項11に記載の移動体。 The second positioning device when the value of the second reliability data becomes equal to or more than a predetermined allowable value when the calculation circuit selects the estimation result by the first positioning device as the position of the mobile body. The mobile object according to claim 11, wherein the estimation result according to is selected as the position of the mobile object.
  13.  前記演算回路は、前記第2測位装置による推定結果を前記移動体の位置として選択しているときにおいて、前記第1信頼性データの値が予め定められた復帰閾値以上になり、かつ、前記第2信頼性データの値が予め定められた前記許容値未満になると、前記第1測位装置による推定結果を前記移動体の位置として選択する、請求項11または12に記載の移動体。 When the calculation circuit selects the estimation result by the second positioning device as the position of the mobile body, the value of the first reliability data becomes equal to or more than a predetermined return threshold value, and The mobile object according to claim 11 or 12, wherein when the value of the reliability data becomes less than the predetermined allowable value, the estimation result by the first positioning device is selected as the position of the mobile object.
  14.  前記演算回路が前記第2測位装置による推定結果を選択しているときは、前記駆動装置は、前記演算回路が前記第1測位装置による推定結果を選択しているときよりも遅い速度で前記移動体を移動させる、請求項9から13のいずれかに記載の移動体。 When the arithmetic circuit selects the estimation result by the second positioning device, the drive device moves at a slower speed than when the arithmetic circuit selects the estimation result by the first positioning device. The mobile according to any one of claims 9 to 13, wherein the mobile is moved.
  15.  前記演算回路が前記第2測位装置による推定結果を選択しているときは、前記第1測位装置は、前記第1センサデータと前記第2測位装置による推定結果とを利用して前記第1推定演算を行う、請求項14に記載の移動体。 When the arithmetic circuit selects the estimation result by the second positioning device, the first positioning device uses the first sensor data and the estimation result by the second positioning device to perform the first estimation. The mobile according to claim 14, wherein the mobile performs an operation.
  16.  前記第1推定演算を行って前記第1測位装置が出力した前記第1信頼性データの値が予め定められた復帰閾値以上になったときは、
     前記駆動装置は、前記移動体の速度をさらに低下させ、
     前記第1測位装置は、前記第1推定演算を再度行う、請求項15に記載の移動体。
    When the value of the first reliability data output from the first positioning device after performing the first estimation operation becomes equal to or greater than a predetermined return threshold value,
    The drive further reduces the speed of the moving body,
    The mobile according to claim 15, wherein the first positioning device performs the first estimation operation again.
  17.  前記第1推定演算を再度行って前記第1測位装置が再度出力した前記第1信頼性データの値が前記復帰閾値以上を維持しているときは、
     前記駆動装置は、前記移動体の速度を増加させる、請求項16に記載の移動体。
    When the value of the first reliability data output from the first positioning device again after performing the first estimation operation again is maintained at or above the return threshold value,
    The mobile according to claim 16, wherein the drive device increases the speed of the mobile.
  18.  前記第1推定演算を再度行って前記第1測位装置が再度出力した前記第1信頼性データの値が前記復帰閾値以上を維持していないときは、
     前記駆動装置は、前記移動体の速度を増加させ、
     所定時間経過後、前記第1測位装置は、前記第1推定演算を再度行う、請求項16または17に記載の移動体。
    When the value of the first reliability data output from the first positioning device again after performing the first estimation calculation again does not maintain the value equal to or more than the return threshold value,
    The driving device increases the speed of the moving body,
    The mobile unit according to claim 16, wherein the first positioning device performs the first estimation operation again after a predetermined time has elapsed.
  19.  前記演算回路は、
     前記第1測位装置による推定結果に基づいて推定した一定時間内における前記移動体の移動距離と、前記第2測位装置による推定結果に基づいて推定した前記一定時間内における前記移動体の移動距離との差が、第1閾値よりも大きい場合、または、
     前記第1測位装置による推定結果に基づいて推定した前記一定時間内における前記移動体の角度変化量と、前記第2測位装置による推定結果に基づいて推定した前記一定時間内における前記移動体の角度変化量との差が、第2閾値よりも大きい場合には、
     前記第2測位装置による推定結果を前記移動体の位置として選択する、請求項1から18のいずれかに記載の移動体。
    The arithmetic circuit is
    The moving distance of the moving body within a fixed time estimated based on the estimation result by the first positioning device, and the moving distance of the moving body within the fixed time estimated based on the estimation result by the second positioning device If the difference of is greater than the first threshold, or
    An angle change amount of the moving body within the predetermined time estimated based on an estimation result by the first positioning device, and an angle of the moving body within the predetermined time estimated based on an estimation result by the second positioning device If the difference with the amount of change is greater than the second threshold,
    The mobile body according to any one of claims 1 to 18, wherein an estimation result by the second positioning device is selected as a position of the mobile body.
  20.  前記演算回路は、外部から行き先の指示を受け付け、選択した前記移動体の位置を利用して前記駆動装置を制御し前記行き先に向かって前記移動体を移動させる、請求項1から19のいずれかに記載の移動体。 20. The operation circuit according to claim 1, wherein the arithmetic circuit receives an instruction of a destination from the outside, controls the driving device using the position of the selected mobile unit, and moves the mobile unit toward the destination. The moving body described in.
  21.  前記演算回路は、前記移動体を移動させているとき、前記第1測位装置による推定結果および前記第2測位装置による推定結果のいずれを選択しているかを示す信号を出力する、請求項1から20のいずれかに記載の移動体。 The arithmetic circuit outputs a signal indicating which one of the estimation result by the first positioning device and the estimation result by the second positioning device is selected when moving the moving body. The mobile body according to any of 20.
  22.  ディスプレイをさらに備え、
     前記演算回路は、前記信号を前記ディスプレイに出力し、
     前記ディスプレイは、前記信号を受けて、前記第1測位装置および前記第2測位装置のいずれの測位方式が選択されているかを示す情報を表示する、
    請求項21に記載の移動体。
    Further equipped with a display,
    The arithmetic circuit outputs the signal to the display;
    The display receives the signal and displays information indicating which positioning method of the first positioning device and the second positioning device is selected.
    A mobile according to claim 21.
  23.  前記演算回路は、前記移動体の外部の装置に前記信号を送信し、
     前記外部の装置は、前記信号を受けて、前記第1測位装置および前記第2測位装置のいずれの測位方式が選択されているかを、光、音、または文字の情報として提示する、
    請求項21に記載の移動体。
    The arithmetic circuit transmits the signal to a device external to the mobile body,
    The external device receives the signal and presents, as light, sound, or character information, which positioning method is selected between the first positioning device and the second positioning device.
    A mobile according to claim 21.
  24.  移動体における演算回路によって実行されるコンピュータプログラムであって、
     前記移動体は、
     少なくとも1つのモータと、
     前記少なくとも1つのモータを制御して前記移動体を移動させる駆動装置と、
     第1センシング方法によって前記移動体の移動に応じて取得したセンシング結果を示す第1センサデータを出力する第1センサと、
     前記第1センシング方法とは異なる第2センシング方法によって前記移動体の移動に応じて取得したセンシング結果を示す第2センサデータを出力する第2センサと、
     前記第1センサデータを用いて第1推定演算を行って前記移動体の位置を推定する第1測位装置と、
     前記第2センサデータを用いて前記第1推定演算とは異なる第2推定演算を行って前記移動体の位置を推定する第2測位装置と、
     前記演算回路と、
    を備え、
     前記コンピュータプログラムは、前記演算回路に、
     前記第1測位装置による推定結果の確からしさを示す信頼性データが所定の条件に合致しているか否かに応じて、前記第1測位装置による推定結果および前記第2測位装置による推定結果の一方を前記移動体の位置として選択させる、
    コンピュータプログラム。
    A computer program executed by an arithmetic circuit in a mobile object, comprising:
    The moving body is
    At least one motor,
    A driving device that controls the at least one motor to move the moving body;
    A first sensor that outputs first sensor data indicating a sensing result acquired according to the movement of the moving object by a first sensing method;
    A second sensor that outputs second sensor data indicating a sensing result obtained according to the movement of the moving object by a second sensing method different from the first sensing method;
    A first positioning device that performs a first estimation operation using the first sensor data to estimate the position of the mobile object;
    A second positioning device that performs a second estimation operation different from the first estimation operation using the second sensor data to estimate the position of the mobile object;
    The arithmetic circuit,
    Equipped with
    The computer program is stored in the arithmetic circuit,
    One of the estimation result by the first positioning device and the estimation result by the second positioning device depending on whether reliability data indicating the likelihood of the estimation result by the first positioning device matches a predetermined condition. Select as the position of the mobile,
    Computer program.
PCT/JP2018/028092 2017-08-03 2018-07-26 Moving body and computer program WO2019026761A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019534452A JPWO2019026761A1 (en) 2017-08-03 2018-07-26 Mobile and computer programs
CN201880050090.1A CN110998472A (en) 2017-08-03 2018-07-26 Mobile object and computer program

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017150567 2017-08-03
JP2017-150567 2017-08-03

Publications (1)

Publication Number Publication Date
WO2019026761A1 true WO2019026761A1 (en) 2019-02-07

Family

ID=65233750

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/028092 WO2019026761A1 (en) 2017-08-03 2018-07-26 Moving body and computer program

Country Status (3)

Country Link
JP (1) JPWO2019026761A1 (en)
CN (1) CN110998472A (en)
WO (1) WO2019026761A1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020039656A1 (en) * 2018-08-23 2020-02-27 日本精工株式会社 Self-propelled device, and travel control method and travel control program for self-propelled device
JP2020140490A (en) * 2019-02-28 2020-09-03 三菱ロジスネクスト株式会社 Transportation system, area determination device, and area determination method
CN112578789A (en) * 2019-09-30 2021-03-30 日本电产株式会社 Moving body
WO2021147008A1 (en) * 2020-01-22 2021-07-29 深圳市大疆创新科技有限公司 Method for controlling unmanned robot, and unmanned robot
WO2022075083A1 (en) * 2020-10-09 2022-04-14 ソニーグループ株式会社 Autonomous movement device, control method, and program
JP2022079303A (en) * 2020-11-16 2022-05-26 株式会社豊田自動織機 Controller for unmanned transport vehicle
WO2022130476A1 (en) * 2020-12-15 2022-06-23 日本電気株式会社 Information processing device, moving body control system, control method, and non-transitory computer-readable medium
US11471806B2 (en) 2019-03-19 2022-10-18 Lg Electronics Inc. Air purifier and purifying system
JP7274707B1 (en) 2021-12-13 2023-05-17 アイサンテクノロジー株式会社 Evaluation system, computer program, and evaluation method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114577200A (en) * 2022-03-08 2022-06-03 尚匠威亚智能装备(重庆)有限公司 Path data exchange system for mobile carrying device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007322138A (en) * 2006-05-30 2007-12-13 Toyota Motor Corp Moving device, and own position estimation method for moving device
JP2014219722A (en) * 2013-05-01 2014-11-20 村田機械株式会社 Autonomous mobile body
JP2016024598A (en) * 2014-07-18 2016-02-08 パナソニックIpマネジメント株式会社 Control method of autonomous mobile apparatus
JP2016122278A (en) * 2014-12-24 2016-07-07 ヤマハ発動機株式会社 Manipulation device and autonomous mobile system

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5390125A (en) * 1990-02-05 1995-02-14 Caterpillar Inc. Vehicle position determination system and method
BE1016001A3 (en) * 2004-04-30 2006-01-10 Egemin Nv Automatic guided vehicle with improved navigation.
KR101483549B1 (en) * 2013-12-03 2015-01-16 전자부품연구원 Method for Camera Location Estimation with Particle Generation and Filtering and Moving System using the same
JP6011562B2 (en) * 2014-02-27 2016-10-19 Jfeスチール株式会社 Self-propelled inspection device and inspection system
US9863775B2 (en) * 2014-04-11 2018-01-09 Nissan North America, Inc. Vehicle localization system
CN106501833A (en) * 2015-09-07 2017-03-15 石立公 A kind of system and method for the detection vehicle place road area positioned based on multi-source
CN105424030B (en) * 2015-11-24 2018-11-09 东南大学 Fusion navigation device and method based on wireless fingerprint and MEMS sensor
CN105445776A (en) * 2015-12-28 2016-03-30 天津大学 Indoor and outdoor seamless positioning system
CN106908822B (en) * 2017-03-14 2020-06-30 北京京东尚科信息技术有限公司 Unmanned aerial vehicle positioning switching method and device and unmanned aerial vehicle

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007322138A (en) * 2006-05-30 2007-12-13 Toyota Motor Corp Moving device, and own position estimation method for moving device
JP2014219722A (en) * 2013-05-01 2014-11-20 村田機械株式会社 Autonomous mobile body
JP2016024598A (en) * 2014-07-18 2016-02-08 パナソニックIpマネジメント株式会社 Control method of autonomous mobile apparatus
JP2016122278A (en) * 2014-12-24 2016-07-07 ヤマハ発動機株式会社 Manipulation device and autonomous mobile system

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2020039656A1 (en) * 2018-08-23 2020-08-27 日本精工株式会社 Self-propelled device, traveling control method of self-propelled device, and traveling control program
WO2020039656A1 (en) * 2018-08-23 2020-02-27 日本精工株式会社 Self-propelled device, and travel control method and travel control program for self-propelled device
US11531344B2 (en) 2018-08-23 2022-12-20 Nsk Ltd. Autonomous running device, running control method for autonomous running device, and running control program of autonomous running device
JP2020140490A (en) * 2019-02-28 2020-09-03 三菱ロジスネクスト株式会社 Transportation system, area determination device, and area determination method
US11471806B2 (en) 2019-03-19 2022-10-18 Lg Electronics Inc. Air purifier and purifying system
CN112578789A (en) * 2019-09-30 2021-03-30 日本电产株式会社 Moving body
CN113661454A (en) * 2020-01-22 2021-11-16 深圳市大疆创新科技有限公司 Control method of unmanned robot and unmanned robot
WO2021147008A1 (en) * 2020-01-22 2021-07-29 深圳市大疆创新科技有限公司 Method for controlling unmanned robot, and unmanned robot
WO2022075083A1 (en) * 2020-10-09 2022-04-14 ソニーグループ株式会社 Autonomous movement device, control method, and program
JP2022079303A (en) * 2020-11-16 2022-05-26 株式会社豊田自動織機 Controller for unmanned transport vehicle
TWI784786B (en) * 2020-11-16 2022-11-21 日商豐田自動織機股份有限公司 Automated guided vehicle control device
JP7338612B2 (en) 2020-11-16 2023-09-05 株式会社豊田自動織機 Controller for automatic guided vehicle
WO2022130476A1 (en) * 2020-12-15 2022-06-23 日本電気株式会社 Information processing device, moving body control system, control method, and non-transitory computer-readable medium
JP7274707B1 (en) 2021-12-13 2023-05-17 アイサンテクノロジー株式会社 Evaluation system, computer program, and evaluation method
JP2023087496A (en) * 2021-12-13 2023-06-23 アイサンテクノロジー株式会社 Evaluation system, computer program, and evaluation method

Also Published As

Publication number Publication date
CN110998472A (en) 2020-04-10
JPWO2019026761A1 (en) 2020-07-27

Similar Documents

Publication Publication Date Title
WO2019026761A1 (en) Moving body and computer program
JP7168211B2 (en) Mobile object that avoids obstacles and its computer program
JP2019168942A (en) Moving body, management device, and moving body system
US20200264616A1 (en) Location estimation system and mobile body comprising location estimation system
WO2019187816A1 (en) Mobile body and mobile body system
JP7081881B2 (en) Mobiles and mobile systems
US20200363212A1 (en) Mobile body, location estimation device, and computer program
JP7136426B2 (en) Management device and mobile system
WO2019054209A1 (en) Map creation system and map creation device
JP2019148870A (en) Moving object management system
JP2019053391A (en) Mobile body
US11537140B2 (en) Mobile body, location estimation device, and computer program
JP2019175137A (en) Mobile body and mobile body system
JP7243014B2 (en) moving body
WO2019194079A1 (en) Position estimation system, moving body comprising said position estimation system, and computer program
JP2019079171A (en) Movable body
JP2019067001A (en) Moving body
JP2019179497A (en) Moving body and moving body system
JP2019165374A (en) Mobile body and mobile system
WO2020213645A1 (en) Map creation system, signal processing circuit, moving body, and map creation method
CN112578789A (en) Moving body
JP2020166702A (en) Mobile body system, map creation system, route creation program and map creation program
JPWO2019069921A1 (en) Mobile
JP2019148871A (en) Movable body and movable body system
JP2019175138A (en) Mobile body and management device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18841448

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019534452

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18841448

Country of ref document: EP

Kind code of ref document: A1