JPH0441362Y2 - - Google Patents

Info

Publication number
JPH0441362Y2
JPH0441362Y2 JP1984194229U JP19422984U JPH0441362Y2 JP H0441362 Y2 JPH0441362 Y2 JP H0441362Y2 JP 1984194229 U JP1984194229 U JP 1984194229U JP 19422984 U JP19422984 U JP 19422984U JP H0441362 Y2 JPH0441362 Y2 JP H0441362Y2
Authority
JP
Japan
Prior art keywords
self
floor
propelled vehicle
pattern
electromagnetic induction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1984194229U
Other languages
Japanese (ja)
Other versions
JPS61112404U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1984194229U priority Critical patent/JPH0441362Y2/ja
Publication of JPS61112404U publication Critical patent/JPS61112404U/ja
Application granted granted Critical
Publication of JPH0441362Y2 publication Critical patent/JPH0441362Y2/ja
Expired legal-status Critical Current

Links

Description

【考案の詳細な説明】 産業上の利用分野 本考案は、電磁誘導方式によつて自走車を誘導
する無人搬送ラインのフロアパネルに関するもの
である。
[Detailed Description of the Invention] Industrial Application Field The present invention relates to a floor panel for an unmanned transportation line that guides self-propelled vehicles by electromagnetic induction.

従来の技術 例えば、IC等の半導体装置の製造工場におい
て、塵埃が発生し、それが製造工程に侵入する
と、半導体装置の機能に支障を来す。そこで、通
常、上記製造工場は、第3図に示すように、矩形
状を有するフロアパネル7を敷きつめたフリーア
クセスフロア2と呼ばれる床上げ構造を有し、天
井から床下に向けて清浄空気を流通させ、同時に
床下には配管等の設備も配される。ところが、上
記製造工場において、例えば作業者が動いたりす
ると、衣服等に付着している塵埃が落下して舞い
上がり、半導体装置の製造工程に侵入することが
ある。そのため、半導体装置の製造工場では作業
者の数を減らすことが図られており、特に物品の
搬送には、第3図に示すように、自走車1による
無人の搬送ラインが設けられる。
2. Description of the Related Art For example, if dust is generated in a manufacturing factory for semiconductor devices such as ICs and enters the manufacturing process, it will interfere with the functionality of the semiconductor devices. Therefore, as shown in Fig. 3, the above-mentioned manufacturing factory usually has a raised floor structure called a raised floor 2, which is covered with rectangular floor panels 7, and clean air is circulated from the ceiling to the bottom of the floor. At the same time, equipment such as piping will also be placed under the floor. However, in the above-mentioned manufacturing factory, when a worker moves, for example, dust adhering to clothes or the like may fall and fly up, invading the semiconductor device manufacturing process. Therefore, efforts are being made to reduce the number of workers in semiconductor device manufacturing factories, and in particular, for the transportation of articles, an unmanned transportation line using self-propelled vehicles 1 is provided, as shown in FIG.

而して、上記無人搬送ラインにおいては自走車
1の誘導が必要であり、その誘導方式として従
来、電磁誘導方式、光学誘導方式、レーザ光誘導
方式がある。
In the above-mentioned unmanned transportation line, it is necessary to guide the self-propelled vehicle 1, and conventional guidance methods include an electromagnetic guidance method, an optical guidance method, and a laser beam guidance method.

上記電磁誘導方式は、第4図に示すように、フ
ロア2の内部に電線3を埋め込んで走行路を形成
し、電線3から放射された電波を自走車1に設け
た複数のセンサ4によつて検知することにより自
走車1を誘導するものである。即ち、自走車1の
底に複数のセンサ4を並設し、電線3から放射さ
れる電波をセンサ4によつて検知したとする。こ
の時、自走車1が走行路から外れない限り、両側
のセンサ4に検地される電波の強さのバランスは
崩れない。従つて、このバランスが常に得られる
ように自走車1の走行方向を制御すれば、自走車
3は正確に走行路に従う。次に、光学誘導方式
は、第5図に示すように、フロア2の表面にアル
ミニウムの反射テープ5を貼り付けて走行路を形
成すると共に、自走車1にフオトカプラ6を設
け、フオトカプラ6から反射テープ5に投射され
た光の反射光を再びフオトカプラ6で受光するこ
とにより自走車1を誘導するものである。即ち、
自走車1の底に複数のフオトカプラ6を並設し、
フオトカプラ6から反射テープ5に投射した光の
反射光を再びフオトカプラ6によつて受光したと
する。この時、自走車1が走行路から外れない限
り、両側のフオトカプラ6の受光する反射光の強
さは、略同等になるが、自走車1が走行路から外
れると、両側のフオトカプラ6の受光する反射光
の強さのバランスが崩れる。従つて、このバラン
スが常に得られるように自走車1の走行方向を制
御すれば、自走車1は正確に走行路に従う。又、
レーザ光誘導方式(図示せず)は、レーザ光を受
光しながら走行路を検知し、自走車1を誘導する
ものであるが、安全性に難点があり、人のいる作
業場で用いることはできず、又、設備も高価であ
る。
As shown in FIG. 4, in the electromagnetic induction method, electric wires 3 are embedded inside a floor 2 to form a running path, and radio waves radiated from the electric wires 3 are sent to a plurality of sensors 4 installed in a self-propelled vehicle 1. By detecting this, the self-propelled vehicle 1 is guided. That is, it is assumed that a plurality of sensors 4 are arranged in parallel at the bottom of the self-propelled vehicle 1, and the radio waves radiated from the electric wire 3 are detected by the sensors 4. At this time, as long as the self-propelled vehicle 1 does not deviate from the road, the balance of the strength of the radio waves detected by the sensors 4 on both sides will not be disrupted. Therefore, if the traveling direction of the self-propelled vehicle 1 is controlled so that this balance is always obtained, the self-propelled vehicle 3 will accurately follow the traveling path. Next, in the optical guidance system, as shown in FIG. The self-propelled vehicle 1 is guided by receiving the reflected light of the light projected onto the reflective tape 5 again by the photocoupler 6. That is,
A plurality of photo couplers 6 are installed in parallel on the bottom of the self-propelled vehicle 1,
It is assumed that the reflected light of the light projected onto the reflective tape 5 from the photocoupler 6 is received again by the photocoupler 6. At this time, as long as the self-propelled vehicle 1 does not go off the road, the intensity of the reflected light received by the photo couplers 6 on both sides will be approximately the same; however, if the self-propelled vehicle 1 goes off the road, the photo couplers 6 on both sides The balance of the intensity of the reflected light received by the camera is disrupted. Therefore, if the traveling direction of the self-propelled vehicle 1 is controlled so that this balance is always obtained, the self-propelled vehicle 1 will accurately follow the traveling path. or,
The laser light guidance method (not shown) detects the traveling path while receiving laser light and guides the self-propelled vehicle 1, but it has safety issues and cannot be used in workplaces where there are people. This is not possible, and the equipment is expensive.

考案が解決しようとする問題点 ところで、日進月歩の半導体産業にあつては、
工場内の設備のレイアウトの変更や設備の入れ替
えが頻繁に行われており、従つてその都度、無人
搬送ラインの自走車1の走行路も変更しなければ
ならない。
Problems that the invention aims to solve By the way, in the rapidly progressing semiconductor industry,
The layout of equipment in factories is frequently changed and equipment replaced, and therefore, the travel path of the self-propelled vehicle 1 on the automatic transport line must also be changed each time.

ところが、電磁誘導方式の場合、フロア2の内
部に電線3が埋め込まれているため、上記走行路
を変更するには、生産ラインを止めて電線3の埋
め込み工事をやり直さなければならず、手間と費
用がかかる。又、光学誘導方式の場合、上記走行
路を変更するには、電磁誘導方式に比べ単に反射
テープ5を貼り替えるだけでよいが、通常、反射
テープ5は自走車1の走行や作業者の歩行によつ
て簡単に剥れないように強力な接着剤で貼り付け
られており、その貼り替え工事は、やはり手間が
かかり、しかも汚れに弱い。
However, in the case of the electromagnetic induction method, the electric wires 3 are embedded inside the floor 2, so in order to change the above-mentioned running path, the production line must be stopped and the work to bury the electric wires 3 done again, which is time consuming and time consuming. It's expensive. In addition, in the case of the optical guidance method, in order to change the traveling route, it is sufficient to simply replace the reflective tape 5 compared to the electromagnetic induction method. It is attached with a strong adhesive so that it does not come off easily when walking, so replacing it is labor-intensive and is susceptible to stains.

問題点を解決するための手段 本考案は、内部に電線を埋め込んだフロア上で
走行すると共に該電線から放射される電波を検知
して誘導される自走車で物品を搬送する無人搬送
ラインにおいて、所定寸法の矩形状を有すると共
に端部が分岐点となる部分的電磁誘導パターンが
埋め込まれた複数の同一パターンのフロアパネル
を組み合わせて、全面に固定の電磁誘導パターン
を埋め込んだフロアを形成するようにしたもので
ある。
Means for Solving the Problems The present invention is directed to an unmanned transportation line in which goods are transported by self-propelled vehicles that run on a floor with electric wires embedded inside and are guided by detecting radio waves emitted from the wires. , by combining a plurality of floor panels with the same pattern, which have a rectangular shape with predetermined dimensions and are embedded with partial electromagnetic induction patterns whose ends are branch points, to form a floor in which a fixed electromagnetic induction pattern is embedded all over the entire surface. This is how it was done.

作 用 所定寸法の矩形状を有すると共に端部が分岐点
となる部分的電磁誘導パターンが埋め込まれた複
数の同一パターンのフロアパネルを組み合わせて
フロアの全面に固定の電磁誘導パターンを形成
し、そのパターンから自走車の走行路となるパタ
ーンをコンピユータで選択する。
Function A fixed electromagnetic induction pattern is formed on the entire surface of the floor by combining a plurality of floor panels with the same pattern, which have a rectangular shape with predetermined dimensions and are embedded with partial electromagnetic induction patterns whose ends are branch points. A computer selects a pattern from among the patterns that will become the driving route for the self-propelled vehicle.

実施例 本考案の一実施例を第1図及び第2図を参照し
て以下説明する。図において、8は本考案に用い
る正方形のフロアパネルで、内部に点線で示すよ
うな部分的電磁誘導パターン8a(以下、部分パ
ターンと称す。)が埋め込まれている。尚、図面
は、四分円からなる4本のパターン8a′と十字の
パターン8a″との組み合わせからなる部分的パタ
ーン8aを埋込んだ例を示す。そして、第2図に
示すように上記フロアパネル8を組み合わせて所
定面積のフロア9を形成すると、当該フロア9の
全面に上記部分パターン8aの結合模様からなる
固定の電磁誘導パターン9a(以下、単に固定パ
ターンと称す。)が形成される。
Embodiment An embodiment of the present invention will be described below with reference to FIGS. 1 and 2. In the figure, reference numeral 8 denotes a square floor panel used in the present invention, in which a partial electromagnetic induction pattern 8a (hereinafter referred to as a partial pattern) as shown by a dotted line is embedded. The drawing shows an example in which a partial pattern 8a consisting of a combination of four patterns 8a' consisting of quadrants and a cross pattern 8a'' is embedded.Then, as shown in FIG. When the panels 8 are combined to form a floor 9 of a predetermined area, a fixed electromagnetic induction pattern 9a (hereinafter simply referred to as a fixed pattern) consisting of a combined pattern of the partial patterns 8a is formed on the entire surface of the floor 9.

そこで、上記固定パターン9aから電波を放射
する状態で、例えば部分パターン8aの接点9
a′、即ち固定パターン9aの分岐点に分岐信号を
出すものを埋めておく。そして、自走車1が分岐
点9a′に到達する毎に外部のコンピユータから指
令を送つて分岐信号を出し、自走車1に部分パタ
ーン8aの三つのルートから一つのルートを選ば
せる。この操作を繰り返すことにより、固定パタ
ーン9aから自走車1の走行路を任意に選択する
ことができる。或いは、上記走行路を選択する他
の手段として、コンピユータにフロア9の全面に
亘る固定パターン9aを認識させておき、そこか
ら予め特定のルートを選択して記憶させ、そのル
ートを通るように自走車1に走行指令を送るよう
にしてもよい。又は、コンピユータからの指令で
自走車1に必要なルートを選択させる。例えば、
常に最短距離を通るように自走車1に指令を送れ
ば、自走車1はその指令に従い必要なルートを選
択して走行する。
Therefore, in a state in which radio waves are radiated from the fixed pattern 9a, for example, the contact point 9 of the partial pattern 8a
A', that is, a signal that outputs a branch signal at the branch point of the fixed pattern 9a is filled in. Then, each time the self-propelled vehicle 1 reaches a branch point 9a', a command is sent from an external computer to issue a branch signal, causing the self-propelled vehicle 1 to select one route from the three routes of the partial pattern 8a. By repeating this operation, it is possible to arbitrarily select a travel route for the self-propelled vehicle 1 from the fixed pattern 9a. Alternatively, as another means of selecting the traveling route, the computer may be made to recognize a fixed pattern 9a covering the entire surface of the floor 9, a specific route may be selected and stored in advance from there, and the computer may be instructed to take the route automatically. A travel command may be sent to the vehicle 1. Alternatively, the self-propelled vehicle 1 is made to select a necessary route based on a command from the computer. for example,
If a command is sent to the self-propelled vehicle 1 to always travel the shortest distance, the self-propelled vehicle 1 selects the necessary route and travels according to the command.

更に、自走車の如く、フロア9の全面の固定パ
ターン9aから電波を放射し、固定パターン9a
からコンピユータによつて特定のルートを自走車
1の走行路として選ぶ他、特定のルートのみから
電波を放射し、そのルートに沿つて電波を検知し
ながら自走車1を走行させるようにしてもよい。
即ち、固定パターン9aから特定のルートをコン
ピユータに記憶させると共に固定パターン9aの
分岐点9a′にスイツチを設けておく。そして、こ
のスイツチのON、OFFをコンピユータによつて
制御すれば、必要なルートのみから電波を放射す
ることができる。
Furthermore, like a self-propelled car, radio waves are emitted from the fixed pattern 9a on the entire surface of the floor 9, and the fixed pattern 9a
In addition to selecting a specific route as the traveling path of the self-propelled vehicle 1 by a computer, radio waves are emitted only from the specific route, and the self-propelled vehicle 1 is caused to travel along that route while detecting the radio waves. Good too.
That is, a specific route is stored in the computer from the fixed pattern 9a, and a switch is provided at the branch point 9a' of the fixed pattern 9a. By controlling the ON/OFF state of this switch using a computer, radio waves can be emitted only from the necessary routes.

従つて、上記実施例によれば、無人搬送ライン
の電磁誘導方式における自走車1の走行路の変更
時には、コンピユータによつて他のルートを選択
するだけでよく、工事を必要とせず、簡便に走行
路を変更できる。
Therefore, according to the above embodiment, when changing the traveling route of the self-propelled vehicle 1 in the electromagnetic induction method of the unmanned transport line, it is only necessary to select another route using the computer, which is simple and does not require any construction work. You can change the driving route.

尚、通常、フロアパネル8は450mm〜600mm平方
の正方形であり、生産設備に対し十分小さいた
め、固定パターン9aは十分に密となり、生産設
備のレイアウト変更に対応できるものである。
Incidentally, the floor panel 8 is usually a square of 450 mm to 600 mm square, which is sufficiently small relative to the production equipment, so that the fixed pattern 9a is sufficiently dense and can accommodate changes in the layout of the production equipment.

考案の効果 本考案によれば、電磁誘導方式によつて自走車
を誘導する無人搬送ラインにおいて、一定の形状
と部分的電磁誘導パターンを有する複数の同一パ
ターンのフロアパネルを組み合わせて、全面に固
定の電磁誘導パターンを埋め込んだフロアを形成
したから、その固定パターンから特定のルートを
コンピユータによつて選択するだけで自走車の走
行路を形成できるようになる。そのため、上記走
行路の変更が簡単となり、生産設備のレイアウト
変更に対し短時間でしかも低コストにて走行路を
変更できる。
Effects of the invention According to the invention, in an unmanned transportation line that guides self-propelled vehicles using electromagnetic induction, a plurality of floor panels with the same pattern and a certain shape and partial electromagnetic induction pattern are combined to cover the entire surface. By forming a floor embedded with a fixed electromagnetic induction pattern, it becomes possible to create a driving path for a self-propelled vehicle by simply selecting a specific route from the fixed pattern using a computer. Therefore, it is easy to change the running route, and the running route can be changed in a short time and at low cost when changing the layout of production equipment.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本考案に係るフロアパネルの一実施例
の平面図、第2図は第1図のフロアパネルを組み
合わせてなるフリーアクセスフロアの部分平面
図、第3図は従来のフリーアクセスフロアの部分
斜視図、第4図は無人搬送ラインにおける電磁誘
導方式の説明図、第5図は無人搬送ラインにおけ
る光学誘導方式の説明図である。 1……自走車、3……電線、8……フロアパネ
ル、8a……部分的電磁誘導パターン、9……フ
ロア、9a……電磁誘導パターン。
Fig. 1 is a plan view of an embodiment of the floor panel according to the present invention, Fig. 2 is a partial plan view of a raised floor made by combining the floor panels shown in Fig. 1, and Fig. 3 is a plan view of a conventional raised floor. A partial perspective view, FIG. 4 is an explanatory diagram of an electromagnetic induction method in an unmanned transportation line, and FIG. 5 is an explanatory diagram of an optical guidance method in an unmanned transportation line. 1... Self-propelled vehicle, 3... Electric wire, 8... Floor panel, 8a... Partial electromagnetic induction pattern, 9... Floor, 9a... Electromagnetic induction pattern.

Claims (1)

【実用新案登録請求の範囲】 内部に電線を埋め込んだフロア上で走行すると
共に該電線から放射される電波を検知して誘導さ
れる自走車で物品を搬送する無人搬送ラインにお
いて、 所定寸法の矩形状を有すると共にその端部が分
岐点となる部分的電磁誘導パターンが埋め込ま
れ、複数の同一パターンのフロアパネルを組み合
わせて、その全面に固定の電磁誘導パターンを形
成するようにしたことを特徴とするフロアパネ
ル。
[Scope of Claim for Utility Model Registration] In an unmanned transportation line that transports goods by a self-propelled vehicle that runs on a floor with electric wires embedded inside and is guided by detecting radio waves emitted from the electric wires, It is characterized by having a rectangular shape and embedded with a partial electromagnetic induction pattern whose ends serve as branching points, and by combining multiple floor panels with the same pattern to form a fixed electromagnetic induction pattern on the entire surface. floor panel.
JP1984194229U 1984-12-20 1984-12-20 Expired JPH0441362Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1984194229U JPH0441362Y2 (en) 1984-12-20 1984-12-20

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1984194229U JPH0441362Y2 (en) 1984-12-20 1984-12-20

Publications (2)

Publication Number Publication Date
JPS61112404U JPS61112404U (en) 1986-07-16
JPH0441362Y2 true JPH0441362Y2 (en) 1992-09-29

Family

ID=30751675

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1984194229U Expired JPH0441362Y2 (en) 1984-12-20 1984-12-20

Country Status (1)

Country Link
JP (1) JPH0441362Y2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010102585A (en) * 2008-10-24 2010-05-06 Shimizu Corp Mobile object position detection system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2512190Y2 (en) * 1989-12-13 1996-09-25 株式会社フジタ Unmanned work vehicle guidance device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63175119A (en) * 1987-01-05 1988-07-19 Nippon Ester Co Ltd Hot-melt type binder yarn

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63175119A (en) * 1987-01-05 1988-07-19 Nippon Ester Co Ltd Hot-melt type binder yarn

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010102585A (en) * 2008-10-24 2010-05-06 Shimizu Corp Mobile object position detection system

Also Published As

Publication number Publication date
JPS61112404U (en) 1986-07-16

Similar Documents

Publication Publication Date Title
US10223916B2 (en) Automated guided vehicle system based on autonomous mobile technique and a method for controlling the same
WO1989003077A1 (en) Automatic travelling system of construction vehicle
KR101660162B1 (en) Automated guided vehicle system based on autonomous mobile technique and a method for controlling the same
KR20210091656A (en) Article transport facility
JPH0441362Y2 (en)
US11468770B2 (en) Travel control apparatus, travel control method, and computer program
JPH036522B2 (en)
TW201920945A (en) Inspection system using a detector as an inspection target
JPH06222833A (en) Unmanned vehicle control system
KR101420625B1 (en) Driving system of automatic guided vehicle and method of the same
JPS6123221A (en) Guiding system of mobile truck
JPS59153211A (en) Guiding method of unmanned carrier car
JP4352925B2 (en) Sensor control device for automatic guided vehicle and automatic guided system
JPS63158619A (en) Unmanned vehicle
JPH0756629A (en) Guiding equipment for mobile vehicle
JP4710628B2 (en) Orbit inspection truck
JPH11322049A (en) Conveying system
JPS6330913A (en) Guide path for unmanned car
JPS60205725A (en) Running control method of unattended car
JPH036521B2 (en)
WO2024085312A1 (en) Control method and control device for smart factory
JPH0457013B2 (en)
JPS59121506A (en) Controller for self-traveling dolly
JPS59112314A (en) Unmanned lift truck
KR20240031719A (en) Smart logistics vehicle and method of controlling the same