JPS60159632A - Hydrogen sensor - Google Patents

Hydrogen sensor

Info

Publication number
JPS60159632A
JPS60159632A JP1453484A JP1453484A JPS60159632A JP S60159632 A JPS60159632 A JP S60159632A JP 1453484 A JP1453484 A JP 1453484A JP 1453484 A JP1453484 A JP 1453484A JP S60159632 A JPS60159632 A JP S60159632A
Authority
JP
Japan
Prior art keywords
hydrogen
sensor
palladium
gas
hydrogen sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1453484A
Other languages
Japanese (ja)
Other versions
JPH0340817B2 (en
Inventor
Satsuki Abe
阿部 さつき
Toshifumi Hosoya
俊史 細谷
Tadao Yoshida
忠雄 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON PAIONIKUSU KK
Original Assignee
NIPPON PAIONIKUSU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON PAIONIKUSU KK filed Critical NIPPON PAIONIKUSU KK
Priority to JP1453484A priority Critical patent/JPS60159632A/en
Publication of JPS60159632A publication Critical patent/JPS60159632A/en
Publication of JPH0340817B2 publication Critical patent/JPH0340817B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/02Analysing fluids
    • G01N29/036Analysing fluids by measuring frequency or resonance of acoustic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/025Change of phase or condition
    • G01N2291/0256Adsorption, desorption, surface mass change, e.g. on biosensors

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

PURPOSE:To detect only hydrogen selectively by adhering the thin film made of palladium, etc. to an element having piezoelectric effect. CONSTITUTION:Electrodes 2 attached with lead wires is fixed at both side surfaces of a thin plate-shaped oscillator 1 having piezoelectric effect, and the surface is covered with a vapor-deposited film 3 of palladium, etc. to constitute a hydrogen sensor 4. A detector cell 5 attached with the sensor 4 is connected to a gas supplying apparatus 7 with piping through a flowmeter 6, and the lead wires are connected to an oscillator 8. Since the resonance frequency of the sensor 4 is varied by the transmission of hydrogen contained in the gas through the palladium film, this variation is read by a frequency counter 9 and the hydrogen concn. is measured.

Description

【発明の詳細な説明】 本発明は水素センサーに関し、さらに詳しくは、水系の
みを選択的に検出しつる水素センサーに関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a hydrogen sensor, and more particularly to a hydrogen sensor that selectively detects only aqueous systems.

従来、ガス中に含まれる水系の検知器としては次のよう
な方法によるものが知られている。
Conventionally, the following methods are known as detectors for detecting water contained in gas.

(1)水系が存在すると気体の熱伝導度が変化すること
を利用する熱伝導式と呼ばれる方法(2)触媒上で水素
を燃焼させその熱によって白金フィラメントなどの抵抗
体の抵抗が上昇する現象を利用する接触燃焼・式と呼ば
れる方法(3)酸化錫などの金属酸化物半導体の焼結体
を加熱しておき、これに水素が接触すると半導体の電気
伝導度が変化することを利用する半導体式と呼ばれる方
法 しかしながら、これらの方法はいずれも水素と他の可燃
性ガスの共存下においては水系のみを区別して検出する
能力を有していない。すなわち、水素、炭化水素および
一酸化炭素などをほぼ似通った感度で検知するために水
系検知器としては大きな不便さを招いていた。
(1) A method called the thermal conduction method that takes advantage of the fact that the thermal conductivity of gas changes when an aqueous system is present. (2) A phenomenon in which hydrogen is burned on a catalyst and the resulting heat increases the resistance of a resistor such as a platinum filament. (3) A method called catalytic combustion method that utilizes the sintered body of a metal oxide semiconductor such as tin oxide, and when it comes into contact with hydrogen, the electrical conductivity of the semiconductor changes. However, none of these methods has the ability to distinguish and detect only aqueous systems in the coexistence of hydrogen and other combustible gases. That is, since hydrogen, hydrocarbons, carbon monoxide, etc. can be detected with almost similar sensitivities, this has caused great inconvenience as a water-based detector.

このような欠点を改善するために本発明者らは鋭意検討
を重ねた結果ピエゾ圧電効果を示す素子を特殊な金属で
薄膜状に被い、この金属薄膜に電極を取付けてセンサー
′とし、このセンサーを含む電気回路を発振させると、
その発振周波数が水素の存在の有無のみによって変化す
ることを見い出し本発明に到達した。
In order to improve these shortcomings, the inventors of the present invention have made extensive studies and have covered an element that exhibits the piezoelectric effect in a thin film with a special metal, attached electrodes to this thin metal film, and used it as a sensor. When an electric circuit including a sensor is made to oscillate,
The present invention was achieved by discovering that the oscillation frequency changes only depending on the presence or absence of hydrogen.

すなわち、本発明はピエゾ圧電効果を有する素子にパラ
ジウム、金および白金のうちから選ばれた少くとも1種
の金属を特徴とする特許を付着せしめた振動子を検出端
とした水素センサーである。
That is, the present invention is a hydrogen sensor in which a detection end is a vibrator in which a patent characterized by at least one metal selected from palladium, gold, and platinum is attached to an element having a piezoelectric effect.

本発明で用いられるピエゾ圧電素子としては水晶、iツ
シエル塩、チタン酸バリウム、チタン酸鉛、チタン酸ジ
ルコン酸鉛(PZT)、チタン酸ジルコン酸鉛ランタン
(PLZT)などを挙げることができる。ピエゾ圧電素
子の形状には特に制限はないが、たとえば円形、楕円形
正方形、菱形、長方形などの板状が挙げられる。
Examples of the piezoelectric element used in the present invention include quartz crystal, itziel salt, barium titanate, lead titanate, lead zirconate titanate (PZT), and lead lanthanum zirconate titanate (PLZT). The shape of the piezoelectric element is not particularly limited, but examples thereof include plate shapes such as a circle, an elliptical square, a rhombus, and a rectangle.

本発明において、ピエゾ圧電素子に付着させる薄膜の材
料としてはパラジウム、金および白金が挙げられ、これ
らは単独で用いられてもよく、また2種以上を合金など
の形で用いられてもよい。さらに少量の銀および/また
は銅がこれらの金属に含有されていてもよい。
In the present invention, palladium, gold, and platinum may be used as materials for the thin film to be attached to the piezoelectric element, and these may be used alone, or two or more may be used in the form of an alloy or the like. Furthermore, small amounts of silver and/or copper may be contained in these metals.

金属薄膜のピエゾ圧電素子への付着方法としては真空蒸
着、化学蒸着(CVD)、スパッタリングなど従来それ
自体公知の方法が適用可能である。金属の厚みには特に
制限はないが、加工のし易さなどから5000A以下と
するのが好ましい。
As a method for attaching the metal thin film to the piezoelectric element, conventionally known methods such as vacuum deposition, chemical vapor deposition (CVD), and sputtering can be applied. There is no particular limit to the thickness of the metal, but it is preferably 5000A or less for ease of processing.

以下図面によって本発明をさらに具体的に説明する。The present invention will be explained in more detail below with reference to the drawings.

第1図は本発明の水素センサーの断面図であり、第2図
は本発明の水素センサーが組込まれた水素検知装置の構
成図である。
FIG. 1 is a sectional view of the hydrogen sensor of the present invention, and FIG. 2 is a configuration diagram of a hydrogen detection device incorporating the hydrogen sensor of the present invention.

れた電極2,2がそれぞれ固定され、振動子1および電
極2,2の表面はパラジウムなどの蒸着膜6.5で被わ
れて水素センサーとされている。
The surfaces of the vibrator 1 and the electrodes 2, 2 are covered with a vapor deposited film 6.5 of palladium or the like to form a hydrogen sensor.

第2図において、本発明の水素センサー4が取付けられ
た検出器セル5は流量計6を介してガス供給装置7と配
管で接続され、検出器セル5から導かれたリード線は発
振器8と接続され、発振器8は周波数カウンター9およ
び安定化電源10とそれぞれ配線によって接続されて水
素検知装置とされている。ガス中に含まれる水系は、当
該ガスをガス供給装置7から流量計6を通して検出器セ
ル5に流しながら発振器8と水素センサー4とを共振さ
せ、その共振周、波数の変化を周波数カウンター9で読
み取ることによって検知される。
In FIG. 2, a detector cell 5 to which a hydrogen sensor 4 of the present invention is attached is connected via a flow meter 6 to a gas supply device 7 via piping, and a lead wire led from the detector cell 5 is connected to an oscillator 8. The oscillator 8 is connected to a frequency counter 9 and a stabilized power supply 10 by wiring, respectively, to form a hydrogen detection device. The water system contained in the gas causes the oscillator 8 and the hydrogen sensor 4 to resonate while flowing the gas from the gas supply device 7 through the flow meter 6 to the detector cell 5, and changes in the resonance frequency and wave number are measured by the frequency counter 9. Detected by reading.

本発明の水素センサーを使用することによって、水素以
外の可燃性ガスが共存するガス流中においてもこれらの
可燃性ガスの影響を受けることなく水素のみを選択的に
しかも高精度で連続的に検知することができる。
By using the hydrogen sensor of the present invention, only hydrogen can be selectively and continuously detected with high precision even in a gas flow where flammable gases other than hydrogen coexist without being affected by these flammable gases. can do.

実施例 1 (水素センサー製作) 水晶振動子板に電極を取付けた後、表面にパラジウムを
空気雰囲気下で真空蒸着し水系センサーを製作した。生
成したパラジウム薄膜の厚みは3000Aであった。
Example 1 (Production of Hydrogen Sensor) After attaching electrodes to a quartz crystal resonator plate, palladium was vacuum-deposited on the surface in an air atmosphere to produce a water-based sensor. The thickness of the produced palladium thin film was 3000A.

(共振周波数の測定ン 第2図で示した構成の装置に上記の水素センサーをセッ
トし、ガス供給装置から200d/minの速度で空気
を流し7jCgセンサーの振動子の共振周波数を測定し
たところ601543BHzであった。この周波数は空
気流速が変化しでも不変であった。また、空気を流す代
りに窒素あるいはアルゴンを流しても共振周波数には変
化は見られなかった。
(Measurement of Resonance Frequency) The above hydrogen sensor was set in the device configured as shown in Figure 2, and the resonance frequency of the oscillator of the 7jCg sensor was measured by flowing air at a rate of 200 d/min from the gas supply device, and the result was 601543 BHz. This frequency remained unchanged even when the air flow rate changed.Also, no change in the resonant frequency was observed when nitrogen or argon was flowed instead of air.

(水素含有ガスを流したときのレスポンス)前記の装置
に水素5120PPMを含む窒素ガスを1490 d/
minで流しながら共振周波の 数÷変化を測定した結果を舘3図に示す。約2分(aで
示した)経過後に共振周波数は6015455Hzへと
水素を含才ないガスの場合に比べ17Hzの上昇を示し
その葦ま定常状態となった。次に水素を含まない空気を
26611Ll/minで流したところ約1分(bで示
した)経過後に共振周波数は60154.5BHzへと
もとの状態に回復した。
(Response when flowing hydrogen-containing gas) Nitrogen gas containing 5120 PPM of hydrogen was added to the above equipment at 1490 d/
Figure 3 shows the results of measuring the number of resonant frequencies divided by the change while flowing at a minimum speed. After about 2 minutes (indicated by a), the resonant frequency rose to 6015455 Hz, an increase of 17 Hz compared to the case of gas containing no hydrogen, and reached a steady state. Next, hydrogen-free air was flowed at 26,611 Ll/min, and after about 1 minute (indicated by b), the resonance frequency returned to its original state of 60,154.5 BHz.

(その他のガスを流したときのレスポンス)メタン、エ
タンおよびプロパンをそれぞれ単独に約1.000PP
M含む窒素ガスを前記の装置に流したが共振周波数には
変化は見られなかつた。また、二酸化硫黄 10000
PPM。
(Response when flowing other gases) Approximately 1.000PP for each of methane, ethane, and propane
Although nitrogen gas containing M was flowed through the above device, no change was observed in the resonance frequency. Also, sulfur dioxide 10,000
PPM.

二酸化炭素 5000PPM、二酸化窒素 97PPM
をそれぞれ単独に含む窒素ガスを流したが共振周波数に
は変化は見られなかった。これらの結果からこの水素セ
ンサーの振動子は、ガス中に含まれる水素のみと特異的
に作用してその共振周波数が変化するという極めて水素
選択性の高い性質を有していることがわかる。
Carbon dioxide 5000PPM, nitrogen dioxide 97PPM
Although nitrogen gas containing each of these was flowed, no change was observed in the resonant frequency. These results show that the oscillator of this hydrogen sensor has extremely high hydrogen selectivity in that it acts specifically with only the hydrogen contained in the gas, changing its resonance frequency.

実施例 2 実施例1で用いたと同じ装置において窒素中に5120
PPMの水素な含むガスを用い水素センサーの振動子の
共振周波数におよぼす流速の影響を調べた結果、第4図
に示すようにガス流速の影響はほとんど認められなかっ
た。
Example 2 5120 in nitrogen in the same equipment used in Example 1
As a result of investigating the influence of the flow rate on the resonant frequency of the vibrator of the hydrogen sensor using gas containing hydrogen in PPM, as shown in FIG. 4, almost no influence of the gas flow rate was observed.

また応答時間に対するガス流速の影響を調べた結果、第
5図に示すようにほとんど影響は認められなかった。
Furthermore, as a result of examining the effect of gas flow rate on response time, almost no effect was observed as shown in FIG.

さらlこ、回復時間に対するガス流速の影響についても
第6図に示すようにほとんど影響は認められなかった。
Moreover, as shown in FIG. 6, almost no effect of gas flow rate on the recovery time was observed.

第7図に共振周波数におよぼす雰囲気温度の影響を示す
。雰囲気温度が低い程感度が上昇する傾向にあることが
認められた。
FIG. 7 shows the influence of ambient temperature on the resonance frequency. It was observed that the sensitivity tends to increase as the ambient temperature decreases.

第8図に雰囲気温度が応答時間(白丸で示した)および
回復時間(黒丸で示した)におよばす影響を示す。高温
になる程両者共に短かくなることが判明した。
FIG. 8 shows the influence of ambient temperature on response time (indicated by white circles) and recovery time (indicated by black circles). It was found that both become shorter as the temperature increases.

キ施例 3 実施例1で用いたと同じ装置で空気中(白丸で示した)
および窒素中(黒丸で示した)における各レベルの水素
濃度に対する共振周波数の変化を調べた結果を第9図に
示す。両名共にほぼ直線関係にあることが認められた。
Example 3 In air using the same equipment used in Example 1 (indicated by a white circle)
FIG. 9 shows the results of examining the change in resonance frequency for each level of hydrogen concentration in nitrogen (indicated by black circles). It was recognized that both people had an almost linear relationship.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は水素センサーの断面図、 第2図は水素検知装置の構成図、 第3図は水素の有無による共振周波数の変化を示した図 第4図はガスの流速が共振周波数におよぼす影響を示し
た図 第5図はガスの流速が応答時間におよぼす影響を示した
図 第6図はガスの流速が回復時間におよぼす影響を示した
図 第7図は雰囲気温度が共振周波数の変化におよぼす影響
を示した図 第8図は雰囲気温度が応答時間および回復時間におよぼ
す影響を示した図 第9図は水素濃度による共振周波数の変化を示した図 である。 図面において 1・・・振動子 2・・・電極 6・・・蒸着膜 4・
・・水素センサー 5・・・検出器セル 6・・・mi
A:計7・・・ガス供給装置 8・・・発振器 9・・
・周波数カウンター および 10・・・安定化電源 図面の浄t’(pi容に変更なし) 本1図 7′。 坑3図 #4図 1% IJI (+n1nl i jj (rnl/n
nih)尾q 図 米寿、;舅【塵 (2) 手続補正書(自発) 昭和59年3月14日 特許庁長官 若杉和夫殿 t 事件の表示 昭和59年特許願第14564号 2、 発明の名称 水素センサー 3、 補正をする者 事件との関係 特許出願人 住所 東京都港区西新橋1丁目1番6号「明細書の発明
の名称の欄」、「明細書の特許請求の範囲の欄」、「明
細書の発明の詳細な説明の欄」、「明細書の図面の簡単
な説明の欄」ならびに「図面」 5、補正の内容 別紙の通り(明細書、図面共に浄書としたもので内容に
は変更なし)。
Figure 1 is a cross-sectional view of the hydrogen sensor. Figure 2 is a configuration diagram of the hydrogen detection device. Figure 3 is a diagram showing the change in resonance frequency depending on the presence or absence of hydrogen. Figure 4 is the effect of gas flow velocity on resonance frequency. Figure 5 shows how the gas flow rate affects the response time. Figure 6 shows how the gas flow rate affects the recovery time. Figure 7 shows how the ambient temperature affects the resonance frequency. FIG. 8 is a diagram showing the influence of ambient temperature on response time and recovery time. FIG. 9 is a diagram showing changes in resonance frequency due to hydrogen concentration. In the drawings, 1... Vibrator 2... Electrode 6... Vapor deposited film 4.
...Hydrogen sensor 5...Detector cell 6...mi
A: Total 7... Gas supply device 8... Oscillator 9...
・Frequency counter and 10... Clean t' of the stabilized power supply drawing (no change in pi capacity) Book 1 Fig. 7'. Pit 3 diagram #4 diagram 1% IJI (+n1nl i jj (rnl/n
(2) Procedural amendment (spontaneous) March 14, 1980 Commissioner of the Japan Patent Office Kazuo Wakasugi t Indication of the case 1982 Patent Application No. 14564 2, Title of the invention Hydrogen sensor 3, relationship to the case of the person making the amendment Patent applicant address: 1-1-6 Nishi-Shinbashi, Minato-ku, Tokyo "Name of the invention in the specification", "Claims in the specification" , "Column for detailed explanation of the invention in the specification", "Column for brief explanation of drawings in the specification", and "Drawings" (no change).

Claims (1)

【特許請求の範囲】[Claims] ピエゾ圧電効果を有する素子に、パラジウム、金および
白金のうちから選ばれた少くとも1種の金属を主成分と
する薄膜を付着せしめた振動子を検出端とした水素セン
サー
A hydrogen sensor whose detection end is a vibrator made of a piezoelectric element with a thin film mainly composed of at least one metal selected from palladium, gold, and platinum.
JP1453484A 1984-01-31 1984-01-31 Hydrogen sensor Granted JPS60159632A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1453484A JPS60159632A (en) 1984-01-31 1984-01-31 Hydrogen sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1453484A JPS60159632A (en) 1984-01-31 1984-01-31 Hydrogen sensor

Publications (2)

Publication Number Publication Date
JPS60159632A true JPS60159632A (en) 1985-08-21
JPH0340817B2 JPH0340817B2 (en) 1991-06-20

Family

ID=11863809

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1453484A Granted JPS60159632A (en) 1984-01-31 1984-01-31 Hydrogen sensor

Country Status (1)

Country Link
JP (1) JPS60159632A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62145138A (en) * 1985-12-20 1987-06-29 Nok Corp Vacuum monitoring element
JPS6355150U (en) * 1986-09-29 1988-04-13
FR2629596A1 (en) * 1988-04-01 1989-10-06 Thomson Csf Selective sensitive element and sensor comprising a ferroelectric polymer
US7521252B2 (en) 2004-02-04 2009-04-21 The Research Foundation Of State University Of New York Methods for forming palladium alloy thin films and optical hydrogen sensors employing palladium alloy thin films
JP2013145249A (en) * 2013-04-25 2013-07-25 Shimizu Corp Gas monitoring device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5839929A (en) * 1981-08-17 1983-03-08 ザ・ペンデイツクス・コ−ポレ−シヨン Chemical sensor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5839929A (en) * 1981-08-17 1983-03-08 ザ・ペンデイツクス・コ−ポレ−シヨン Chemical sensor

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62145138A (en) * 1985-12-20 1987-06-29 Nok Corp Vacuum monitoring element
JPH0588773B2 (en) * 1985-12-20 1993-12-24 Nok Corp
JPS6355150U (en) * 1986-09-29 1988-04-13
FR2629596A1 (en) * 1988-04-01 1989-10-06 Thomson Csf Selective sensitive element and sensor comprising a ferroelectric polymer
US7521252B2 (en) 2004-02-04 2009-04-21 The Research Foundation Of State University Of New York Methods for forming palladium alloy thin films and optical hydrogen sensors employing palladium alloy thin films
JP2013145249A (en) * 2013-04-25 2013-07-25 Shimizu Corp Gas monitoring device

Also Published As

Publication number Publication date
JPH0340817B2 (en) 1991-06-20

Similar Documents

Publication Publication Date Title
US6029500A (en) Piezoelectric quartz crystal hydrogen sensor, and hydrogen sensing method utilizing same
EP1946070B1 (en) Hydrogen sensor
CA1322468C (en) Constant temperature hygrometer
JPH08313470A (en) Detection of methane in gas mixture
JP3682603B2 (en) Gas sensor and manufacturing method thereof
EP0488503A2 (en) Gas sensor
JPH11326255A (en) Method for obtaining packing density or quality of catalyst storing gas
US3478573A (en) Integral heater piezoelectric devices
JPS59120945A (en) Hydrogen selective sensor and its production
US5521099A (en) Method and apparatus for sensing combustible gases employing and oxygen-activated sensing element
JPS60159632A (en) Hydrogen sensor
JPS60228949A (en) Method and device for detecting reducing gas in mixed gas tobe detected
RU2132551C1 (en) Gas sensor operating process
US5783153A (en) Metal oxide oxygen sensors based on phase transformation
JPS59131152A (en) Reducing gas sensor
JPS60211347A (en) Gaseous hydrogen sensor
JP2000356615A (en) Gas sensor and gas detector
JP4852283B2 (en) Gas sensor
McAndrew et al. Moisture analysis in process gas streams
CA1261720A (en) Combined sensor device for detecting toxic gases
JPS59102147A (en) Carbon monooxide sensor
JPH1130602A (en) Gas detecting sensor and explosion-proof fitting structure thereof
RU2092823C1 (en) Sensing element for gas analysis
KR960010688B1 (en) Gas sensor and its manufacturing method
JPH0235352A (en) Hydrogen gas sensor

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees