JPH0235352A - Hydrogen gas sensor - Google Patents

Hydrogen gas sensor

Info

Publication number
JPH0235352A
JPH0235352A JP63184809A JP18480988A JPH0235352A JP H0235352 A JPH0235352 A JP H0235352A JP 63184809 A JP63184809 A JP 63184809A JP 18480988 A JP18480988 A JP 18480988A JP H0235352 A JPH0235352 A JP H0235352A
Authority
JP
Japan
Prior art keywords
hydrogen
gas
comb
thin film
hydrogen gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63184809A
Other languages
Japanese (ja)
Other versions
JP2622991B2 (en
Inventor
Akio Furukawa
明男 古川
Ikuro Yonezu
育郎 米津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP63184809A priority Critical patent/JP2622991B2/en
Publication of JPH0235352A publication Critical patent/JPH0235352A/en
Application granted granted Critical
Publication of JP2622991B2 publication Critical patent/JP2622991B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a sensor element which can selectively detect only hydrogen gas by detecting temperature change caused by selective absorption and discharging reaction of the hydrogen gas contained in a gas to be checked and a hydrogen occluding alloy thin film based on the frequency change of the output of a comb-shaped receiving electrode. CONSTITUTION:A comb-shaped exciting electrode 2 and a comb-shaped receiving electrode 4 are provided on a piezoelectric substrate 1. A hydrogen occluding alloy thin film 5 is deposited between both electrodes 2 and 4. When hydrogen is present in a gas to be checked, the hydrogen gas reacts with the hydrogen occluding alloy thin film 5. Thus the film is heated. In this way, the temperature of the propagating path of an elastic surface waves 3 is increased. Therefore, the propagating speed of the elastic surface waves is changed. Phase conditions are also changed, thereby changing the high frequency output from an output terminal 7. When the change in said output frequency is measured, the hydrogen gas in the gas to be checked can be selectively detected.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 ト発明は、水素検出装置に用いる水素ガスセン→ノ゛−
に関する。
Detailed Description of the Invention (a) Industrial Application Field The invention relates to a hydrogen gas sensor used in a hydrogen detection device.
Regarding.

(ロ)従来の技術 従来、可燃性ガス漏hW報器やガス濃度計に用いられる
力′スセンサーとして、金属酸化物焼結体型1′、導体
ガスセッサーや接触燃焼式ガスセンサーが首及している
。そして、半導体ガスセンサーは半導体表面とガスの吸
着現象により、電気抵抗や仕事関数なとの物性が変化r
るという性質を利用するものであり、又、接触燃焼式ガ
スセッサーはカス検知機能を持つ物質の表面でのガスの
接触燃焼現象により、温度変化を受けて電気抵抗が変化
Vるという性質を利用するものである(特開昭61−6
6956号公報、特開昭61−223642号公報参照
)。
(b) Conventional technology Conventionally, metal oxide sintered type 1', conductive gas sensor, and catalytic combustion type gas sensor have been used as force sensors used in combustible gas leakage alarms and gas concentration meters. There is. In semiconductor gas sensors, physical properties such as electrical resistance and work function change due to the adsorption phenomenon of gas on the semiconductor surface.
In addition, the catalytic combustion type gas sensor utilizes the property that the electrical resistance changes in response to temperature changes due to the catalytic combustion phenomenon of gas on the surface of a material with a scum detection function. (Unexamined Japanese Patent Publication No. 61-6
6956, JP-A No. 61-223642).

(ハ)発明が解決しようとする課題 然し乍ら、上記従来のガスセッサーでは、ガスの吸着現
象や燃焼現象などを利用していたため、被検ガス中の各
種ガスに対して反応してしまい、水素ガスのみを選択的
に検知することが困難であった。
(c) Problems to be solved by the invention However, since the conventional gas processors described above utilize gas adsorption phenomena and combustion phenomena, they react with various gases in the sample gas, and only hydrogen gas It was difficult to detect selectively.

又、これ等のガスセッサーの作動温度が一般に200〜
500°Cど高温を必要とするためセンサー素子の劣化
が起こりやずいという問題点があった。
In addition, the operating temperature of these gas processors is generally 200~200℃.
Since this method requires high temperatures such as 500°C, there is a problem in that the sensor element is not likely to deteriorate.

〈二〉 課題を解決するための手段 本発明による水素ガスセンサーは、圧電基板上に櫛型励
振電極と櫛型受信電極とを設け、これ等の両電極間位置
に水素吸蔵合金薄膜を被着している。
<2> Means for Solving the Problems The hydrogen gas sensor according to the present invention is provided with a comb-shaped excitation electrode and a comb-shaped reception electrode on a piezoelectric substrate, and a hydrogen storage alloy thin film is coated between these two electrodes. are doing.

(ホ)作用 本発明によれば励振、受信両電極間の水素吸蔵合金薄膜
が水素ガスを含有す゛る雰囲気中で水素ガスのみを吸収
して発熱し、両電極間での弾性表面波の伝播条件が変化
りることから水素ガスに対して選択的な検知作用を果た
す。
(E) Effect According to the present invention, the hydrogen storage alloy thin film between the excitation and reception electrodes absorbs only hydrogen gas in an atmosphere containing hydrogen gas and generates heat, and the surface acoustic wave propagation conditions between the two electrodes are Since the hydrogen gas changes, it has a selective detection effect on hydrogen gas.

くべ)実施例 以ド、本発明の一実施例を図面を用いて詳細に説明する
。第1図は本発明の水素ガスセンサーの概略図を例示し
たものである。(1)はガスセンサの主要部を成す圧電
体基板で、例えば長さ110n1、幅2 mm、厚さQ
、1mmのL iN b Osから構成されている。(
2)はこの基板く1)の表面の−・側に設けられた弾性
表面波(3)を励振する櫛型励振電極、(4)はこの櫛
型励振電極(2〉に対向して圧電体基板(1)の他側に
設(′)られた櫛型受信電極であり、1ヤ(弧し!励振
電、tilパ2)から圧電体基板(1)の表面夕伝播し
7で来る弾性表面波(3)を受信して電気借りに変換す
る働きを為1oこれ等の櫛型電極(2)(4)l;l対
数50対、電極間隔5μm、交差長1画、電極19み1
000人のフルミニウ1.蒸若膜にて構成され゛(いる
。(5)は両横型電極<2 )(4ン間の圧電体基板(
1)の表面を被覆し、た水素吸蔵冶金薄膜で、長さは基
板(1)の全幅(こわたる21MI 1幅は0.5mm
、膜厚1000人にで構成されている。ぞして、この薄
膜(5)は、選択的に水素吸放出特性を持つL a N
 i 6なとの合金月利を高周波スパッタ法にて形成し
たものである。
Example) An example of the present invention will now be described in detail with reference to the drawings. FIG. 1 illustrates a schematic diagram of a hydrogen gas sensor of the present invention. (1) is a piezoelectric substrate that forms the main part of the gas sensor, and has a length of, for example, 110n1, a width of 2mm, and a thickness of Q.
, 1 mm of LiN b Os. (
2) is a comb-shaped excitation electrode that excites the surface acoustic wave (3) provided on the - side of the surface of this substrate 1), and (4) is a piezoelectric material opposite to this comb-shaped excitation electrode (2). It is a comb-shaped receiving electrode (') installed on the other side of the substrate (1), and the elasticity that propagates from the 1st layer (arc! excitation electric current, tiller 2) to the surface of the piezoelectric substrate (1) and comes at 7. These comb-shaped electrodes (2) (4) have the function of receiving surface waves (3) and converting them into electricity. 50 pairs of logarithms, electrode spacing of 5 μm, crossing length of 1 stroke, and 19 electrodes.
000 full miniu 1. (5) is a piezoelectric substrate between both horizontal electrodes (<2) (4 electrodes).
The surface of the substrate (1) is coated with a hydrogen-absorbing metallurgical thin film, the length of which is 21 mm across the entire width of the substrate (1), and the 1 width is 0.5 mm.
, with a film thickness of 1,000 people. Therefore, this thin film (5) has L a N selectively absorbing and releasing hydrogen.
An alloy of i6 is formed by high frequency sputtering.

次に、このような構成の水素づjスセン−リ″−の動作
についで説1す]する。大気中において櫛型励振電極〈
2)に連な−、ジノ−力端子(6)によりインパルス1
且J−「を印加すると、櫛型励振電極(2)は、圧電効
果に、Jり隣り合う電極間(、′互いに逆位相の歪みが
)」シ、弾性表面波(3〉か励起され、る。、二の弾性
表面波(3)は基板(1)の表面を伝播し、櫛型受信電
極(4)に到達し電気−T: :イルギーに変換きれ、
出力=3 端子(7〉から高周波出力として取り出される。
Next, we will explain the operation of the hydrogen sensor with such a configuration.In the atmosphere, the comb-shaped excitation electrode
Impulse 1 is connected to 2) by the Gino force terminal (6).
When J- is applied, the comb-shaped excitation electrode (2) is excited due to the piezoelectric effect, and the surface acoustic wave (3) is generated between adjacent electrodes (with distortions in opposite phases to each other). The second surface acoustic wave (3) propagates on the surface of the substrate (1), reaches the comb-shaped receiving electrode (4), and is converted into electricity -T: :Irgi.
Output = 3 Taken out as high frequency output from terminal (7>).

、二のように動作しているセンサーを水素1%、空気9
9%で組成′;:寥れた被検ガス中に投入すると、水素
吸蔵合金薄膜〈5)は水素を吸収し、発熱1−るため、
弾性表面波(3)の伝播部が温度上昇し、弾性表面波(
3)の伝播速度が変化し、出力端子(7)の高周波出力
の周波数が変化する。又、同センサを水素1%、メタン
1%、空気98%の雰囲気中に置いでも同様に出力端子
(7)からの高周波出力の周波数が変化する。
, two sensors working as hydrogen 1%, air 9
Composition: 9%: When introduced into the sample gas, the hydrogen-absorbing alloy thin film (5) absorbs hydrogen and generates heat.
The temperature of the propagation part of the surface acoustic wave (3) increases, and the surface acoustic wave (3) increases in temperature.
The propagation speed of 3) changes, and the frequency of the high-frequency output of the output terminal (7) changes. Furthermore, even if the same sensor is placed in an atmosphere of 1% hydrogen, 1% methane, and 98% air, the frequency of the high-frequency output from the output terminal (7) changes similarly.

一力、このセンサーを水素を含まない、例えばメタン1
%、空気99%で組成されたガス中に置くと、出力周波
数は変化上ず、このガスには反応しないことが判明した
One way to do this is to use a sensor that does not contain hydrogen, such as methane 1.
It was found that when placed in a gas composed of 99% air, the output frequency did not change and it did not react to this gas.

この反応状況を第2図の表図にまとめた。水素吸蔵合金
?′#膜(5)はLaLig系の薄膜である。
The reaction situation is summarized in the table of FIG. Hydrogen storage alloy? '# film (5) is a LaLig-based thin film.

この第2図には対比例としてS n O、型半導体ガス
センサーの反応状況を示しており、この半導体ガスセン
サーは、何れのガス雰囲気にも反応し、水素ガスに対す
る選択性がないことが判る。
Figure 2 shows the reaction situation of an S n O type semiconductor gas sensor as a comparative example, and it can be seen that this semiconductor gas sensor reacts to any gas atmosphere and has no selectivity to hydrogen gas. .

又、ガスセンサーとしての作動温度は、5nOz型半導
体ガスセンザーの場合、300°C程度と比較的高いが
、本発明センサ−−−の場合は50°Cと低温であるの
で温度に起囚丈る経時変化等が少なく、センサー素子の
長寿命化が期待出来る。
In addition, the operating temperature as a gas sensor is relatively high at about 300°C in the case of a 5nOz type semiconductor gas sensor, but it is as low as 50°C in the case of the sensor of the present invention, so it is sensitive to temperature. There is little change over time, and the sensor element can be expected to have a longer lifespan.

第1図に示した構成では出力端子(7)での出力周波数
変化の検知は比較的手数が損かるので、検知周波数の変
化をより識別しや゛すくするために、発振回路を構成−
ψる方法が考えられる。その概略図を第3図に示す。こ
の第3図に於て、(8)は櫛型励振電極(2)と1ll
ii型受信電極(4)との間に接続した帰還増幅回路で
、受信電極く4〉で受信した信号をこの帰還増幅回路(
8)で増幅して、再び櫛型励振電極(2)に帰還ず乙こ
とによって発振回路を構成する。
In the configuration shown in Figure 1, it is relatively time-consuming to detect changes in the output frequency at the output terminal (7), so in order to more easily identify changes in the detected frequency, an oscillation circuit is configured.
One possible method is to A schematic diagram thereof is shown in FIG. In this Figure 3, (8) is the comb-shaped excitation electrode (2) and 1ll.
A feedback amplifier circuit connected between the type II receiving electrode (4) converts the signal received by the receiving electrode (4) into this feedback amplifier circuit (
8) and then fed back to the comb-shaped excitation electrode (2) to form an oscillation circuit.

この発振回路の動作原理を説明すると、被検カス中の水
素ガスが水素吸蔵合金薄膜(5)と反応して発熱し、弾
性表面波(3)の伝播路の温度が上昇j−る。そのため
、弾性表面波(3)の伝播速度が変化し、又、位相条件
が変化して発振回路の発振条件が変化し、発振周波数が
変化する。この発振周波数は、発振出力端子(9)から
出力きれる。又、この発振回路の出力の発振周波数の帯
域は第1図に示した構成のものより狭いため、出力の発
振周波数変化が識別しやすい。具体的には、50°Cの
空気中での発振回路の発振周波数が170MHzO)場
合、50℃での水素1%、空気99%の被検ガス中では
薄膜(5)が水素を吸収することにより約20’C昇温
し、その結果センサー出力とじ一〇発振周波数が約20
0Hz変化した。
To explain the operating principle of this oscillation circuit, hydrogen gas in the test dregs reacts with the hydrogen storage alloy thin film (5) to generate heat, and the temperature of the propagation path of the surface acoustic wave (3) rises. Therefore, the propagation speed of the surface acoustic wave (3) changes, the phase condition changes, the oscillation condition of the oscillation circuit changes, and the oscillation frequency changes. This oscillation frequency can be output from the oscillation output terminal (9). Furthermore, since the oscillation frequency band of the output of this oscillation circuit is narrower than that of the configuration shown in FIG. 1, changes in the oscillation frequency of the output can be easily identified. Specifically, if the oscillation frequency of the oscillation circuit in air at 50°C is 170MHzO, the thin film (5) will absorb hydrogen in the test gas of 1% hydrogen and 99% air at 50°C. The temperature rises by about 20'C, and as a result, the sensor output stops and the oscillation frequency increases by about 20'C.
0Hz changed.

尚、水素吸蔵合金の水素吸放出反応の温度条件は、その
合金組成により異なることが知られている。このため本
発明の水素ガスセンサーに於ては、その便用用途での被
検ガメ温度により、最適な合金組成の選択が望ましい。
It is known that the temperature conditions for the hydrogen absorption and release reaction of a hydrogen storage alloy vary depending on the alloy composition. Therefore, in the hydrogen gas sensor of the present invention, it is desirable to select the optimum alloy composition depending on the temperature of the gas to be tested in its convenient use.

50’C近傍では上記し/、−ようにL a N i 
s系を含む希土類−ニッケル基合金が適しでおり、以下
センサーの使用温度が50〜200℃に上昇するにつれ
て、Ca−Ni系、Zr−Mn系、Ti−Co系、M 
g −N i系合金なとが適してくる。又、使用温度が
50’Cより下降するにつれてFe−Ti系、T i 
−M n系合金なとが適I7てくる。そして、上記水素
吸蔵合金薄膜(5)の形成方法として、スパッタ法以外
にもイオンプレーディング法、ノラッシュ蒸着法などが
利用可能である。
In the vicinity of 50'C, L a N i
S-based rare earth-nickel based alloys are suitable, and as the operating temperature of the sensor increases from 50 to 200°C, Ca-Ni, Zr-Mn, Ti-Co, M
g-Ni alloys are suitable. Moreover, as the operating temperature falls below 50'C, Fe-Ti system, Ti
-M n-based alloy I7 is suitable. As a method for forming the hydrogen storage alloy thin film (5), other than the sputtering method, ion plating method, norush vapor deposition method, etc. can be used.

(1・)発明の効果 以−にの様に、本発明によれは、圧電体基板上に櫛型励
振電極と櫛型受信1f極を設け、これ等の両′¥:、極
間位置に水素吸蔵合金薄膜を被着しているので、被検ガ
ス中の水素ガスと水素吸蔵合金薄膜との選択的な吸放出
反応によって生しる温度変化を出力周波数変化から検知
することができる。従って、接触燃焼式又は半導体式ガ
スセンザーなとの従来のセンサーでは不可能であった水
素ガスのみの選択検知が可能となる。又1作動温度は従
来のセンサーに比へて十分に低いので、センザー素子の
劣化が少なく、長寿命化が図れる。
(1.) Effects of the Invention As described above, according to the present invention, a comb-shaped excitation electrode and a comb-shaped reception 1f pole are provided on a piezoelectric substrate, and the comb-shaped excitation electrode and the comb-shaped reception 1f pole are provided at the position between these electrodes. Since the hydrogen storage alloy thin film is coated, the temperature change caused by the selective absorption/desorption reaction between the hydrogen gas in the test gas and the hydrogen storage alloy thin film can be detected from the output frequency change. Therefore, it becomes possible to selectively detect only hydrogen gas, which was impossible with conventional sensors such as catalytic combustion type or semiconductor type gas sensors. Furthermore, since the operating temperature is sufficiently lower than that of conventional sensors, there is little deterioration of the sensor element and its life can be extended.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による水素ガスセンザーの斜視図、第2
図(j本発明セ〕/→ノー−と従来例とのガス検知状況
を対比して示した表図、第3図は本発明の機能を高めた
場合の構成を示ず斜視図である。 (1)・・・圧電体基板、(2)・・・櫛型励振電極、
(3)・・弾性表面波、(4)・・・櫛型受信電極、(
5)・・・水素吸蔵合金薄膜、(8)・・・帰還増幅回
路。
Fig. 1 is a perspective view of a hydrogen gas sensor according to the present invention, Fig. 2 is a perspective view of a hydrogen gas sensor according to the present invention;
FIG. 3 is a table showing a comparison of the gas detection situations of the present invention and the conventional example, and FIG. (1)...piezoelectric substrate, (2)...comb-shaped excitation electrode,
(3)...Surface acoustic wave, (4)...Comb-shaped receiving electrode, (
5)...Hydrogen storage alloy thin film, (8)...Feedback amplifier circuit.

Claims (2)

【特許請求の範囲】[Claims] (1)弾性表面波を伝播させる圧電体基板上に、弾性表
面波を励振する櫛型励振電極とその電極から上部圧電体
基板表面を伝播して来る弾性表面波を受信する櫛型受信
電極とを設けると共に、これ等両電極間の上記圧電体基
板表面の少なくとも一部を水素吸蔵合金薄膜にて被覆し
て成る水素ガスセンサー。
(1) A comb-shaped excitation electrode that excites surface acoustic waves and a comb-shaped receiving electrode that receives surface acoustic waves propagating from the electrode on the surface of the upper piezoelectric substrate, on a piezoelectric substrate that propagates surface acoustic waves. and at least a portion of the surface of the piezoelectric substrate between these two electrodes is coated with a hydrogen storage alloy thin film.
(2)特許請求の範囲第1項において上記櫛型励振電極
と櫛型受信電極との間に帰還増幅回路を接続して発振回
路を構成させて成る水素ガスセンサー。
(2) The hydrogen gas sensor according to claim 1, wherein a feedback amplifier circuit is connected between the comb-shaped excitation electrode and the comb-shaped reception electrode to form an oscillation circuit.
JP63184809A 1988-07-25 1988-07-25 Hydrogen gas sensor Expired - Fee Related JP2622991B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63184809A JP2622991B2 (en) 1988-07-25 1988-07-25 Hydrogen gas sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63184809A JP2622991B2 (en) 1988-07-25 1988-07-25 Hydrogen gas sensor

Publications (2)

Publication Number Publication Date
JPH0235352A true JPH0235352A (en) 1990-02-05
JP2622991B2 JP2622991B2 (en) 1997-06-25

Family

ID=16159670

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63184809A Expired - Fee Related JP2622991B2 (en) 1988-07-25 1988-07-25 Hydrogen gas sensor

Country Status (1)

Country Link
JP (1) JP2622991B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07209124A (en) * 1993-12-13 1995-08-11 Trw Vehicle Safety Syst Inc Gas leakage detector and detecting method for air- bag expanding device and so on
JPH0868781A (en) * 1994-08-31 1996-03-12 Ricoh Co Ltd Gas sensor system
JP2006317196A (en) * 2005-05-10 2006-11-24 Akihisa Inoue Hydrogen gas sensor
JP2007064866A (en) * 2005-09-01 2007-03-15 Toshitsugu Ueda Gas sensor

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62190905A (en) * 1986-02-18 1987-08-21 Matsushita Electric Ind Co Ltd Surface acoustic wave device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62190905A (en) * 1986-02-18 1987-08-21 Matsushita Electric Ind Co Ltd Surface acoustic wave device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07209124A (en) * 1993-12-13 1995-08-11 Trw Vehicle Safety Syst Inc Gas leakage detector and detecting method for air- bag expanding device and so on
JPH0868781A (en) * 1994-08-31 1996-03-12 Ricoh Co Ltd Gas sensor system
JP2006317196A (en) * 2005-05-10 2006-11-24 Akihisa Inoue Hydrogen gas sensor
JP2007064866A (en) * 2005-09-01 2007-03-15 Toshitsugu Ueda Gas sensor

Also Published As

Publication number Publication date
JP2622991B2 (en) 1997-06-25

Similar Documents

Publication Publication Date Title
JPH0342566A (en) Measuring cell for electrochemical gas sensor
JP2006317196A (en) Hydrogen gas sensor
JP2008547032A (en) Sensor and method of operation for detecting soot
JPWO2008102577A1 (en) Surface acoustic wave sensor device
JP2006313092A (en) Surface acoustic wave sensor and surface acoustic wave sensor system
KR20070073753A (en) Surface acoustic wave gas sensor with sensitive getter layer and process for its manufacture
JP2006220508A (en) Gas sensor
JPH0235352A (en) Hydrogen gas sensor
US20080196478A1 (en) Transition metals doped zeolites for saw based CO2 gas sensor applications
JP2007225546A (en) Elastic surface wave sensor
JP5061287B2 (en) Gas sensor and hydrogen concentration detection system
JP2007024566A (en) Hydrogen sensor, fuel cell, and vehicle equipped therewith
CN109187737B (en) Carbon monoxide sensor based on SAW device and concentration calculation method thereof
JP2014025741A (en) Surface acoustic wave sensor for detecting gas
JP4010738B2 (en) Gas sensor, gas detector and gas detection method
JPH0868781A (en) Gas sensor system
JP2012013603A (en) Catalytic combustion gas sensor
US20110133599A1 (en) Surface acoustic wave sensor
JP4852283B2 (en) Gas sensor
JP2018155723A (en) Elastic wave sensor
JPS60159632A (en) Hydrogen sensor
JP2755766B2 (en) Gas sensor
JP4315992B2 (en) Gas sensor, gas detector and gas detection method
JP3301144B2 (en) Carbon monoxide detector
JP2008224581A (en) Gas sensor

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees