JPS60155595A - Method for growing crystal - Google Patents

Method for growing crystal

Info

Publication number
JPS60155595A
JPS60155595A JP16465284A JP16465284A JPS60155595A JP S60155595 A JPS60155595 A JP S60155595A JP 16465284 A JP16465284 A JP 16465284A JP 16465284 A JP16465284 A JP 16465284A JP S60155595 A JPS60155595 A JP S60155595A
Authority
JP
Japan
Prior art keywords
single crystal
melt
magnetic field
heating means
semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16465284A
Other languages
Japanese (ja)
Inventor
Toshihiko Suzuki
利彦 鈴木
Nobuyuki Izawa
伊沢 伸幸
Yasunori Okubo
大久保 安教
Kinji Hoshi
星 金治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP16465284A priority Critical patent/JPS60155595A/en
Priority to CN 85101043 priority patent/CN1015187B/en
Publication of JPS60155595A publication Critical patent/JPS60155595A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/14Heating of the melt or the crystallised materials

Abstract

PURPOSE:To avoid the vibration of a heating means and manufacture a single crystal without defects, by supplying a substantial DC current to a heating current path in growing the single crystal in a magnetic field by the Czochralski method. CONSTITUTION:A heating means 4 having an electric conduction heater arranged in the zigzag form is placed on the outer periphery of a vessel (crucible) 2 containing a semiconductor melt 3 (symbol 6 indicates a cooling jacket), and a magnetic field generating means 7 is placed on the outside thereof to pull up a single crystal 10 from the melt 3 through a single crystal 8 mounted to a pulling up chuck 9. In the above-mentioned apparatus, a curent (substantially DC) having <=4% ripple is passed through an electric conduction heater 5 of a heating means to heat the melt 3 in the vessel 2.

Description

【発明の詳細な説明】 本発明は、結晶の成長方法に係わる。[Detailed description of the invention] The present invention relates to a method for growing crystals.

例えば半導体単結晶を育成させるに、チョクラルスキー
法による場合、その半導体融液面の振動や熱対流等が成
長される単結晶の品質に大きな影響を与える。例えば、
融液面の振動や熱対流が大きいと、−且成長した結晶が
部分的に再溶解し、これが結晶欠陥発生やその発生の原
因となったり、スワール(Swirl )状の欠陥や、
成長縞を発生させる。
For example, when growing a semiconductor single crystal using the Czochralski method, vibrations, thermal convection, etc. of the surface of the semiconductor melt greatly affect the quality of the grown single crystal. for example,
If the vibrations and thermal convection of the melt surface are large, the grown crystals will partially re-melt, which may cause crystal defects to occur, or may cause swirl-like defects.
Generates growth stripes.

このようなチョクラルスキー法において、その単結晶の
育成を磁場中で行うことが提案され、これによってスワ
ールや成長縞等の欠陥を軽減できることが知られている
。これは、電気伝導性の融液が、磁場がかけられること
によって実効的粘性が高められ、熱対流と融液面の振動
が抑制されることによると思われる。尚、この単結晶の
育成を磁場中で行うことについては、例えばジャーナル
オブ アプライド フィジックス(Journal o
fApplied Physics ) Vol、37
.No 5. P 2021 (196B) 。
In such Czochralski method, it has been proposed to grow the single crystal in a magnetic field, and it is known that defects such as swirls and growth stripes can be reduced by this. This is thought to be because the effective viscosity of the electrically conductive melt increases when a magnetic field is applied, suppressing thermal convection and vibrations on the melt surface. Regarding growing this single crystal in a magnetic field, for example, the Journal of Applied Physics (Journal of Applied Physics)
fApplied Physics) Vol, 37
.. No. 5. P 2021 (196B).

及びジャーナル オブ マテリアルズ サイエンス(J
ournal of Materials 5cie、
nce> 5 (1970) p8B2゜シンポジウム
“ガリウム アルセナイド”分冊5トムスク(Symp
osiua+ ” Ga1iu+llAr5enide
″fasc5、 Tomsk ) P34等に記載され
ている。
and Journal of Materials Science (J
Our own of Materials 5cie,
nce>5 (1970) p8B2゜Symposium “Gallium Arsenide” Volume 5 Tomsk (Symp
osiua+ ” Ga1iu+llAr5enide
``fasc5, Tomsk) P34, etc.

ところが、このように単結晶の育成を磁場中で行う方法
を採っても、上述した各種欠陥の発生を十分満足できる
程度に抑制することができない。
However, even if such a method of growing a single crystal in a magnetic field is adopted, the occurrence of the various defects described above cannot be suppressed to a sufficient degree.

本発明においては、このように、半導体単結晶を磁場中
で成長させる場合、その加熱手段が磁場との作用で、不
要の振動をもたらし、これが、上−述の欠陥を発生ずる
ことを究明し、これに基づいて、その改善をはかったも
のである。
In the present invention, we have discovered that when a semiconductor single crystal is grown in a magnetic field, the heating means interacts with the magnetic field to produce unnecessary vibrations, which causes the defects described above. Based on this, improvements were made.

第1図を参照して本発明の詳細な説明する。図中(1)
は本発明方法を実施するに用い得る単結晶成長装置を全
体として示す。(2)は半導体融液、例えばシリコン融
液(3)が収容された容器、例えば石英るつぼを示す。
The present invention will be described in detail with reference to FIG. (1) in the diagram
1 generally shows a single crystal growth apparatus that can be used to carry out the method of the present invention. (2) indicates a container, such as a quartz crucible, in which a semiconductor melt, such as a silicon melt (3), is accommodated.

この容器(2)の外周には、加熱手段(4)が配置され
る。この加熱手段(4)は、通電ヒーター(5)が、例
えばジグザグパターンに容器(2)の外周面に沿う円筒
面状をなすように配置される。この加熱手段(4)の外
側には必要に応じて例えば円筒状の熱遮蔽体、或いは水
冷等によっ”ζ冷却されるジャケット(6)が配置され
、その外側に磁場発生手段(7)例えば磁石又は直流磁
場を発生ずる電磁石が配置される。(8)は単結晶シー
ドで、(9)はその引上げチャックである。
A heating means (4) is arranged around the outer periphery of this container (2). The heating means (4) includes energized heaters (5) arranged in a cylindrical shape along the outer peripheral surface of the container (2), for example, in a zigzag pattern. Outside this heating means (4), for example, a cylindrical heat shield or a jacket (6) that is cooled by water cooling or the like is arranged as required, and a magnetic field generating means (7), for example, is arranged outside the heating means (4). A magnet or an electromagnet that generates a DC magnetic field is arranged. (8) is a single crystal seed, and (9) is its pulling chuck.

本発明においては、特に加熱手段に対し、リップル分が
4%以−トに抑えられたほぼ直流の電流を通電すること
によって加熱する。
In the present invention, in particular, heating is carried out through the heating means by passing a substantially direct current with ripple content suppressed to 4% or less.

例えば磁場発生手段(7)によって得た4100G (
ガウス)の磁場中で、加熱手段(4)のヒーター(5)
にリップルが3%の直流電流を通じてその加熱を行った
ところ、半導体融液、例えばSt融液(3)の融液面は
、明確にその輪郭を観察することができ、融液面に殆ど
振動が生じていないことが確認され、また、引上げ成長
された単結晶も、冒頭に述べた種々の欠陥が著しく減少
していることが確められた。面、この場合において、磁
場を与えない状態では、融液面の振動が激しく、その輪
郭は明確に観察することができなかった。また、因みに
従来方法においては、加熱手段(4)のヒーター(5)
には、交流が与えられるものであり、この場合において
、上述した磁場を与えても融液面に振動が生ずる。これ
は、磁場中において交流の流れるヒーター(5)が振動
し、これが容器(2)に伝達されることによる。又、磁
場が強いときにはこの振動によってヒーター(5)が破
損される。
For example, 4100G (
Gaussian) magnetic field, the heater (5) of the heating means (4)
When Ripple heated the semiconductor melt through a DC current of 3%, the outline of the melt surface of the semiconductor melt, for example, St melt (3), could be clearly observed, and there was almost no vibration on the melt surface. It was confirmed that no defects occurred, and it was also confirmed that the various defects mentioned at the beginning of the pull-grown single crystal were significantly reduced. In this case, in the absence of a magnetic field, the melt surface vibrated so violently that its outline could not be clearly observed. Incidentally, in the conventional method, the heater (5) of the heating means (4)
An alternating current is applied to the melt, and in this case, vibrations occur on the melt surface even if the above-mentioned magnetic field is applied. This is because the heater (5) through which alternating current flows vibrates in the magnetic field, and this vibration is transmitted to the container (2). Moreover, when the magnetic field is strong, the heater (5) is damaged by this vibration.

本発明においては、上述したように、加熱手段(4)の
ヒーター(5)に、はぼ直流の電流を与え、且つ単結晶
育成部に磁界をかけるものであって、このようにするこ
とによって融液面に振動がなく、欠陥の殆どない良質の
単結晶を安定に成長させることができるものである。そ
して、この場合、ヒーター(5)への通電電流は、その
リップル分が4%以下の直流電流であれば良いこ、とが
確められた。
In the present invention, as described above, a nearly direct current is applied to the heater (5) of the heating means (4), and a magnetic field is applied to the single crystal growth area. There is no vibration on the melt surface, and high quality single crystals with almost no defects can be stably grown. In this case, it was confirmed that the current supplied to the heater (5) should be a direct current with a ripple of 4% or less.

また、上述したように磁場の印加によって安定した良質
の単結晶を成長させることができるのは、導電性を有す
る液に、磁場を与えると、磁気流体効果によってその見
掛けの粘性が高められることにより表面張力が高められ
ると共に融液の対流が減少することによると考えられる
。これらによって単結晶成長部の融液面の温度の変動や
振動が抑制され、更に後述する酸素の含有倉減じ得る。
Furthermore, as mentioned above, it is possible to grow stable, high-quality single crystals by applying a magnetic field because when a magnetic field is applied to a conductive liquid, its apparent viscosity is increased by the magnetohydrodynamic effect. This is thought to be due to the increase in surface tension and the decrease in convection of the melt. These suppress temperature fluctuations and vibrations on the melt surface in the single crystal growth area, and further reduce oxygen content, which will be described later.

すなわち、磁界中の導電性を有する流体の粘性はレーリ
ー−シェフリーズ(Rayleigh−Jeffrey
s)の式による量ηHに依存する。
That is, the viscosity of a conductive fluid in a magnetic field is determined by the Rayleigh-Jeffrey
s) depends on the quantity ηH.

ηH= (4/27Xd” /π2)(σμ2 H’ 
/、 7 )・・・(1) (ここでdは融液の深さ、σは融液の電気伝導度(Si
においては約12000Ω−10−1)、μは透磁率、
Hは磁場の強さ) したがって、半導体融液、例えばSL融液に磁界が掛け
られるごとによって、この融液の粘性が増し、加熱手段
(4)を直流駆動にして振動の激減化をはかったことと
相俟って上述した対流及び振動が抑えられ、温度の安定
化がはかられ、これらによって成長単結晶体の、再溶融
等も回避できる。
ηH= (4/27Xd"/π2)(σμ2 H'
/, 7)...(1) (where d is the depth of the melt, σ is the electrical conductivity of the melt (Si
is about 12000Ω-10-1), μ is magnetic permeability,
(H is the strength of the magnetic field) Therefore, each time a magnetic field is applied to a semiconductor melt, for example, an SL melt, the viscosity of this melt increases, and the heating means (4) is driven by direct current to drastically reduce vibrations. In conjunction with this, the above-mentioned convection and vibrations are suppressed, the temperature is stabilized, and re-melting of the grown single crystal can also be avoided.

半導体、例えばシリコンの単結晶体において、#1素濃
度が高い場合、この単結晶体によって半導体装置を製造
する過程での熱処理において、槓1tm欠陥や、酸素の
析出物等の欠陥発生を招来し、半導体装置の特性に悪影
響をもたらす。したが、っ−(引上法による単結晶半導
体においては、できるだけ、酸素濃度を低めることが望
まれる。ところが通常の磁場を与えない単結晶の成長方
法では、その酸素濃度は1〜1.5 X 10” at
oms/cm”程度の比較的高い濃度を有する。これは
、通常、半導体融液の容器として石英るつぼを用いるも
のであり、この石英(5i02)るつぼから酸素が供給
されてこれが結晶中に混入するためである。ところが、
上述した本発明によれば、この酸素濃度を減少させるこ
とができる。これは本発明において対流及び振動の抑制
をはかったごとによって石英るつぼ(2)から融液(3
)への酸素成分の融解と移動とが減少することによると
思われる。
When a semiconductor, for example a silicon single crystal, has a high #1 element concentration, defects such as 1tm defects and oxygen precipitates may occur during heat treatment during the process of manufacturing semiconductor devices using this single crystal. , which has an adverse effect on the characteristics of the semiconductor device. However, in single-crystal semiconductors grown using the pulling method, it is desirable to lower the oxygen concentration as much as possible. However, in the normal single-crystal growth method that does not apply a magnetic field, the oxygen concentration is 1 to 1.5. X 10” at
It has a relatively high concentration of about 100 ms/cm". This is because a quartz crucible is usually used as a container for the semiconductor melt, and oxygen is supplied from this quartz (5i02) crucible and mixed into the crystal. However,
According to the present invention described above, this oxygen concentration can be reduced. This is due to the suppression of convection and vibration in the present invention, which causes the melt to flow from the quartz crucible (2) to the melt (3).
This appears to be due to a decrease in the melting and migration of oxygen components to ).

尚、本発明方法においては、容器(2)と、引上単結晶
体(10) (したがってシード(8))は、回転しな
い状態で行うことも両者は相対的に回転させるようにす
ることもできる。因みに、その回転数と、酸素濃度との
関係は、第2図に示すようにその回転数が大となると濃
度が増す。これは、前述したように回転に伴って石英る
つぼからの酸素のとり込み量が多くなるごとに因ると思
われる。
In addition, in the method of the present invention, the container (2) and the pulled single crystal (10) (therefore, the seed (8)) may be unrotated or both may be rotated relative to each other. can. Incidentally, the relationship between the number of rotations and the oxygen concentration is as shown in FIG. 2, as the number of rotations increases, the concentration increases. This seems to be due to the fact that as the crucible rotates, the amount of oxygen taken in from the quartz crucible increases as described above.

尚、上述した図示の各側は単結晶体を棒状に引」二げ成
長させた場合であるが、この場合において磁場発生手段
(7)を電磁石によって構成し、結晶の引上げ過程で、
この電磁石に対する通電を一定時間断つ作業を繰返えす
ことによって、引上げ単結晶(10)の一部にその軸方
向を横切るように酸素濃度が高くその後の熱処理で欠陥
の発生し易い層(12)を所定間隔を保持するよう形成
することもできる。このように欠陥層(12)を有する
単結晶は、スライスして、例えば一方の主面又は内部に
欠陥M(12)を有するウェファ−(13)を切り出す
。そして、他方の主面にトランジスタ、ダイオード等の
各種半導体素子(14)を形成する。このようにすると
きは、熱処理過程を経ることによって酸素濃度の高い欠
陥層(12)に転位等を発生させることができ、良く知
られているように、ウェファ−(13)中の素子(14
)に悪影響を及ばずFe。
Each side of the diagram above shows the case where a single crystal is pulled and grown into a rod shape. In this case, the magnetic field generating means (7) is constituted by an electromagnet, and in the process of pulling the crystal,
By repeating the process of cutting off the electricity to the electromagnet for a certain period of time, a layer (12) with a high oxygen concentration that is likely to cause defects during subsequent heat treatment is created in a part of the pulled single crystal (10) across the axial direction of the pulled single crystal (10). can also be formed to maintain a predetermined interval. The single crystal having the defect layer (12) in this way is sliced to cut out a wafer (13) having the defect M (12) on one main surface or inside, for example. Various semiconductor elements (14) such as transistors and diodes are then formed on the other main surface. When doing this, it is possible to generate dislocations etc. in the defect layer (12) with a high oxygen concentration by going through a heat treatment process, and as is well known, the elements (14) in the wafer (13) can be generated.
) with no adverse effect on Fe.

Cu、 Ni等の重金属の吸収、ずなわぢゲッタリング
を行うようにすることができる。
It is possible to absorb heavy metals such as Cu and Ni, and perform Znawa gettering.

また、上述の図示の各側は、棒状の単結晶体(10)を
引上げる場合を示したものであり、この場合、半導体装
置を得るに当っては、単結晶体(lO)をスライスして
ウェファ−を得るものであるが、成る場合は、単結晶の
成長時の板状の単結晶体として成長させ、例えば太陽電
池を製造する場合に好適ならしめることができる。
In addition, each side of the above diagram shows the case where a rod-shaped single crystal body (10) is pulled, and in this case, in order to obtain a semiconductor device, the single crystal body (10) is sliced. When a wafer is obtained, it can be grown as a plate-like single crystal during single crystal growth, and can be suitable for manufacturing solar cells, for example.

第3図の例では、融液(3)の液面上にこの液面の移動
に伴って移動できるようにしたガイド板(138及び(
13b )を設け、板状の単結晶シード(8)を用いて
、ガイド板(13a)及び(13b)間から板状の単結
晶体(10)を引上げ成長させるようにした場合である
。第3図において第1図と対応する部分には同一符号を
付して重複説明を省略する。
In the example shown in FIG. 3, guide plates (138 and
13b) is provided, and a plate-shaped single crystal seed (8) is used to pull and grow a plate-shaped single crystal body (10) from between the guide plates (13a) and (13b). In FIG. 3, parts corresponding to those in FIG. 1 are designated by the same reference numerals, and redundant explanation will be omitted.

また、第4図に示す例においては、融液(3)の表面か
ら横方向(はぼ水平方向)に単結晶シード(8)を引き
、板状単結晶体(10)を成長させて行くようにした場
合で、この第4図においても第1図と対応する部分には
同一符号を付して重複説明を省略する。(15)はヒー
トシンクである。
In the example shown in Fig. 4, a single crystal seed (8) is drawn laterally (almost horizontally) from the surface of the melt (3) to grow a plate-shaped single crystal (10). In this case, the same reference numerals are given to the parts corresponding to those in FIG. 1 in FIG. (15) is a heat sink.

このように板状単結晶体を得る場合においては特に、融
液(3)の表面における液面における振動、温度等は、
単結晶体の特性に大きな影響を及ぼすので、本発明方法
によるときは、前述したように、特に融液面における安
定性を保持でき、良質の板状単結晶体を得ることができ
る。更に、特に、横引きによって単結晶体を得る第4図
に示す例の場合、融液(3)の液面が一定位置に保持さ
せるために容器(2)に対して図示しないが融液材を補
給しつつその成長を行うものであるが、この補給融液の
温度、すなわち融解速度を一定に保つことができるので
、本発明方法の適用は、特に有益となる。
In particular, when obtaining a plate-like single crystal in this way, vibrations, temperature, etc. on the surface of the melt (3) should be
Since this has a large effect on the properties of the single crystal, when the method of the present invention is used, stability can be maintained particularly at the melt surface, and a plate-shaped single crystal of good quality can be obtained, as described above. Furthermore, especially in the case of the example shown in FIG. 4 in which a single crystal is obtained by horizontal drawing, the melt material (not shown) is moved relative to the container (2) in order to maintain the liquid level of the melt (3) at a constant position. Application of the method of the present invention is particularly advantageous because the temperature of the replenishing melt, that is, the melting rate, can be kept constant.

上述したように、本発明方法によれば、安定した半導体
単結晶の成長を行うことができるので、再現性良く特性
の均一な単結晶を能率良く得るこ店ができ工業的利益は
甚大である。
As mentioned above, according to the method of the present invention, it is possible to stably grow a semiconductor single crystal, so that it is possible to efficiently obtain a single crystal with good reproducibility and uniform characteristics, and the industrial benefits are enormous. .

尚、上述した例においては融液がSi融液である場合で
あるが、他のGeやm−v族化合物半導体、或いは誘電
体、磁性体、各種金属などの、得ようとする結晶に応じ
た融液又は溶液である場合もあること−云う迄もない。
In the above example, the melt is a Si melt, but it may be made of other Ge, m-v group compound semiconductors, dielectrics, magnetic materials, various metals, etc., depending on the crystal to be obtained. It goes without saying that it may also be a melt or solution.

また、ヒーターへの印加電流は直流以外に、磁場の作用
によっても振動の発生を殆んど回避できるのは、1 k
Hz以上の交流又は脈流であることも確められた。
Furthermore, in addition to direct current, the current applied to the heater can almost avoid vibration due to the action of a magnetic field.
It was also confirmed that the current was alternating current or pulsating current of Hz or higher.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第3図、第4図は夫々本発明による半導体単結
晶の成長方法の各側を実施する単結晶成長装置の例を示
ず路線的構成図、第2図は酸素濃度と回転速度との関係
を示す曲線図である。 (11は単結晶成長装置、(2)は半導体融液(3)を
収容する容器、(4)は加熱手段、(5)はそのヒータ
ー、(6)はジャケット、(7)は磁場発生手段、(8
)は単結晶シードである。 代理人 伊藤 貞 同 松隈秀盛 手続ネ市正書 (方式) %式% 3、?iti正をする者 事件との関係 特許出願人 住 所 東京部品用区北品用6丁目7番35J8名称(
218)ソニー株式会社 代表取締役 大 賀 典 雄 − 4、代理人 6、補正により増加する発明の数
Figures 1, 3, and 4 are schematic diagrams of a single crystal growth apparatus for carrying out each side of the semiconductor single crystal growth method according to the present invention, and Figure 2 is a diagram showing the oxygen concentration and rotation. It is a curve diagram showing the relationship with speed. (11 is a single crystal growth device, (2) is a container containing the semiconductor melt (3), (4) is a heating means, (5) is its heater, (6) is a jacket, and (7) is a magnetic field generating means. , (8
) is a single crystal seed. Agent Sadato Ito Hidemori Matsukuma procedure Neichisho (method) % formula% 3,? Relationship with the case of a person who does iti correction Patent applicant address: 6-7-35J8, Kitashina-yo, Tokyo Parts-Yo-ku Name (
218) Sony Corporation Representative Director Norio Ohga - 4, Agent 6, Number of inventions increased by amendment

Claims (1)

【特許請求の範囲】[Claims] 半導体の液状体を収容する容器と、該容器の周囲に配さ
れた電流路を有する加熱手段と、上記液状体に所定方向
の磁場を印加する手段と、上記液状体とこれに接触する
結晶体の力学的な位置変化により上記液状体から結晶を
成長させる手段とを設け、上記電流路は、上記磁場の及
ぶ位置にあり、該電流路にはリップル分が4%以下のほ
ぼ直流の電流を供給することを特徴とする結晶の成長方
法。
A container containing a semiconductor liquid, a heating means having a current path arranged around the container, a means for applying a magnetic field in a predetermined direction to the liquid, and a crystal body in contact with the liquid. means for growing crystals from the liquid material by dynamically changing the position of the current path, the current path is located at a position covered by the magnetic field, and a substantially direct current with a ripple content of 4% or less is applied to the current path. A method for growing crystals characterized by supplying.
JP16465284A 1984-08-06 1984-08-06 Method for growing crystal Pending JPS60155595A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP16465284A JPS60155595A (en) 1984-08-06 1984-08-06 Method for growing crystal
CN 85101043 CN1015187B (en) 1984-08-06 1985-04-01 Monocrystal growing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16465284A JPS60155595A (en) 1984-08-06 1984-08-06 Method for growing crystal

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP12133979A Division JPS5850951B2 (en) 1979-09-20 1979-09-20 Crystal growth method and crystal growth equipment used for this method

Related Child Applications (2)

Application Number Title Priority Date Filing Date
JP24775185A Division JPS61141695A (en) 1985-11-05 1985-11-05 Method of growing crystal
JP24775085A Division JPS61141694A (en) 1985-11-05 1985-11-05 Method of growing crystal

Publications (1)

Publication Number Publication Date
JPS60155595A true JPS60155595A (en) 1985-08-15

Family

ID=15797245

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16465284A Pending JPS60155595A (en) 1984-08-06 1984-08-06 Method for growing crystal

Country Status (1)

Country Link
JP (1) JPS60155595A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3732250A1 (en) * 1986-09-25 1988-03-31 Sony Corp METHOD FOR DRAWING SINGLE CRYSTALS

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5850951A (en) * 1981-09-22 1983-03-25 セイコーエプソン株式会社 Bracket for orthodontia

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5850951A (en) * 1981-09-22 1983-03-25 セイコーエプソン株式会社 Bracket for orthodontia

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3732250A1 (en) * 1986-09-25 1988-03-31 Sony Corp METHOD FOR DRAWING SINGLE CRYSTALS

Similar Documents

Publication Publication Date Title
EP0140565B1 (en) Method for growing multicomponent compound semiconductor crystals
JPS5874594A (en) Growing method for crystal
JP2017031004A (en) Method of manufacturing silicon single crystal
US6565652B1 (en) High resistivity silicon wafer and method of producing same using the magnetic field Czochralski method
JPS5850951B2 (en) Crystal growth method and crystal growth equipment used for this method
JPS5850953B2 (en) crystal growth method
US3351433A (en) Method of producing monocrystalline semiconductor rods
JPH0212920B2 (en)
JPS60155595A (en) Method for growing crystal
JPS62153188A (en) Production of doped single crystal
JPS61141694A (en) Method of growing crystal
JPS61141695A (en) Method of growing crystal
JPS59121183A (en) Method for crystal growth
JPS6236096A (en) Production of single crystal and device therefor
US3268301A (en) Method of pulling a semiconductor crystal from a melt
JP3018738B2 (en) Single crystal manufacturing equipment
KR970007427B1 (en) Crystal growing method
CN215800039U (en) Growth system of semiconductor crystal for improving solubility of nitrogen source
CN113818085B (en) System and method for uniformly growing nitride single crystal by flux method
JPS6259598A (en) Indium phosphide single crystal and production thereof
RU2054495C1 (en) Gallium arsenide monocrystal growing method for manufacturing integrated circuit substrates
JPS6236097A (en) Production of single crystal and device therefor
JP2899692B1 (en) Crystal growth method and apparatus
US3716341A (en) Crucible-free zone melting device having an angled heating coil
JPS63144191A (en) Production of compound semiconductor single crystal and apparatus therefor