JPS60155539A - Burner for producing optical oxide powder - Google Patents

Burner for producing optical oxide powder

Info

Publication number
JPS60155539A
JPS60155539A JP1256984A JP1256984A JPS60155539A JP S60155539 A JPS60155539 A JP S60155539A JP 1256984 A JP1256984 A JP 1256984A JP 1256984 A JP1256984 A JP 1256984A JP S60155539 A JPS60155539 A JP S60155539A
Authority
JP
Japan
Prior art keywords
burner
soot
burners
raw material
oxide powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1256984A
Other languages
Japanese (ja)
Inventor
Seiji Shibuya
渋谷 晟二
Tsugio Sato
継男 佐藤
Wataru Komatsu
亘 小松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP1256984A priority Critical patent/JPS60155539A/en
Publication of JPS60155539A publication Critical patent/JPS60155539A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/01413Reactant delivery systems
    • C03B37/0142Reactant deposition burners
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/04Multi-nested ports
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/04Multi-nested ports
    • C03B2207/16Non-circular ports, e.g. square or oval
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/20Specific substances in specified ports, e.g. all gas flows specified
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/50Multiple burner arrangements
    • C03B2207/52Linear array of like burners

Abstract

PURPOSE:To produce a soot rod having uniform soot density, in high reproducibility, by using the titled burner composed of a mutually integrated plural unit burners, and reacting the vapor-phase raw material with the flame using said burner. CONSTITUTION:The burner 1 for the production of the powder of oxide for optical use is composed of a plurality of unit burners 2,2..., each having a multi- tube structure and integrated with each other. The burners 2,2... are divided by the outermost walls 3,3... from each other, and share the walls 3a,3a... with the adjacent burner. Polygonal paths of the raw material 4, the oxygen 5 and the hydrogen 6 are formed in the outer wall 3 of each burner 2 from the center outward. The combustion gas blasted from each burner 2 is instantaneously diffused and mixed with the adjacent combustion gas, and is homogenized before it reaches the soot deposition surface. Accordingly, the abrupt change in the surface temperature of the soot rod can be prevented.

Description

【発明の詳細な説明】 本発明は気相原料と火炎との反応により光学系酸化物粉
末を生成するためのバーナに関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a burner for producing optical oxide powder by reaction of a gas phase raw material with a flame.

スート棒とも称される多孔質の光フアイバ母相、ロッド
レンズ母材などを既知のVAD法OVD法等により製造
するとき、多重管同心円バーナ、多心ノズルバーナなど
、適当な火炎反応用バーナが用いられでおり、例えば第
1図に示すようにVAD法で必要な屈折率分布を持った
スート棒(母材)Sをつくるとき、ドーパント濃度の異
なる独立した複数の火炎反応バーナBを使用している。
When manufacturing porous optical fiber matrix (also called soot rod), rod lens matrix, etc. by the known VAD method, OVD method, etc., an appropriate flame reaction burner such as a multi-tube concentric burner or a multi-core nozzle burner is used. For example, as shown in Figure 1, when making a soot rod (base material) S with the refractive index distribution required by the VAD method, a plurality of independent flame reaction burners B with different dopant concentrations are used. There is.

また、第2図に示す如くコア、クラッドの合成をする場
合にも、コア用の火炎反応バーナBと2ケのクラッド用
火炎反応バーナCとを使用している。
Furthermore, as shown in FIG. 2, when synthesizing the core and cladding, a flame reaction burner B for the core and two flame reaction burners C for the cladding are used.

このような場合、複数の火炎反応バーナにより光学系酸
化物粉末を生成するので、所要屈折率分布を持った大き
なコアやコアとクランドの合成により大きなスート棒を
得ることができる。
In such a case, since the optical system oxide powder is produced using a plurality of flame reaction burners, a large core having the desired refractive index distribution or a large soot rod can be obtained by synthesizing the core and the crund.

しかしながら、複数の火炎反応バーナを用いる上記従来
例では、各バーナ相互が空間を介して分離しているので
、各火炎反応バーナの境界にスート表面温度の不連続部
分が生じ、当該部分のスート密度が大きく変わるので、
焼結の際、泡が発生したり、ドーパント濃度分布の異富
が起こる不具合があった。
However, in the above conventional example using a plurality of flame reaction burners, each burner is separated from each other through a space, so a discontinuous part of the soot surface temperature occurs at the boundary of each flame reaction burner, and the soot density of the part changes greatly, so
During sintering, there were problems such as generation of bubbles and uneven dopant concentration distribution.

一般に、OVD法やVAD法のようなスート堆積法によ
る多孔質母材(スート棒)の製法にあっては、スートの
堆積効率やドーパントの収率等は堆積面の温度に依存す
るところが大きい。
Generally, in a method for manufacturing a porous base material (soot rod) by a soot deposition method such as an OVD method or a VAD method, soot deposition efficiency, dopant yield, etc. largely depend on the temperature of the deposition surface.

スート表面の急激な温度化は、スート密度、ドーパント
濃度を局部的に変化させるので、径、細雨方向共に無い
方が好ましい。
Since a rapid temperature increase on the soot surface locally changes the soot density and dopant concentration, it is preferable that there is no such phenomenon in both the diameter and the rain direction.

複数バーナを使用した場合は、フレームが互に干渉し、
バーナの間隔を近づけると境界の温度は他の部分より高
くなり、離すと低くなる。
If multiple burners are used, the frames may interfere with each other,
If the burners are spaced close together, the temperature at the boundary will be higher than other areas, and if they are spaced apart, the temperature will be lower.

それゆえ、均一な温度分布、滑らかな温度勾配を持たせ
るには、酸水素流量、バーナ間隔等の調整が難しく、再
現性に乏しい。
Therefore, in order to have a uniform temperature distribution and a smooth temperature gradient, it is difficult to adjust the oxyhydrogen flow rate, the burner interval, etc., and the reproducibility is poor.

本発明は、このような従来の実情に鑑みてなされたもの
で、複数の火炎反応バーナ相互間の温度の不連続部分の
発生を阻止し、かつ均一なスート密度のスート棒を再現
性よ(得られるようにして、大型母材の製作を可能にす
るのが、その目的である。
The present invention has been made in view of the above-mentioned conventional circumstances, and is capable of preventing the occurrence of temperature discontinuities between a plurality of flame reaction burners, and reproducibly producing soot rods with uniform soot density. The purpose is to make it possible to produce large base materials.

以下、図面に基づいて本発明の一実施例について詳述す
る。
Hereinafter, one embodiment of the present invention will be described in detail based on the drawings.

本発明の第1実施例を示す第3図において、光学系酸化
物粉末生成用のバーナ1は、多重管構造とした複数の単
位バーナ部2.2・・・・・が互いに隣接して結合され
たものであり、各単位バーナ部2.2・・・・・は最外
壁3.3・・・・・により互いにそれぞれ区画されてい
るとともにこれらの隣接部間における最外壁部3a、3
a・・・・・を共有している。
In FIG. 3 showing the first embodiment of the present invention, a burner 1 for producing an optical system oxide powder includes a plurality of unit burner parts 2, 2, etc., each having a multi-tube structure, connected adjacent to each other. The unit burner parts 2.2... are separated from each other by the outermost walls 3.3... and the outermost walls 3a, 3 between these adjacent parts.
We share a...

各単位バーナ部2.2・・・・・の最外壁3.3・・・
・・内には、中心から外方に向って、原料流通4、酸素
噴射流通6、水素噴射流通6が各々多角形状に形感され
ている。
The outermost wall 3.3 of each unit burner section 2.2...
... Inside, from the center outward, a raw material flow 4, an oxygen injection flow 6, and a hydrogen injection flow 6 are each shaped like a polygon.

本実施例は、このように隣接する各単位バーナ部2.2
・・・・・がこれら隣接部間の最外壁部3 a s 3
 a・・・・・を共有し、かかる状態で結合されている
ので、各単位バーナ部2.2・・・・・の間隔が一定化
し、有害な分離隙も生じない。
In this embodiment, each adjacent unit burner section 2.2
... is the outermost wall part 3 a s 3 between these adjacent parts
Since the unit burner portions 2, 2, .

したがって各単位バーナ部2.2・・・・・から噴射し
た直後の燃焼ガスは、それぞれ隣接する燃焼ガスと拡散
混合し、スート堆積面に到達する迄に均一化されるので
、スート棒表面温度の急激な変化がなくなり、もちろん
複数の独立バーナを配列するようなバーナ間隔の調整も
不要である。
Therefore, the combustion gas immediately after being injected from each unit burner section 2.2... diffuses and mixes with the adjacent combustion gas, and becomes uniform by the time it reaches the soot deposition surface, so that the soot rod surface temperature There is no need to adjust the burner spacing by arranging a plurality of independent burners.

第4図は本発明の第2実施例を示し、この実施例のバー
ナ1も各単位バーナ部2.2・・・・・が最外壁部3a
、3a・・・・・を共有している点で前記実施例と同じ
であるが、この第4図の実施例では、多角形状とした各
単位バーナ2.2・・・・・の最外壁3内において中央
に小円筒状の原料流通4、その周囲に複数の小円筒状と
した酸素噴射流通6.6・・・・・が設けられ、これら
流通4.6.5・・・・・を除(残余の空間が水素噴射
流通6となっている。
FIG. 4 shows a second embodiment of the present invention, and in the burner 1 of this embodiment, each unit burner section 2.2... is the outermost wall section 3a.
, 3a..., but in the embodiment shown in Fig. 4, the outermost wall of each unit burner 2.2... has a polygonal shape. 3, a small cylindrical raw material flow 4 is provided in the center, and a plurality of small cylindrical oxygen injection flows 6.6 are provided around it, and these flows 4.6.5... (The remaining space is the hydrogen injection flow 6.

上記第2実施例でも互いに隣接している単位バーナ部2
.2・・・・・相互が最外壁部3a13a・・・・・を
共有していることにより既述の効果が得られる。
Also in the second embodiment, the unit burner parts 2 are adjacent to each other.
.. 2... By mutually sharing the outermost wall portion 3a13a..., the above-mentioned effects can be obtained.

なお、第3図、第4図における最外壁3は図示の四角形
以外に三角形とか、五角形〜八角形などの多角形であっ
てもよく、もちろん各流通4.5,6も三角形〜八角形
などの多角形であってよいし、単位バーナ部2の結合数
も図示例に限定されず、適宜に増減できる。
In addition, the outermost wall 3 in FIGS. 3 and 4 may be a triangle or a polygon such as a pentagon to an octagon other than the illustrated quadrangle, and of course each circulation 4, 5, and 6 may also be a triangle to an octagon. The number of connected unit burner sections 2 is not limited to the illustrated example, and can be increased or decreased as appropriate.

次に、本発明の具体例、比較例について説明するO 具体例(1) 前記第3図に示した光学系酸化物粉末生成用バーナ1を
使い、各単位バーナ部2.2・・・・・の原料流通4に
S’ i Ct40.05 mat/m、酸素噴射流通
5にOt 3 L / 胴、水素噴射流通6にH24L
 / mを夫々流し、OVD法によりスートを合成し、
スートの表面温度を測定したところ、第5図の温度分布
図に示す如(、各単位バーナ部2.2.2の隣接部分に
急激な温度変化は見られなかった。
Next, specific examples and comparative examples of the present invention will be explained.Specific Example (1) Using the burner 1 for producing optical system oxide powder shown in FIG. 3, each unit burner section 2.2...・S' i Ct40.05 mat/m for raw material flow 4, Ot3 L for oxygen injection flow 5/H24 L for hydrogen injection flow 6
/m respectively, synthesize the soot by the OVD method,
When the surface temperature of the soot was measured, as shown in the temperature distribution diagram of FIG. 5, no rapid temperature change was observed in the adjacent portions of each unit burner section 2.2.2.

具体例(2) 前記第4図の光学系酸化物粉末生成用バーナ1を使い、
VAD法によりGl型光フフイ/(用スートを合成する
際、高屈折率部用(第4図左端)の単位バーナ部2には
その原料流通4にS i C1a0.05mot/m、
 Ge Cl2O,01mot/m。
Specific example (2) Using the optical system oxide powder production burner 1 shown in FIG. 4,
When synthesizing the soot for Gl-type optical fume/() by the VAD method, S i C1a0.05 mot/m is added to the unit burner section 2 for the high refractive index section (left end in FIG. 4) in its raw material distribution 4.
GeCl2O, 01 mot/m.

酸素噴射流通5に023t/m、水素噴射流通6にL 
41 / mを供給し、中屈折率部用(第4図中央)の
単位バーナ部2にはその原料流通4に5iCtaO50
7mal−/” s G e Ct40.005.m、
、ot/−酸素噴射流通6にOx 2.6 L / m
r、水素噴射流通6にH! 3.5 t/ 囮を供給し
、低屈折率部用(第4図右端)の単位バーナ部2にはそ
の原料流通4にS i Ct40.07 yyioA 
/ m、酸素噴射流通6にO12,、2t /+++t
i1水素噴射流通6にHx31/馴を供給してスートを
合成し、常法により透明ガラス化した後、干渉顕微鏡で
屈折率分布を調べたところ、これに乱れのない良好なプ
ルファイルが得られた。
023t/m for oxygen injection flow 5, L for hydrogen injection flow 6
41/m is supplied, and 5iCtaO50 is supplied to the unit burner section 2 for the medium refractive index section (center of Fig. 4) through its raw material distribution 4.
7mal-/”s G e Ct40.005.m,
, ot/- Oxygen injection flow 6 to Ox 2.6 L/m
r, H to hydrogen injection distribution 6! 3.5 t/ decoy is supplied, and S i Ct40.07 yyioA is supplied to the raw material distribution 4 to the unit burner section 2 for the low refractive index section (right end in Fig. 4).
/ m, O12 to oxygen injection flow 6,, 2t /+++t
After synthesizing soot by supplying Hx31/hydrogen to i1 hydrogen injection flow 6 and making it transparent vitrified by a conventional method, the refractive index distribution was examined using an interference microscope, and a good pull file with no disturbance was obtained. Ta.

比較例(1) 同心円4重管バーナを2本用い、各バーナB1、Btの
第1層にS i Cl< 0.05 mot/ ”% 
第2層にHz 3 t/m1第3層にA r O,6A
 /a、第4層にOs 6 t / mのガスを流し、
2本のバーナの間隔を20wn離して、外付法によりス
ートを合成した。
Comparative Example (1) Using two concentric quadruple tube burners, the first layer of each burner B1 and Bt contains S i Cl<0.05 mot/''%
Hz 3 t/m1 in the second layer A r O, 6A in the third layer
/a, a gas of Os 6 t/m is flowed into the fourth layer,
The soot was synthesized by the external method with two burners spaced apart by 20wn.

合成時のスート表面温度を測定したところ、第6図に示
した如く、バーナ間のスートに低温部分が見られた。
When the soot surface temperature was measured during synthesis, a low temperature area was observed in the soot between the burners, as shown in FIG.

この傾向は、間隔を近づけ密着しても変わらなかった。This tendency did not change even if the space was brought closer together.

比較例(2) 上記比較例(1)にあって、2本のバーナBs、B2の
間隔を511II+1とし、1本をやや傾けてフレーム
の先端部分がわずかに干渉するようにした場合の表面温
度を測定したところ、第7図に示した如く、干渉した部
分が高温になっていた。
Comparative Example (2) In Comparative Example (1) above, the interval between the two burners Bs and B2 is set to 511II+1, and one is slightly tilted so that the tip of the frame slightly interferes with the surface temperature. As a result of the measurement, as shown in FIG. 7, the interfered part became high temperature.

この結果、第5図〜第6図で明らかなように、各バーナ
相互が空間部を介して離隔された複数バーナを用いた比
較例において生じたバーナ間のスートの低温部分や高温
部分が、本発明の具体例では見られず、スート表面は均
一な温度分布になっている。
As a result, as is clear from FIGS. 5 and 6, the low-temperature and high-temperature portions of the soot between the burners, which occurred in the comparative example using multiple burners in which each burner was separated by a space, The soot surface has a uniform temperature distribution, which is not observed in the specific example of the present invention.

以上説明した通り、本発明は気相の原料と火炎との反応
により光学系酸化物粉末を生成するためバーナにおいて
、複数の単位バーナ部はそれぞれ最外壁内に複数の流通
を有し、これら単位バーナ部が互いに隣接して結合され
ているとともに該各単位バーナ部はこれらの隣接部間に
おける最外壁部を共有していることを特徴としている。
As explained above, the present invention provides a burner for producing optical system oxide powder through the reaction of a gas phase raw material and a flame. It is characterized in that the burner parts are connected adjacently to each other, and each of the unit burner parts shares the outermost wall between these adjacent parts.

したがってVAD法、OVD法などにより所望屈折率分
布の各種スート棒(光フアイバ用、ロンドレンズ用、な
ど)をつくる場合、各単位バーナ部の境界と対応するス
ート堆積面の温度が均一化するとともにドープ速度も向
上し、大型で良質のスート棒が製造できるようになる。
Therefore, when making various soot rods (for optical fibers, rond lenses, etc.) with a desired refractive index distribution by the VAD method, OVD method, etc., the temperature of the soot deposition surface corresponding to the boundary of each unit burner part is made uniform, and The doping speed will also increase, making it possible to produce larger and better quality soot rods.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図は従来例におけるバーナの使用例を示し
た説明図、第3図は繍扁−益本発明バーナの第1実施例
を示した横断面図、第4図は本発明バーナの第2実施例
を示した横断面図、第5図は本発明の具体例におけるス
ート棒表面の温度分布図、第6図1第7図はその比較的
におけるスート棒表面の温度分布図である。 1・・・・・光学系酸化物粉末生成用バーナ2・・・・
・単位バーナ部 3・・・・・最外壁 3a・・・・・共有の最外壁部 4.5.6−・・・流 道 特許出願人 代理人 弁理士 斎 藤 義 雄 第1図 第2r1!J β 第3図 第4図 第5図 第2r1!J 第7図 IBjl
1 and 2 are explanatory diagrams showing an example of the use of a conventional burner, FIG. 3 is a cross-sectional view showing a first embodiment of the burner according to the present invention, and FIG. 4 is a cross-sectional view showing an example of the burner according to the present invention. A cross-sectional view showing the second embodiment of the burner, FIG. 5 is a temperature distribution diagram on the soot rod surface in a specific example of the present invention, and FIG. 6 and FIG. 7 are comparative temperature distribution diagrams on the soot rod surface. It is. 1... Burner for producing optical system oxide powder 2...
・Unit burner section 3...Outermost wall 3a...Common outermost wall part 4.5.6-...Yoshio Saito, Patent Attorney, Patent Attorney, Patent Applicant, Figure 1, Figure 2r1 ! J β Fig. 3 Fig. 4 Fig. 5 Fig. 2r1! J Figure 7 IBjl

Claims (1)

【特許請求の範囲】[Claims] 気相の原料と火炎との反応により光学系酸化物粉末を生
成するためのバーナにおいて、複数の単位バーナ部はそ
れぞれ最外壁内に複数の流通を有し、これら単位バー大
部が互いに隣接して結合されているとともに該各単位バ
ーナ部はこれらの隣接部間における最外壁部を共有して
いる光学系酸化物粉末生成用バーナ。
In a burner for producing optical system oxide powder by reaction between a gas phase raw material and a flame, each of the plurality of unit burner parts has a plurality of passages within the outermost wall, and most of these unit bars are adjacent to each other. A burner for producing an optical system oxide powder, in which each unit burner part shares an outermost wall part between adjacent parts.
JP1256984A 1984-01-26 1984-01-26 Burner for producing optical oxide powder Pending JPS60155539A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1256984A JPS60155539A (en) 1984-01-26 1984-01-26 Burner for producing optical oxide powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1256984A JPS60155539A (en) 1984-01-26 1984-01-26 Burner for producing optical oxide powder

Publications (1)

Publication Number Publication Date
JPS60155539A true JPS60155539A (en) 1985-08-15

Family

ID=11808981

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1256984A Pending JPS60155539A (en) 1984-01-26 1984-01-26 Burner for producing optical oxide powder

Country Status (1)

Country Link
JP (1) JPS60155539A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002362934A (en) * 2001-06-06 2002-12-18 Furukawa Electric Co Ltd:The Device for manufacturing preform of optical fiber and method for manufacturing preform of optical fiber using the same
EP1414764A1 (en) * 2002-06-28 2004-05-06 LG Cable Ltd. Outside vapor deposition apparatus for making optical fiber preform and method for making optical fiber preform using the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002362934A (en) * 2001-06-06 2002-12-18 Furukawa Electric Co Ltd:The Device for manufacturing preform of optical fiber and method for manufacturing preform of optical fiber using the same
EP1414764A1 (en) * 2002-06-28 2004-05-06 LG Cable Ltd. Outside vapor deposition apparatus for making optical fiber preform and method for making optical fiber preform using the same
EP1414764A4 (en) * 2002-06-28 2004-09-01 Lg Cable Ltd Outside vapor deposition apparatus for making optical fiber preform and method for making optical fiber preform using the same
US7441417B2 (en) 2002-06-28 2008-10-28 Ls Cable Ltd. Outside vapor deposition apparatus for making optical fiber preform

Similar Documents

Publication Publication Date Title
JPS59232934A (en) Production of base material for optical fiber
JPS61270226A (en) Burner for producing fine glass particle
US4915716A (en) Fabrication of lightguide soot preforms
JPS60155539A (en) Burner for producing optical oxide powder
JPS6022658B2 (en) Fiber for optical communication
JPH0236535B2 (en)
JPS6234699B2 (en)
JP2945148B2 (en) Manufacturing method of preform for optical fiber
JPS5820744A (en) Preparation of parent material for optical fiber
JPS62162641A (en) Production of preform for optical fiber
JPS5978941A (en) Manufacture of base material for optical fiber
JP2545408B2 (en) Method of manufacturing optical waveguide stop preform
JP3137849B2 (en) Manufacturing method of preform for dispersion shifted optical fiber
JPS6259063B2 (en)
JPH0525817B2 (en)
JPS63248734A (en) Production of optical fiber base material
KR860001979B1 (en) Making method for preform of optical fiber
JPS60264336A (en) Manufacture of optical glass preform
JPH0986948A (en) Production of porous glass base material for optical fiber
JPH0454625B2 (en)
JPS6317236A (en) Production of preform for optical fiber
JP3953855B2 (en) Method for producing porous base material
JPH027888B2 (en)
JPS6287428A (en) Production of porous preform for optical system
JPS63252937A (en) Production of optical fiber preform