JPS60155100A - Large-sized liquid helium storage tank - Google Patents

Large-sized liquid helium storage tank

Info

Publication number
JPS60155100A
JPS60155100A JP1029084A JP1029084A JPS60155100A JP S60155100 A JPS60155100 A JP S60155100A JP 1029084 A JP1029084 A JP 1029084A JP 1029084 A JP1029084 A JP 1029084A JP S60155100 A JPS60155100 A JP S60155100A
Authority
JP
Japan
Prior art keywords
shield plate
tank
liquid helium
shield
storage tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1029084A
Other languages
Japanese (ja)
Inventor
Masao Yoshikazu
吉和 雅雄
Takeo Yoshihara
吉原 健雄
Katsujiro Hori
堀 勝次郎
Akira Hirai
平井 章
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Heavy Industries Ltd
Kawasaki Motors Ltd
Original Assignee
Kawasaki Heavy Industries Ltd
Kawasaki Jukogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Heavy Industries Ltd, Kawasaki Jukogyo KK filed Critical Kawasaki Heavy Industries Ltd
Priority to JP1029084A priority Critical patent/JPS60155100A/en
Publication of JPS60155100A publication Critical patent/JPS60155100A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C3/00Vessels not under pressure
    • F17C3/02Vessels not under pressure with provision for thermal insulation
    • F17C3/08Vessels not under pressure with provision for thermal insulation by vacuum spaces, e.g. Dewar flask
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C13/00Details of vessels or of the filling or discharging of vessels
    • F17C13/001Thermal insulation specially adapted for cryogenic vessels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/03Thermal insulations
    • F17C2203/0304Thermal insulations by solid means
    • F17C2203/0308Radiation shield
    • F17C2203/0312Radiation shield cooled by external means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/01Pure fluids
    • F17C2221/016Noble gases (Ar, Kr, Xe)
    • F17C2221/017Helium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/01Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the phase
    • F17C2223/0146Two-phase
    • F17C2223/0153Liquefied gas, e.g. LPG, GPL
    • F17C2223/0161Liquefied gas, e.g. LPG, GPL cryogenic, e.g. LNG, GNL, PLNG

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Abstract

PURPOSE:To efficiently use helium gas and reduce the evaporation loss by thermally joining the cooling section of an extremely low-temperature freezer with the outermost shield plate to cool this shield plate. CONSTITUTION:An inner tank storing liquid helium 1 is enveloped by shield plates 4a, 4b and is further enveloped by an outer tank 3, and the space between the inner tank 2 and outer tank 3 is kept vacuum. A pipe 5 passing the evaporated gas of liquid helium 1 through it is provided on the surface of individual shield plates 4a, 4b in series from the inner shield plate 4b to the outer shield plate 4a in sequence, and the evaporated gas cools the shield plates 4a, 4b then is recovered. The cooling section 11 of an extremely low-temperature freezer 10 is thermally joined with the outermost shield plate 4a to cool the shield plate 4a, thereby the radiation heat from the inner surface of the shield plate 4a is widely reduced, and the evaporation ratio is made small.

Description

【発明の詳細な説明】 技術分野 この発明は、長期保存用大型液体ヘリウム貯槽に関する
DETAILED DESCRIPTION OF THE INVENTION TECHNICAL FIELD This invention relates to large liquid helium storage tanks for long-term storage.

従来技術 近年、特に脚光を浴びている極低温技術分野において、
液体ヘリウムの使用量は増加の一途を辿っているが、ヘ
リウムは量は有限であり、ユーザーにとっては低蒸発率
で経済的かつメンテナンス容易な大型貯槽が望捷れてい
る。
Conventional technology In the field of cryogenic technology, which has been in the spotlight in recent years,
Although the amount of liquid helium used continues to increase, the amount of helium is limited, and users are looking for large storage tanks that have a low evaporation rate, are economical, and are easy to maintain.

現在、液体ヘリウム等の極低温液体の貯槽としては、液
を貯留する内槽と、間隔を置いてこれを外囲し、外気に
接する゛外槽とを有し、これら内外槽の間を真空に保持
するとともに、内外槽の間に1乃至複数段のシールド板
を設け、貯槽内液の蒸発ガスの通る管を内側のシールド
板から順次外側のシールド板に直列的又は並列的に接触
させて冷却するガスシールド方式が広く採用されており
、シールド板の層数を増す稈貯液の蒸発率が低下するこ
とも知られているが、施工性、経済性の兼合いで現実的
にはシールド板の層数は1乃至2層であり、蒸発率は約
0.5〜1.0%/ day程度に止っている。
Currently, storage tanks for cryogenic liquids such as liquid helium have an inner tank that stores the liquid, an outer tank that surrounds this at intervals and is in contact with the outside air, and a vacuum is created between the inner and outer tanks. At the same time, one or more stages of shield plates are provided between the inner and outer tanks, and the pipes through which the evaporated gas of the liquid in the storage tank passes are brought into contact with the outer shield plate sequentially from the inner shield plate in series or in parallel. The gas shield method for cooling has been widely adopted, and it is known that the evaporation rate of the culm liquid that increases the number of layers of the shield plate decreases. The number of layers of the plate is 1 to 2, and the evaporation rate remains at about 0.5 to 1.0%/day.

従来使用されている液体ヘリウム貯槽は、その容量が大
きくても5,000 e程度であり、この程度の蒸発率
でもあまり問題はなかったが、今後必要とされる10,
000#クラス以−1−の長期間保存用大型液体ヘリウ
ム貯槽では、経済性の観点から蒸発率を1桁少なくする
ことが空寸れる。蒸発率を少くするにはシールド板の層
数を増ぜばよいが、シールド板の層数を増ぜば増す程、
製作が困難に々リコストが上列し、貯槽の外形寸法も大
きくなり、経済性の而から限界がある。
The liquid helium storage tanks used in the past have a capacity of about 5,000 e at most, and there was no problem with this level of evaporation rate, but in the future there will be a need for 10,000 e,
In large-scale liquid helium storage tanks for long-term storage of 000# class and above, it is impossible to reduce the evaporation rate by one order of magnitude from an economic point of view. To reduce the evaporation rate, increase the number of layers of the shield plate, but the more the number of layers of the shield plate increases,
It is difficult to manufacture, the cost is high, and the external dimensions of the storage tank are also large, so there is a limit due to economic efficiency.

目 0勺 この発明は、」−記のJj1情に鑑み、晴の有限なヘリ
ウムガスを効率良く使1[1することができ、長期の保
存に対しても蒸発ロスが少なくなる低蒸発率の経済性に
優れた大型液体ヘリウノ、貯槽を提供することを1]的
とする。
This invention, in view of the above circumstances, has been developed to make efficient use of limited helium gas, and has a low evaporation rate that reduces evaporation loss even during long-term storage. Our objective is to provide a large-sized liquid helium and storage tank that is highly economical.

構成 上記目的を達成する本発明の大型液体ヘリウム貯槽は、
真空に保持した内外槽間に設けられた1乃至複数層のシ
ールド板の最外層のシールド板に1乃至複数基の極低温
冷凍機の冷却部を熱的に結合させて、該シールド板を冷
却するようにしたことを特徴とする。
Structure: The large liquid helium storage tank of the present invention that achieves the above objects has the following features:
The cooling section of one or more cryogenic refrigerators is thermally coupled to the outermost shield plate of one or more layers of shield plates provided between the inner and outer tanks kept in a vacuum to cool the shield plate. It is characterized by being made to do.

以下、本発明を図面に示す実施例に基いて詳細に説明す
る。
Hereinafter, the present invention will be explained in detail based on embodiments shown in the drawings.

添付図面は、本発明の実施例の大型液体ヘリウム貯槽の
一実施例を図式的に示す縦断面図である。
The accompanying drawing is a vertical sectional view schematically showing an embodiment of a large liquid helium storage tank according to an embodiment of the present invention.

図に示す大型液体ヘリウム貯槽は、液1を貯留する内槽
2と、間隔を置いてこれを倒曲し、外気に接する外槽3
と、真空に保持された内外槽2゜3の間の空間に1乃至
複数段(図の例では2段)設けられたシールド板4 (
4a 、 41))とを有する。各シールド板4 a 
、 41)の表面には貯蔵された液体ヘリウム1の蒸発
ガスが通過する管5が最内層シールド板4bから最外側
シールド板4aに順次直列に接触してシールド板を冷却
した後、回収されるようにされている。この貯槽は外槽
3の下部に取付けられた複数(図の例の場合4本)の支
柱6で基礎7」−に支持されている。内槽2は多重管支
持部材8で外槽に支持されている。多重管 3− 支持部材は複数の管を同心円状に重ねて配置し、1本の
管を数回]ブtり返した形の多重管を形成し、熱の伝導
径路を長く12、伝熱抵抗を大きくして外槽から内槽へ
の熱伝導を少くしたものである。又、シールド板間には
ザーマルアンカーを用いて内槽への入熱を抑制している
。内槽2の頂部には、外槽を貫通する液体ヘリウム出入
口9が設けられ、図示せぬ密閉装置により密閉できるよ
うになっている。こ\迄に述べた構成は従来の小型の液
体ヘリウム等の極低温液体貯槽に一般に使用されている
構成と本質的に変る所はない。
The large liquid helium storage tank shown in the figure consists of an inner tank 2 that stores liquid 1, and an outer tank 3 that is bent at intervals and exposed to the outside air.
and a shield plate 4 (
4a, 41)). Each shield plate 4 a
, 41) A tube 5 through which vaporized gas of the stored liquid helium 1 passes is sequentially contacted in series from the innermost shield plate 4b to the outermost shield plate 4a to cool the shield plates and then collected. It is like that. This storage tank is supported on a foundation 7'' by a plurality of (four in the illustrated example) pillars 6 attached to the lower part of the outer tank 3. The inner tank 2 is supported by the outer tank by a multi-pipe support member 8. Multi-tube 3- The support member is made by arranging multiple tubes stacked concentrically to form a multi-tube in the form of one tube turned over several times to lengthen the heat conduction path12 and increase heat transfer. The resistance is increased to reduce heat conduction from the outer tank to the inner tank. Additionally, thermal anchors are used between the shield plates to suppress heat input into the inner tank. A liquid helium inlet/outlet 9 is provided at the top of the inner tank 2 and penetrates through the outer tank, and can be sealed by a sealing device (not shown). The configuration described so far is essentially the same as the configuration generally used in conventional small cryogenic liquid storage tanks such as liquid helium.

しかし、本実施例の大型液体ヘリウム貯槽では、図に示
す如く、最外層シールド板4aの外面に、小型極低温冷
凍機10の冷却部11が熱的に結合し、これにより最外
層シールド板4aを冷却するようにしである。
However, in the large liquid helium storage tank of this embodiment, as shown in the figure, the cooling part 11 of the small cryogenic refrigerator 10 is thermally coupled to the outer surface of the outermost shield plate 4a, and thereby the outermost shield plate 4a It is designed to cool down.

さて、内槽2と外槽3との間の空間は真空に保持されて
いるので、外槽3から内槽2−L′)熱Of!z達は専
ら輻射による。もし、内外槽間にシールド板4a、4b
及び内槽2の外面にスーパーインシ 4− ニレ−ジョンがない場合は、外槽内面からの輻射熱量が
そのま\内槽に入射する。その場合内槽外面を反射面と
するとともにスーパーインシュレーションを施こせば外
槽3の内面より輻射された熱を反射して入熱率が減少す
る。そこで内外槽間に1層又は複数層のシールド板4を
設はスーパーインシュレーションを施すことにより、外
槽内面からの輻射熱の内槽への入熱率は各シールド板の
入熱率の相乗積となって減少する。輻射熱の景は輻射体
の絶対温度の4乗に比例するので、シールド板の温度を
低くすることにより、その内面からの内槽2の方向への
輻射熱量を減少させることができる。従来の液体ヘリウ
ム貯槽におけるガスシールド方式はこの目的を達成する
ためのものである。
Now, since the space between the inner tank 2 and the outer tank 3 is kept in a vacuum, the heat is transferred from the outer tank 3 to the inner tank 2-L'). z are exclusively due to radiation. If the shield plates 4a and 4b are installed between the inner and outer tanks,
If there is no superincision on the outer surface of the inner tank 2, the amount of radiant heat from the inner surface of the outer tank directly enters the inner tank. In that case, if the outer surface of the inner tank is used as a reflective surface and super insulation is applied, the heat radiated from the inner surface of the outer tank 3 will be reflected and the heat input rate will be reduced. Therefore, by installing one or more layers of shield plates 4 between the inner and outer tanks and applying super insulation, the heat input rate of the radiant heat from the inner surface of the outer tank to the inner tank can be adjusted by multiplying the heat input rate of each shield plate. The product decreases. Since the radiant heat is proportional to the fourth power of the absolute temperature of the radiator, by lowering the temperature of the shield plate, the amount of radiant heat from its inner surface toward the inner tank 2 can be reduced. The gas shielding system in conventional liquid helium storage tanks is intended to achieve this purpose.

本発明の大型液体ヘリウム貯槽では、所望の数の小型極
低温冷凍機10の冷却部11を最外層シールド板4aの
外面に熱的に結合させて、最外層シールド板4aを概ね
一様に従来のガスシールド方式の場合よりも更に低温に
するようにしたことにより、最外層シールド内面からの
輻射熱量を従来よりも大幅に減少させることができ、蒸
発率を例えば0.1〜0.05%/ day程度迄下げ
ることが可能となる。
In the large liquid helium storage tank of the present invention, the cooling units 11 of a desired number of small cryogenic refrigerators 10 are thermally coupled to the outer surface of the outermost shield plate 4a, so that the outermost shield plate 4a is generally uniformly By making the temperature even lower than in the case of the gas shield method, the amount of radiant heat from the inner surface of the outermost shield can be significantly reduced compared to conventional methods, reducing the evaporation rate by, for example, 0.1 to 0.05%. /day.

効 果 その結果、本発明によらなかったならば同じ効果を得る
ために必要とした多数層のシールド板及ヒソの表面に施
工されるスーパーインシュレーションを大幅に減少させ
ることができ、貯槽の外形寸法の大型化の防11−、コ
スト」−胃の防11−が可能となることはもとより、回
収ガスの液化機能及び同消費電力の低減が図れるなど経
済性に優れた長期保存に適する大型液体ヘリウノ・貯槽
が得られる。
Effects As a result, it is possible to significantly reduce the number of layers of super insulation that would be required to obtain the same effect without the present invention, and to reduce the external shape of the storage tank. It is a large liquid that is suitable for long-term storage and has excellent economical efficiency, such as being able to prevent the increase in size and cost, as well as the ability to liquefy recovered gas and reduce power consumption. You will get a Heliuno storage tank.

【図面の簡単な説明】[Brief explanation of drawings]

添付図面は本発明の実施例の大型液体ヘリウム貯槽の構
成を概念的に示す縦断面図である。 1・・・液体ヘリウム 2・・・内槽 3・・・外槽 4a・・・爪間側シールド板4b・・・
最内側シールド板 5・・・蒸発ガス管6・・・支持部
材 7・・・基礎 8・・・多重管支持部材 10・・・小型極低温冷凍機 11・・・その冷却部
The accompanying drawing is a vertical sectional view conceptually showing the structure of a large liquid helium storage tank according to an embodiment of the present invention. 1...Liquid helium 2...Inner tank 3...Outer tank 4a...Claw side shield plate 4b...
Innermost shield plate 5...Evaporative gas tube 6...Support member 7...Foundation 8...Multiple tube support member 10...Small cryogenic refrigerator 11...its cooling section

Claims (1)

【特許請求の範囲】[Claims] 液体ヘリウムを貯留する内槽と、間隔を置いてこれを外
囲し外気に接する外槽と、上記内槽と外槽との間にあり
内槽全体を包囲する1乃至複数段のシールド板とを有し
、−4−記内槽と外槽との間の空間が真空に保持され、
各シールド板には内槽内に貯留された液体ヘリウムの蒸
発ガスを流す管を内側のシールド板より順次外側のシー
ルド板に接触させてシールド板を冷却するようにした大
型液体ヘリウム貯槽において、」1記の1乃至複数段の
シールド板の最外側のシールド板に1乃至複数基の極低
温冷凍機の冷却部を熱的に結合させて、該シールド板を
冷却するようにしたことを特徴とする大型液体ヘリウム
貯槽。
an inner tank for storing liquid helium; an outer tank that surrounds the liquid helium at intervals and is in contact with the outside air; and one or more stages of shield plates that are located between the inner tank and the outer tank and surround the entire inner tank. -4- The space between the inner tank and the outer tank is maintained in a vacuum,
A large liquid helium storage tank in which each shield plate is cooled by a tube through which vaporized gas of liquid helium stored in the inner tank is brought into contact with the outer shield plate in order from the inner shield plate. A cooling section of one or more cryogenic refrigerators is thermally coupled to the outermost shield plate of the one or more stages of shield plates as described in 1 above, so that the shield plate is cooled. Large liquid helium storage tank.
JP1029084A 1984-01-25 1984-01-25 Large-sized liquid helium storage tank Pending JPS60155100A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1029084A JPS60155100A (en) 1984-01-25 1984-01-25 Large-sized liquid helium storage tank

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1029084A JPS60155100A (en) 1984-01-25 1984-01-25 Large-sized liquid helium storage tank

Publications (1)

Publication Number Publication Date
JPS60155100A true JPS60155100A (en) 1985-08-14

Family

ID=11746165

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1029084A Pending JPS60155100A (en) 1984-01-25 1984-01-25 Large-sized liquid helium storage tank

Country Status (1)

Country Link
JP (1) JPS60155100A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2480529A (en) * 2010-05-19 2011-11-23 Gen Electric Thermal shield and method for thermally cooling a magnetic resonance imaging system
JP2013500454A (en) * 2009-07-30 2013-01-07 プラクスエア・テクノロジー・インコーポレイテッド Methods and systems for the supply and use of bulk ultra high purity helium

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5210785B2 (en) * 1973-11-07 1977-03-26
JPS589599B2 (en) * 1978-12-27 1983-02-22 日立化成工業株式会社 Manufacturing method of wiring board using wire for necessary wiring pattern with plugging part

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5210785B2 (en) * 1973-11-07 1977-03-26
JPS589599B2 (en) * 1978-12-27 1983-02-22 日立化成工業株式会社 Manufacturing method of wiring board using wire for necessary wiring pattern with plugging part

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013500454A (en) * 2009-07-30 2013-01-07 プラクスエア・テクノロジー・インコーポレイテッド Methods and systems for the supply and use of bulk ultra high purity helium
GB2480529A (en) * 2010-05-19 2011-11-23 Gen Electric Thermal shield and method for thermally cooling a magnetic resonance imaging system
US8797131B2 (en) 2010-05-19 2014-08-05 General Electric Company Thermal shield and method for thermally cooling a magnetic resonance imaging system
GB2480529B (en) * 2010-05-19 2016-06-08 Gen Electric Thermal shield and method for thermally cooling a magnetic resonance imaging system

Similar Documents

Publication Publication Date Title
US5524453A (en) Thermal energy storage apparatus for chilled water air-conditioning systems
Azad Experimental analysis of thermal performance of solar collectors with different numbers of heat pipes versus a flow-through solar collector
CN103968878B (en) Low temperature pulsating heat pipe experimental provision
EP0079960A1 (en) Improved cryopump.
CN113053615B (en) Helium microcirculation refrigeration Dewar system for superconducting magnet
Vasiliev REVIEW PAPERState-of-the-art on heat pipe technology in the former Soviet Union
US3314473A (en) Crystal growth control in heat exchangers
JPS60155100A (en) Large-sized liquid helium storage tank
JP2551067B2 (en) Cooling system
US3273636A (en) Space simulation chamber
CN1068940C (en) Thermoelectric refrigerator utilizing circular heat pipe for conductive heat dissipation
Deng et al. Development of the double two-phase thermosyphon loops used in low temperature Stirling refrigerator
JPS6290910A (en) Cryogenic device
JP5965281B2 (en) Flowing film evaporation heat exchanger
CN108847294A (en) A kind of separate type heat pipe exchanger structure in long-term passive cooling spentnuclear fuel pond
CN107542642A (en) Heavy caliber self-shileding refrigerator cryopump
US1976800A (en) Absorption refrigerating system
JPS60104899A (en) Low temperature vessel connected to refrigerator
JPS6016872Y2 (en) refrigerant gas cooler
JPH02259374A (en) Cooling apparatus using metal hydride
JPH08240353A (en) Cryostat and its operating method
SU1180640A1 (en) Cryostat
CN114087317A (en) Low-temperature cold superconducting vibration isolation device for space low-temperature refrigerator
JPS6069462A (en) Method of cooling cryogenic cooling device
JPS6023756A (en) Hot-water reserving tank