JP5965281B2 - Flowing film evaporation heat exchanger - Google Patents

Flowing film evaporation heat exchanger Download PDF

Info

Publication number
JP5965281B2
JP5965281B2 JP2012226915A JP2012226915A JP5965281B2 JP 5965281 B2 JP5965281 B2 JP 5965281B2 JP 2012226915 A JP2012226915 A JP 2012226915A JP 2012226915 A JP2012226915 A JP 2012226915A JP 5965281 B2 JP5965281 B2 JP 5965281B2
Authority
JP
Japan
Prior art keywords
heat transfer
tube
temperature
transfer tube
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012226915A
Other languages
Japanese (ja)
Other versions
JP2014077614A (en
Inventor
貞夫 長谷川
貞夫 長谷川
山本 隆晴
隆晴 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Engineering Corp
Original Assignee
Mitsubishi Chemical Engineering Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Engineering Corp filed Critical Mitsubishi Chemical Engineering Corp
Priority to JP2012226915A priority Critical patent/JP5965281B2/en
Publication of JP2014077614A publication Critical patent/JP2014077614A/en
Application granted granted Critical
Publication of JP5965281B2 publication Critical patent/JP5965281B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Description

本発明は、低温側で液化ガス流体を気化させる蒸発潜熱と高温側液流体の顕熱を熱交換させる流下液膜蒸発式熱交換器に関するものであり、特に、低温保持を要する設備の循環冷媒冷却装置において液化ガス流体の蒸発潜熱を利用する熱交換器、または熱交換の目的がその逆である、液化天然ガスを気化させて燃料として供給する液化ガス気化供給装置において高温液を加熱源として利用する熱交換器、および冷凍機の構成要素として置かれる冷媒蒸発器として使われる流下液膜蒸発式熱交換器に関するものである。   The present invention relates to a falling liquid film evaporation type heat exchanger for exchanging latent heat of vaporization for vaporizing a liquefied gas fluid on the low temperature side and sensible heat of the high temperature side liquid fluid, and in particular, a circulating refrigerant for equipment that needs to maintain a low temperature. A heat exchanger that uses the latent heat of vaporization of the liquefied gas fluid in the cooling device, or the liquefied natural gas vaporization and supply device that vaporizes liquefied natural gas and supplies it as fuel, with the purpose of heat exchange being the opposite. The present invention relates to a heat exchanger to be used and a falling liquid film evaporation heat exchanger used as a refrigerant evaporator placed as a component of a refrigerator.

小規模なガス供給基地では、液化天然ガスを気化させる熱交換器として、従来から、温水を加熱源とする温水槽式気化器が知られている(例えば、特許文献1参照)。この気化器は、液化天然ガスを流す長い管を温水槽の水中に収容した構造であり、管外の温水から伝熱加熱により管内を流れる液化天然ガスを気化させるものである。しかしながら、この方式では、管外の温水はほとんど静置状態で流れが穏やかなために伝熱効率が悪い。また、さらに管内の液化天然ガスは、気液混相の2相流であることからやはり伝熱効率が悪い。そのために総合的な伝熱効率を表す総括伝熱係数がきわめて小さいこととなり、気液2相流中の液飛沫まで完全な気化ガスを得ようとすると大きな伝熱面積、つまり長大な伝熱管を必要とする。その結果、長い伝熱管を収容するために装置全体の容積及び重量が非常に大きな熱交換器となる。   Conventionally, in a small gas supply base, a hot water tank type vaporizer using warm water as a heating source is known as a heat exchanger for vaporizing liquefied natural gas (see, for example, Patent Document 1). This vaporizer has a structure in which a long tube for flowing liquefied natural gas is accommodated in the water of a hot water tank, and vaporizes liquefied natural gas flowing in the tube from the hot water outside the tube by heat transfer heating. However, in this system, the heat transfer efficiency is poor because the warm water outside the tube is almost stationary and the flow is gentle. Furthermore, since the liquefied natural gas in the pipe is a gas-liquid mixed phase two-phase flow, the heat transfer efficiency is still poor. For this reason, the overall heat transfer coefficient representing the overall heat transfer efficiency is extremely small, and a large heat transfer area, that is, a long heat transfer tube is required to obtain a complete vaporized gas up to the liquid droplets in the gas-liquid two-phase flow. And As a result, the heat exchanger has a very large volume and weight in order to accommodate long heat transfer tubes.

また、液を蒸発させる熱交換器で伝熱効率の良い方式として、流下液膜式蒸発器が知られている(例えば、特許文献2参照)。この蒸発器は、鉛直に配置された直管の内面に沿わせて上方より液を流下させ、管外面からの加熱により流下液を蒸発させるものである。管外側の加熱源としてはスチーム潜熱によるものが一般的であるが、顕熱による場合も知られている。これら従来からの流下液膜蒸発式熱交換器は、高温側と低温側の温度差が小さい条件で使われているもので、直管の上端と下端が胴体管板で固定されている。対して、蒸発させる液が液化ガスの場合、例えば、液化窒素の沸点-196℃、液化天然ガスの沸点-161℃と超低温であり、管外高温液との温度差が非常に大きく熱歪による困難さが生じる。   Moreover, a falling liquid film evaporator is known as a heat exchanger that evaporates liquid and has good heat transfer efficiency (see, for example, Patent Document 2). This evaporator causes liquid to flow down from above along the inner surface of a vertically arranged straight pipe, and evaporates the falling liquid by heating from the outer surface of the pipe. The heat source outside the tube is generally based on the latent heat of steam, but is also known to be based on sensible heat. These conventional falling film evaporation type heat exchangers are used under the condition that the temperature difference between the high temperature side and the low temperature side is small, and the upper and lower ends of the straight pipe are fixed by a body tube plate. On the other hand, when the liquid to be evaporated is a liquefied gas, for example, the boiling point of liquefied nitrogen is -196 ° C and the boiling point of liquefied natural gas is -161 ° C, which is very low, and the temperature difference from the high temperature liquid outside the tube is very large due to thermal distortion Difficulties arise.

特開2001−201279号公報。JP 2001-201279 A. 特開2007−178034号公報。JP 2007-178034 A.

上述したように、従来の槽式気化器では大きな構造物になってしまうという問題があった。すなわち、小さな伝熱係数しか取りえないために大きな伝熱面積を要している。   As described above, the conventional tank type vaporizer has a problem that it becomes a large structure. That is, since only a small heat transfer coefficient can be obtained, a large heat transfer area is required.

一方、伝熱効率の良い熱交方式として従来の流下液膜式蒸発があるが、液化ガス気化器の場合、大気常温付近の高温加熱側と-100から-200℃の超低温液化ガスという大きな温度差による熱歪から、そのままでの使用は困難である。   On the other hand, there is a conventional falling film evaporation as a heat exchange method with good heat transfer efficiency, but in the case of a liquefied gas vaporizer, there is a large temperature difference between the high temperature heating side near ambient temperature and the ultra low temperature liquefied gas from -100 to -200 ° C. It is difficult to use as it is because of thermal distortion caused by

そこで、効率の良い伝熱方式にすることにより小さな伝熱面積で小さな構造物にすることができるとともに、超低温の液化ガス流体を使用した場合における熱歪の問題を無くし、構造が簡単で製作が容易な流下液膜蒸発式熱交換器を得るために解決すべき技術的課題が生じてくるのであり、本発明はこの課題を解決することを目的とする。   Therefore, by using an efficient heat transfer method, it is possible to make a small structure with a small heat transfer area, eliminate the problem of thermal distortion when using an ultra-low temperature liquefied gas fluid, and the structure is simple and manufactured. The technical problem which should be solved in order to obtain an easy falling film evaporation type heat exchanger arises, and this invention aims at solving this problem.

本発明は上記目的を達成するために提案されたものであり、請求項1記載の発明は、高温液流体から低温液化ガス流体への伝熱加熱により低温液化ガスを低温気化ガスに蒸発させる流下液膜蒸発式熱交換器において、前記熱交換器は、下面が閉じられた内筒伝熱管と、該内筒伝熱管を収容配置してなる外筒ジャケットと、該内筒伝熱管筒と該外筒ジャケットを間に隙間を設けて互いに垂直に接合保持してなる上部液溜めハウジングとを備え、前記内筒伝熱管の外壁と前記外筒ジャケットの内壁との前記隙間で形成された流路に前記高温液流体を通液し、かつ、前記低温液化ガス流体を前記上部液溜めハウジングから前記内筒伝熱管の内壁面に沿って流下させ、該内筒伝熱管を伝熱面とする伝熱加熱により蒸発し発生する低温気化ガスを前記内筒伝熱管上方に排出させる流下液膜蒸発式熱交換器を提供する。   The present invention has been proposed in order to achieve the above-mentioned object, and the invention according to claim 1 is a flow which evaporates a low-temperature liquefied gas into a low-temperature vaporized gas by heat transfer heating from the high-temperature liquid fluid to the low-temperature liquefied gas fluid. In the liquid film evaporation type heat exchanger, the heat exchanger includes an inner cylinder heat transfer tube having a closed bottom surface, an outer cylinder jacket accommodating and arranging the inner cylinder heat transfer tube, the inner cylinder heat transfer tube, and the A flow path formed by the gap between the outer wall of the inner cylinder heat transfer tube and the inner wall of the outer cylinder jacket. And the low temperature liquefied gas fluid is caused to flow down from the upper liquid reservoir housing along the inner wall surface of the inner tube heat transfer tube, and the inner tube heat transfer tube serves as a heat transfer surface. The low-temperature vaporized gas that evaporates by heat heating Providing falling film evaporator heat exchanger to be discharged upward heat transfer tube.

この構成によれば、伝熱効率の良い流下液膜式熱交換器で低温液化ガス流体を用いる場合、熱歪の問題があるが、熱歪みを避ける手段として、内筒伝熱管として下端面が閉じた内筒伝熱管を採用し、外筒ジャケットとは上部液溜めハウジングのみにて固定される片端支持とすることで、内筒伝熱管と外筒ジャケットの温度差による熱歪の問題を解消できる。また、気化させたい低温液化ガス流体は従来の流下液膜方式と同様に上部液溜めハウジングから内筒伝熱管内壁面に沿って鉛直方向に流下させ、内筒伝熱管外壁面からの加熱によって気化させられ、気化したガスは上方から排出する。以上により、請求項1記載の発明では、熱歪の問題を回避した流下液膜蒸発式熱交換器が可能となる。   According to this configuration, when using a low-temperature liquefied gas fluid in a falling film heat exchanger with good heat transfer efficiency, there is a problem of thermal distortion, but as a means to avoid thermal distortion, the lower end surface is closed as an inner tube heat transfer tube. The inner tube heat transfer tube is used, and the outer tube jacket is supported by one end fixed only by the upper liquid reservoir housing, thereby eliminating the problem of thermal distortion due to the temperature difference between the inner tube heat transfer tube and the outer tube jacket. . Also, the low-temperature liquefied gas fluid to be vaporized is caused to flow vertically from the upper liquid reservoir housing along the inner wall surface of the inner tube heat transfer tube in the same manner as the conventional falling film method, and is vaporized by heating from the outer wall surface of the inner tube heat transfer tube. The gas thus vaporized is discharged from above. As described above, the invention according to claim 1 enables a falling liquid film evaporation type heat exchanger that avoids the problem of thermal distortion.

なお、熱交換器の総合的な伝熱効率を表す総括伝熱係数は、内筒伝熱管の管内伝熱係数と管外伝熱係数の合成値であり、内筒伝熱管内低温側に採用する流下液膜式での沸騰蒸発は非常に大きな伝熱係数を得られることから、内筒伝熱管外の高温液流れ側の伝熱係数が律速となり、これをいかに大きい値に確保するかが続く課題となる。管表面の液流れにあって、その伝熱係数を大きくするには液流速を十分に速くすることが必要である。そこで、請求項2においては、高温側液流体を通液する前記内筒伝熱管と前記外筒ジャケットの間の隙間内に仕切り板を設けて、高温側液流れの流路内における液流れ通過断面積を狭めるように区切ることで高流速を伝熱面全体にわたって偏流を避けながら一様に確保する。以上により、熱歪みの問題を避けながら、高い伝熱係数で小さな伝熱面積を達成し、コンパクトな液化ガス蒸発用の流下液膜蒸発式熱交換器が可能となる。   The overall heat transfer coefficient that represents the overall heat transfer efficiency of the heat exchanger is the combined value of the heat transfer coefficient in the tube of the inner tube heat transfer tube and the heat transfer coefficient outside the tube. Since boiling evaporation in the liquid film type can obtain a very large heat transfer coefficient, the heat transfer coefficient on the high-temperature liquid flow side outside the inner tube heat transfer tube becomes the rate-determining factor, and the problem of how to secure this value continues. It becomes. In order to increase the heat transfer coefficient in the liquid flow on the tube surface, it is necessary to sufficiently increase the liquid flow rate. Accordingly, in claim 2, a partition plate is provided in a gap between the inner tube heat transfer tube through which the high temperature side liquid fluid is passed and the outer tube jacket so that the liquid flow passes through the flow path of the high temperature side liquid flow. By dividing so as to narrow the cross-sectional area, a high flow rate is ensured uniformly while avoiding uneven flow over the entire heat transfer surface. As described above, it is possible to achieve a small falling liquid film evaporation heat exchanger for liquefied gas evaporation, achieving a small heat transfer area with a high heat transfer coefficient while avoiding the problem of thermal distortion.

さらに、高温側液流れの流路を細かく区切って形成するための仕切り板について、液流れの流路は内筒伝熱管外壁と外筒ジャケット内壁とこの仕切り板によって囲まれることになるが、内筒伝熱管外壁と外筒ジャケット内壁と仕切り板の相互接触部は必ずしも完全密着させる必要は無く僅かな隙間があっても所期目的を達成するのにほとんど影響は無い。液流れのほとんどは形成された流路方向に流れるのであって、圧力差が微小でしかない隙間を漏れ通る液は微量である。そこで、前記仕切り板は内筒伝熱管からあるいは外筒ジャケットから、あるいは上部の上部液溜めハウジングから支持棒にて支持固定する構造が請求項3,4、5として提示される。これによって温度差が大きく熱歪が問題となる内筒伝熱管と外筒ジャケットは上端以外相互に拘束されることなく、かつ仕切り板は容易に自由な配置が可能になり、仕切り板を配置後に内筒伝熱管を外筒ジャケットに挿入して組み立てるという簡単な構造で、容易な製作を実現するという課題を達成することが出来る。   Furthermore, for the partition plate for finely dividing the flow path of the high-temperature side liquid flow, the flow path of the liquid flow is surrounded by the outer wall of the inner tube heat transfer tube, the inner wall of the outer tube jacket, and the partition plate. The mutual contact portions of the outer wall of the tube heat transfer tube, the inner wall of the outer tube jacket, and the partition plate do not necessarily need to be in close contact with each other, and even if there is a slight gap, there is almost no influence on achieving the intended purpose. Most of the liquid flow flows in the direction of the formed flow path, and a very small amount of liquid leaks through the gap where the pressure difference is only small. Therefore, the structure in which the partition plate is supported and fixed by the support rod from the inner tube heat transfer tube, the outer tube jacket, or the upper upper liquid reservoir housing is presented as claims 3, 4 and 5. As a result, the inner tube heat transfer tube and the outer tube jacket, where the temperature difference is large and thermal distortion becomes a problem, are not constrained to each other except at the upper end, and the partition plate can be easily and freely arranged. The simple structure of inserting and assembling the inner tube heat transfer tube into the outer tube jacket can achieve the problem of realizing easy production.

本発明の流下液膜蒸発式熱交換器は、低温液化ガス流体を気化させる熱交換として従来のものに比し、非常にコンパクトであることから、設置の占有面積および空間が小さくて済むという効果が得られる。また、軽量であることから本熱交換器を据え付けるための基礎あるいは架台が簡易で安価で済むという効果が得られる。さらに、簡単な構造で製作が容易であることから、本熱交換器の材料費および設計製作費が安価で済むという効果が得られる。   The falling liquid film evaporation type heat exchanger of the present invention is very compact as compared with the conventional heat exchange for vaporizing a low-temperature liquefied gas fluid, so that the installation area and space can be reduced. Is obtained. Moreover, since it is lightweight, the foundation or mount for installing this heat exchanger can be obtained simply and inexpensively. Furthermore, since it is easy to manufacture with a simple structure, it is possible to obtain an effect that the material cost and design / manufacturing cost of the heat exchanger can be reduced.

本発明の実施形態に係る流下液膜蒸発式熱交換器の第1実施例を示し、(a)はその熱交換器の断面図、(b)はその熱交換器における高温側液流れの流路を説明する模式図。The 1st Example of the falling liquid film evaporation type heat exchanger which concerns on embodiment of this invention is shown, (a) is sectional drawing of the heat exchanger, (b) is the flow of the high temperature side liquid flow in the heat exchanger The schematic diagram explaining a path. 同上第1実施例である流下液膜蒸発式熱交換器の要部分解断面図。The principal part decomposition | disassembly sectional drawing of the falling liquid film evaporation type heat exchanger which is 1st Example same as the above. 同上第1実施例である流下液膜蒸発式熱交換器の動作説明図。Operation | movement explanatory drawing of the falling liquid film evaporation type heat exchanger which is 1st Example same as the above. 同上第1実施例である流下液膜蒸発式熱交換器における高温側液流れの流路の第1変形例を説明する模式図。The schematic diagram explaining the 1st modification of the flow path of the high temperature side liquid flow in the falling liquid film evaporation type heat exchanger which is 1st Example same as the above. 同上高温側液流れの流路の第2変形例を説明する模式図。The schematic diagram explaining the 2nd modification of the flow path of a high temperature side liquid flow same as the above. 同上高温側液流れの流路の第3変形例を説明する模式図。The schematic diagram explaining the 3rd modification of the flow path of a high temperature side liquid flow same as the above. 本発明の実施形態の第2実施例として示す流下液膜蒸発式熱交換器の断面図。Sectional drawing of the falling liquid film evaporation type heat exchanger shown as 2nd Example of embodiment of this invention. 図7のA−A断面の模式図。The schematic diagram of the AA cross section of FIG. 同上第2実施例である流下液膜蒸発式熱交換器の動作説明図。Operation | movement explanatory drawing of the falling liquid film evaporation type heat exchanger which is 2nd Example same as the above.

本発明は、効率の良い伝熱方式にすることにより小さな伝熱面積で小さな構造物にすることができるとともに、超低温の液化ガスを使用した場合における熱歪問題を無くし、構造が簡単で製作が容易な流下液膜蒸発式熱交換器を提供すると言う目的を達成するために、以下のことを考慮する。   The present invention can be made into a small structure with a small heat transfer area by adopting an efficient heat transfer system, eliminates the problem of thermal distortion when using ultra-low temperature liquefied gas, and has a simple structure and can be manufactured. In order to achieve the object of providing an easy falling liquid film evaporation heat exchanger, the following is considered.

コンパクト化するためには、第一に伝熱効率を高めて伝熱負荷に対する必要な伝熱面積を小さくすることが重要な要素である。熱交換器の総合的な伝熱効率の程度を表す総括伝熱係数を大きくするためには、高温側と低温側両者の境膜伝熱係数それぞれを大きくする方式あるいは方策をとる必要がある。   In order to reduce the size, it is important to first increase the heat transfer efficiency and reduce the necessary heat transfer area for the heat transfer load. In order to increase the overall heat transfer coefficient representing the degree of the overall heat transfer efficiency of the heat exchanger, it is necessary to adopt a method or a measure for increasing the film heat transfer coefficient on both the high temperature side and the low temperature side.

まず、低温液化ガス蒸発側の境膜伝熱係数を大きく確保する方式として、流下液膜沸騰伝熱が知られている。さらに、該流下液膜沸騰伝熱には、水平に配置した伝熱管の管外面に上部から液流下させる方式、垂直に配置した伝熱管の管外面に上部から液流下させる方式などもあるが本発明においては最も簡易に均一かつ安定した流下液膜を作れるものとして垂直に配置した伝熱管の管内面に上部から液流下させる方式を採用する。   First, falling film boiling heat transfer is known as a method for ensuring a large film heat transfer coefficient on the low temperature liquefied gas evaporation side. Furthermore, the falling liquid film boiling heat transfer includes a method in which the liquid flows down from the top to the outer surface of the heat transfer tube arranged horizontally, and a method in which the liquid flows from the top to the outer surface of the heat transfer tube arranged vertically. In the present invention, a method is adopted in which the liquid flows from the top to the inner surface of the heat transfer tubes arranged vertically as the simplest and most stable falling liquid film.

段落番号0003に記載した通り、低温液化ガスを用いる流下液膜蒸発式熱交換器では、内筒伝熱管と外筒ジャケットの温度差が非常に大きいことから上下両端固定では熱歪の問題から使用には困難がある。そこで、低温液化ガスを用いる本発明の流下液膜蒸発式熱交換器では、下端面が閉じられた内筒伝熱管と外筒ジャケットとの接合保持を上部液溜めハウジングにて上部端だけで行い、側面および下面は相互に非接合とすることにより熱歪の問題を避けて実現させた。この場合、内筒伝熱管内で蒸発した低温気化ガスは内筒上方に排出させることになる。以上、請求項1の実施形態。   As described in paragraph 0003, in the falling film evaporation heat exchanger using low-temperature liquefied gas, the temperature difference between the inner tube heat transfer tube and the outer tube jacket is very large, so the upper and lower ends are fixed due to thermal distortion problems. There are difficulties. Therefore, in the falling liquid film evaporation heat exchanger of the present invention using a low-temperature liquefied gas, the inner cylinder heat transfer tube whose lower end face is closed and the outer cylinder jacket are joined and held only at the upper end in the upper liquid reservoir housing. The side surface and the bottom surface were made non-bonded with each other to avoid the problem of thermal distortion. In this case, the low-temperature vaporized gas evaporated in the inner cylinder heat transfer tube is exhausted above the inner cylinder. The embodiment of claim 1 as described above.

続いて、高温液流体側の境膜伝熱係数を大きく確保するためには、伝熱面に接する高温液の乱流度を高める、つまり流速を速くすることが重要である。所定の液流量において流速を速くするためには、流路断面積を小さくする必要がある。前記請求項1の構成でこれを為す方策としては、単純に内筒伝熱管と外筒ジャケットの隙間を狭めることも考えられるが製作工作上の困難があったり、偏流が起こりやすく期待するほどの効果が出ないという懸念もある。そこで、最良の方策として、隙間を狭めるのではなく隙間を細かく区切って高温側液流れの流路内における液流れ通過断面積を狭める、つまりいわゆる細長い流路を作ることで伝熱管面の広い範囲にわたって一様に高流速を実現させることができる。以上、請求項2の実施形態。   Subsequently, in order to ensure a large film heat transfer coefficient on the high temperature liquid fluid side, it is important to increase the degree of turbulence of the high temperature liquid in contact with the heat transfer surface, that is, to increase the flow velocity. In order to increase the flow velocity at a predetermined liquid flow rate, it is necessary to reduce the flow path cross-sectional area. As a measure for achieving this in the configuration of the first aspect, it may be possible to simply narrow the gap between the inner tube heat transfer tube and the outer tube jacket, but there is a difficulty in manufacturing work, and a drift is likely to occur. There is also concern that it will not be effective. Therefore, the best measure is not to narrow the gap, but to finely divide the gap to narrow the liquid flow passage cross-sectional area in the flow path of the high temperature side liquid flow, that is, to create a so-called elongated flow path, so that a wide range of heat transfer tube surface A high flow rate can be realized uniformly over the entire area. The embodiment of claim 2 as described above.

よって、請求項1および2によって必要伝熱面積が小さくてコンパクトな熱交換器を達成することができる。   Therefore, according to the first and second aspects, a compact heat exchanger with a small required heat transfer area can be achieved.

続いて、前記流路形成用の仕切り板の設置に関して、内筒伝熱管と外筒ジャケットの間の隙間に設けられる該仕切り板は、内筒伝熱管および外筒ジャケットと必ずしも完全に固着されておく必要は無い。外筒ジャケットの内壁あるいは内筒伝熱管の外筒壁と仕切り板の間に微小な隙間があっても、仕切り板で区切られ隣り合う流路間の差圧は小さいので微小隙間から漏れて流れる液量は微小であり、液流体のほとんど多くは仕切り板によって形成された流路に従って流れるので、速い液流速により大きな伝熱係数を確保するという目的は達成される。よって、仕切り板の設置方法として、内筒伝熱管からその外側に向けて支持固定する方法、外筒ジャケットからその内側に向けて支持固定する方法、あるいは、内筒伝熱管上部の上部液溜めハウジングから下方に向けて棒状のような支持体を伸ばしそれによって仕切り板を支持固定する方法が提示される。これらの設置方法であれば、装置完成時には内筒伝熱管と外筒ジャケットによって囲まれた閉じた空間内に配置される仕切り板を事前に前記方法にて容易に任意の流路形状を形成するべく設置した後、内筒伝熱管を外筒ジャケットに挿入し組み上げるということが可能となり、簡易な構造で容易な製作という目的も達成される。以上、請求項3,4,および5の実施形態。   Subsequently, regarding the installation of the partition plate for forming the flow path, the partition plate provided in the gap between the inner tube heat transfer tube and the outer tube jacket is not necessarily completely fixed to the inner tube heat transfer tube and the outer tube jacket. There is no need to keep it. Even if there is a minute gap between the inner wall of the outer cylinder jacket or the outer cylinder wall of the inner cylinder heat transfer tube and the partition plate, the amount of liquid that leaks through the minute gap because the differential pressure between the adjacent flow paths partitioned by the partition plate is small Since most of the liquid fluid flows according to the flow path formed by the partition plate, the object of securing a large heat transfer coefficient with a high liquid flow rate is achieved. Therefore, as a method of installing the partition plate, a method of supporting and fixing from the inner cylinder heat transfer tube toward the outside thereof, a method of supporting and fixing from the outer tube jacket toward the inside thereof, or an upper liquid reservoir housing above the inner cylinder heat transfer tube A method of extending a support like a bar from below to thereby support and fix the partition plate is presented. With these installation methods, when the apparatus is completed, an arbitrary flow path shape is easily formed in advance by the above method with a partition plate disposed in a closed space surrounded by the inner tube heat transfer tube and the outer tube jacket. After installation, the inner tube heat transfer tube can be inserted into the outer tube jacket and assembled, and the object of easy production with a simple structure is also achieved. The embodiments of claims 3, 4 and 5 as described above.

上記した流下液膜蒸発式熱交換器の大きさ形状に関し、最も簡易な形態は内筒伝熱管が一本で外筒ジャケットと円筒同心に配置され且つ内筒伝熱管からその外面に仕切り板を支持固定する形のもの、あるいはやや工作難度はあるも外筒ジャケットからその内面に仕切り板を支持固定する形も可能である。また、所要伝熱負荷など使用条件および設置場所の許容空間形状など環境条件によっては、一つの外筒ジャケットに複数本の内筒伝熱管を収容する形態も可能である。その場合、仕切り板は上部液溜めハウジングからの支持体によって支持固定される形を採ることが出来る。以上、請求項6,7の実施形態。   Regarding the size and shape of the falling film evaporation heat exchanger described above, the simplest form is that one inner tube heat transfer tube is arranged concentrically with the outer tube jacket, and a partition plate is provided on the outer surface from the inner tube heat transfer tube. It can be supported and fixed, or it can be slightly difficult to work, but it can also be supported and fixed from the outer jacket to the inner surface of the partition plate. Further, depending on the use conditions such as the required heat transfer load and the environmental conditions such as the allowable space shape of the installation place, a form in which a plurality of inner cylinder heat transfer tubes are accommodated in one outer cylinder jacket is possible. In that case, the partition plate can take a form supported and fixed by a support body from the upper liquid reservoir housing. The embodiments of claims 6 and 7 as described above.

以下、本発明を実施するための形態(以下、「実施形態」と言う)を、添付図面に基づいて詳細に説明する。   DESCRIPTION OF EMBODIMENTS Hereinafter, embodiments for carrying out the present invention (hereinafter referred to as “embodiments”) will be described in detail with reference to the accompanying drawings.

図1乃至図3は本発明の実施形態に係る流下液膜蒸発式熱交換器の第1実施例を示す。同図において、流下液膜蒸発式熱交換器10は、内筒伝熱管11と、外筒ジャケット12と、内筒伝熱管11と外筒ジャケット12を接合保持している上部液溜めハウジング13とを有している。   1 to 3 show a first example of a falling liquid film evaporation heat exchanger according to an embodiment of the present invention. In the figure, a falling liquid film evaporation heat exchanger 10 includes an inner cylinder heat transfer tube 11, an outer cylinder jacket 12, and an upper liquid reservoir housing 13 that holds the inner cylinder heat transfer tube 11 and the outer cylinder jacket 12 together. have.

前記内筒伝熱管11は、下面が閉じられ、上面が開口されてなる円筒状をした管体である。内筒伝熱管11の上端外周部分には、内筒伝熱管11と外筒ジャケット12を接合保持してなる前記上部液溜めハウジング13が内筒伝熱管11の上方を覆うようにして設けられている。また、内筒伝熱管11の外周面、すなわち内筒伝熱管外壁11a(以下、単に「外壁11a」という)には、仕切り板14が設けられている。   The inner cylinder heat transfer tube 11 is a cylindrical tube having a lower surface closed and an upper surface opened. The upper liquid reservoir housing 13 formed by bonding and holding the inner tube heat transfer tube 11 and the outer tube jacket 12 is provided on the outer periphery of the upper end of the inner tube heat transfer tube 11 so as to cover the upper side of the inner tube heat transfer tube 11. Yes. Further, a partition plate 14 is provided on the outer peripheral surface of the inner tube heat transfer tube 11, that is, on the outer wall 11a of the inner tube heat transfer tube (hereinafter simply referred to as “outer wall 11a”).

その仕切り板14は、例えば、一枚の細長い板でなり、その細長い板を内筒伝熱管11の外周面(外壁11a)を螺旋状に周回するようにして立設させ、その中心が外筒ジャケット12の円筒同心と一致するようにして、外壁11a上に支持固定されている。仕切り板14は、前記外筒ジャケット12の内周面、すなわち外筒ジャケット12の外筒ジャケット内壁12a(以下、単に「内壁12a」という)と接しており、該内筒伝熱管11の外壁11aと該外筒ジャケット12aの内壁12aとの間に高温液流体を流す、図1の(b)に概略を示している螺旋状の高温側液流れの流路15を形成するものである。なお、仕切り板14と内筒伝熱管11の外壁11aの間、及び外筒ジャケット12の内壁12aとの間は必ずしも完全密着させる必要はなく、隙間が設けられていてもよい。また、仕切り板14は、内筒伝熱管11の外壁11aに設けずに、外筒ジャケット12の内面、すなわち内壁12aに内筒伝熱管11と円筒同心となるようにして設けてもよい。   The partition plate 14 is, for example, a single elongated plate, and the elongated plate is erected so as to spiral around the outer peripheral surface (outer wall 11a) of the inner tube heat transfer tube 11, and the center is the outer tube. It is supported and fixed on the outer wall 11a so as to coincide with the concentric cylinder of the jacket 12. The partition plate 14 is in contact with the inner peripheral surface of the outer cylinder jacket 12, that is, the outer cylinder jacket inner wall 12 a (hereinafter simply referred to as “inner wall 12 a”) of the outer cylinder jacket 12, and the outer wall 11 a of the inner cylinder heat transfer tube 11. 1 and the inner wall 12a of the outer cylinder jacket 12a, a spiral high-temperature side liquid flow passage 15 schematically shown in FIG. 1B is formed. Note that the partition plate 14 and the outer wall 11a of the inner tube heat transfer tube 11 and the inner wall 12a of the outer tube jacket 12 do not necessarily need to be completely in close contact, and a gap may be provided. Further, the partition plate 14 may be provided on the inner surface of the outer cylinder jacket 12, that is, on the inner wall 12a so as to be concentric with the inner cylinder heat transfer pipe 11 without being provided on the outer wall 11a of the inner cylinder heat transfer pipe 11.

前記上部液溜めハウジング13は、上面が開口された環状の容器形に形成されて、その内部に低温液化ガス流体を溜めることができるハウジング部13aと、該ハウジング部13aの上面を閉じて該ハウジング部13aに取り付けられた蓋体13bとを有してなる。そのハウジング部13aの底面には前記内筒伝熱管11の上端部分が、その底面を上面開口側に向かって貫き、該ハウジング部13a内の途中の位置まで突出した状態にして取り付けられている。一方、蓋体13bには、低温液化ガス流体、例えば液体窒素(LN2)、液化天然ガスが送られて来る低温液化ガス流体経路と接続される低温液化ガス流体供給口13cと、内筒伝熱管11a内で蒸発した低温気化ガスを大気中に放出するための低温気化ガス排出口13dが設けられている。そして、低温液化ガス流体供給口13cには、一端側が図示しない低温液化ガス流体に接続されている低温液化ガス流体供給管(図示せず)の他端側が接続される。   The upper liquid reservoir housing 13 is formed in an annular container shape having an upper surface opened, and a housing portion 13a capable of storing a low-temperature liquefied gas fluid therein, and the upper surface of the housing portion 13a being closed. And a lid 13b attached to the portion 13a. The upper end portion of the inner tube heat transfer tube 11 is attached to the bottom surface of the housing portion 13a so as to penetrate the bottom surface toward the upper surface opening side and protrude to a position in the housing portion 13a. On the other hand, the lid 13b includes a low-temperature liquefied gas fluid supply port 13c connected to a low-temperature liquefied gas fluid path through which a low-temperature liquefied gas fluid, for example, liquid nitrogen (LN2) and liquefied natural gas is sent, and an inner cylinder heat transfer tube. A low-temperature vaporized gas discharge port 13d for releasing the low-temperature vaporized gas evaporated in 11a into the atmosphere is provided. And the other end side of the low temperature liquefied gas fluid supply pipe (not shown) which one end side is connected to the low temperature liquefied gas fluid which is not shown in figure is connected to the low temperature liquefied gas fluid supply port 13c.

前記外筒ジャケット12は、下面が閉じられ、上面が開口された円筒管である。また、外筒ジャケット12の下端外周部には高温液流体入口17が設けられ、上端外周部には高温液流体出口18が設けられている。   The outer cylinder jacket 12 is a cylindrical tube having a lower surface closed and an upper surface opened. Further, a high-temperature liquid fluid inlet 17 is provided on the outer periphery of the lower end of the outer cylinder jacket 12, and a high-temperature liquid fluid outlet 18 is provided on the outer periphery of the upper end.

なお、前記外筒ジャケット12の内径は、内筒伝熱管11の外壁11aに設けられている前記仕切り板14の外径に略等しく、その下面側を外筒ジャケット12の上面側から該外筒ジャケット12内に挿入できるようになっている。また、外筒ジャケット12の内壁12a側の長さ(深さ)は、内筒伝熱管11に設けられた上部液溜めハウジング13の下面から該内筒伝熱管11の下面までの長さよりも大きく形成されている。すなわち、内筒伝熱管11が外筒ジャケット12内に、外筒ジャケット12の上端が上部液溜めハウジング13の下面と当接するまで挿入された際、図1に示すように、内筒伝熱管11の下面と外筒ジャケット12の下面の間に隙間αが形成されるように設定されている。   The inner diameter of the outer cylinder jacket 12 is substantially equal to the outer diameter of the partition plate 14 provided on the outer wall 11 a of the inner cylinder heat transfer tube 11, and the lower surface side of the outer cylinder jacket 12 extends from the upper surface side of the outer cylinder jacket 12. It can be inserted into the jacket 12. Further, the length (depth) of the outer cylinder jacket 12 on the inner wall 12a side is larger than the length from the lower surface of the upper liquid reservoir housing 13 provided in the inner cylinder heat transfer tube 11 to the lower surface of the inner cylinder heat transfer tube 11. Is formed. That is, when the inner tube heat transfer tube 11 is inserted into the outer tube jacket 12 until the upper end of the outer tube jacket 12 contacts the lower surface of the upper liquid reservoir housing 13, as shown in FIG. The gap α is set between the lower surface of the outer cylinder 12 and the lower surface of the outer cylinder jacket 12.

そして、図2に示すように、流下液膜蒸発式熱交換器10は、上部に上部液溜めハウジング13を取り付けた内筒伝熱管11の外側全体を外筒ジャケット12で覆うようにして、外筒ジャケット12の上端が上部液溜めハウジング13の下面と当接するまで、内筒伝熱管11を外筒ジャケット12内に挿入し、その後、上部液溜めハウジング13を介して内筒伝熱管11と外筒ジャケット12の間を接合保持して片端支持状態で組み立てられる。また、ハウジング部13aの開口が上側を向いて、内筒伝熱管11と外筒ジャケット12が垂直に立てられた状態で設置される。   As shown in FIG. 2, the falling liquid film evaporation heat exchanger 10 is configured so that the outer side of the inner tube heat transfer tube 11 having the upper liquid reservoir housing 13 attached to the upper portion is covered with an outer tube jacket 12. The inner tube heat transfer tube 11 is inserted into the outer tube jacket 12 until the upper end of the tube jacket 12 comes into contact with the lower surface of the upper liquid reservoir housing 13. The cylinder jackets 12 are assembled and held in a single-end supported state while being joined and held. Moreover, the opening of the housing part 13a faces upward, and the inner cylinder heat transfer tube 11 and the outer cylinder jacket 12 are installed in a state where they stand vertically.

さらに、このようにして組み立てられた流下液膜蒸発式熱交換器10では、内筒伝熱管11の外壁11aと外筒ジャケット12の内壁12aとの間の隙間に、螺旋状の仕切り板14で画成された、下端の高温液流体入口17から上端の高温液流体出口18まで連続して繋がってなる一本の前記高温側液流れの流路15が作られる。なお、図1及び図3に示すように、内筒伝熱管11と外筒ジャケット12の組立性及び熱歪み等を考慮し、仕切り板14と外筒ジャケット12の間に多少の隙間が設けられる。   Further, in the falling liquid film evaporation type heat exchanger 10 assembled in this way, a spiral partition plate 14 is provided in the gap between the outer wall 11a of the inner tube heat transfer tube 11 and the inner wall 12a of the outer tube jacket 12. A defined flow path 15 for the high-temperature side liquid flow is formed, which is continuously connected from the high-temperature liquid fluid inlet port 17 at the lower end to the high-temperature liquid fluid outlet port 18 at the upper end. As shown in FIGS. 1 and 3, a slight gap is provided between the partition plate 14 and the outer cylinder jacket 12 in consideration of the assembling property and thermal distortion of the inner cylinder heat transfer tube 11 and the outer cylinder jacket 12. .

次に、このように形成された流下液膜蒸発式熱交換器10の作用を図3を使用して説明する。まず、高温液流体側では、高温液流体が高温液流体入口17から高温側液流れの流路15に入り、高温液流体出口18から出て図示しない高温液流体貯留タンクへ向かう経路で、伝熱面としての内筒伝熱管11の外壁11aに触れながら流れる。   Next, the operation of the falling film evaporation heat exchanger 10 formed in this way will be described with reference to FIG. First, on the high-temperature liquid fluid side, the high-temperature liquid fluid enters the flow path 15 of the high-temperature-side liquid flow from the high-temperature liquid-fluid inlet 17 and exits from the high-temperature liquid-fluid outlet 18 toward a high-temperature liquid-fluid storage tank (not shown). It flows while touching the outer wall 11a of the inner tube heat transfer tube 11 as a hot surface.

一方、低温液化ガス流体側では、図示せぬ液低温液化ガス流体貯槽から低温液化ガス流体N(本例では液体窒素)が、低温液化ガス流体供給口13cを通して上部液溜めハウジング13のハウジング部13a内に供給される。また、ハウジング部13a内に溜まった低温液化ガス流体Nの量が、内筒伝熱管11の上端開口縁11cの高さ位置を超えると低温液化ガス流体Nがハウジング部13aから内筒伝熱管11内に溢れ出て、その溢れ出た低温液化ガス流体Nが液膜状をなして内筒伝熱管11の内周面、すなわち内筒伝熱管内壁11b(以下、単に「内壁11b」という)を流下する。そして、ハウジング部13a内から溢れ出た低温液化ガス流体Nは内筒伝熱管11の内壁11bを流下する際、その低温液化ガス流体Nが内筒伝熱管11を介して高温液流体と伝熱加熱により熱交換して温められ、流下の途中で蒸発・気化して低温気化ガスとなる。また、低温液化ガス流体Nによる気化熱(蒸発潜熱)と高温側液流体の顕熱との熱交換により最終的には高温液流体出口18から高温液流体貯留タンクに向う高温液流体の温度を下げる。また、内筒伝熱管11内で気化した低温気化ガスは、低温気化ガス排出口13dを通して排気される。   On the other hand, on the low-temperature liquefied gas fluid side, the low-temperature liquefied gas fluid N (liquid nitrogen in this example) is supplied from a liquid low-temperature liquefied gas fluid storage tank (not shown) through the low-temperature liquefied gas fluid supply port 13c. Supplied in. Further, when the amount of the low temperature liquefied gas fluid N accumulated in the housing portion 13a exceeds the height position of the upper end opening edge 11c of the inner cylinder heat transfer tube 11, the low temperature liquefied gas fluid N is transferred from the housing portion 13a to the inner cylinder heat transfer tube 11. The low-temperature liquefied gas fluid N overflowing into the inside forms a liquid film and forms the inner peripheral surface of the inner cylinder heat transfer tube 11, that is, the inner wall heat transfer tube inner wall 11b (hereinafter simply referred to as “inner wall 11b”). Flow down. When the low-temperature liquefied gas fluid N overflowing from the housing portion 13 a flows down the inner wall 11 b of the inner cylinder heat transfer tube 11, the low-temperature liquefied gas fluid N is transferred to the high-temperature liquid fluid through the inner cylinder heat transfer tube 11. Heat is exchanged by heating to warm, and evaporates and vaporizes in the middle of the flow to become low-temperature vaporized gas. Further, the temperature of the high-temperature liquid fluid from the high-temperature liquid fluid outlet 18 to the high-temperature liquid fluid storage tank is finally changed by heat exchange between the heat of vaporization (latent heat of evaporation) by the low-temperature liquefied gas fluid N and the sensible heat of the high-temperature side liquid fluid. Lower. Further, the low-temperature vaporized gas vaporized in the inner tube heat transfer tube 11 is exhausted through the low-temperature vaporized gas discharge port 13d.

したがって、この第1の実施例による流下液膜蒸発式熱交換器10によれば、内筒伝熱管11の底面と外筒ジャケット12の底面との間に隙間αを設けて二重管に形成しているので、内筒伝熱管11と外筒ジャケット12との間に熱歪みが生じたような場合、その隙間αで歪みを吸収することができる。   Therefore, according to the falling liquid film evaporation type heat exchanger 10 according to the first embodiment, a gap α is provided between the bottom surface of the inner cylinder heat transfer tube 11 and the bottom surface of the outer cylinder jacket 12 to form a double tube. Therefore, when a thermal strain occurs between the inner tube heat transfer tube 11 and the outer tube jacket 12, the strain α can absorb the strain.

また、内筒伝熱管11と外筒ジャケット12を別々に形成して上部液溜めハウジングで接合保持しているので、二重構造を容易に形成することができる。   Further, since the inner tube heat transfer tube 11 and the outer tube jacket 12 are separately formed and joined and held by the upper liquid reservoir housing, a double structure can be easily formed.

さらに、内筒伝熱管11と外筒ジャケット12の間の隙間に形成される高温側液流れの流路15の流路断面積を狭めるように、その隙間内を仕切り板14により区切っているので、高温側液流れの流路15内を流れる高温液流体の流速が上がる。このように高温液流体の流速を上げると総括的に伝熱が良くなる。   Further, the gap is partitioned by the partition plate 14 so as to narrow the cross-sectional area of the flow path 15 of the high-temperature side liquid flow formed in the gap between the inner cylinder heat transfer tube 11 and the outer cylinder jacket 12. The flow rate of the high-temperature liquid fluid flowing through the flow path 15 of the high-temperature side liquid flow is increased. Thus, when the flow velocity of the high-temperature liquid fluid is increased, heat transfer is generally improved.

なお、高温側液流れの流路15は螺旋状に形成した仕切り板14により、単純な螺旋状(スパイラル状)の流路として形成した場合について説明したが、これ以外にも階段状に形成した例えば図4乃至図6に模式図で示すような流路としてもよい。   In addition, although the flow path 15 of the high temperature side liquid flow was described as a simple spiral (spiral) flow path by the partition plate 14 formed in a spiral shape, other than this, it was formed in a staircase shape. For example, a flow path as schematically shown in FIGS. 4 to 6 may be used.

すなわち、図4は高温側液流れの流路15の第1変形例を示すもので、高温液流体入口17から入った高温液流体が内筒伝熱管11の外壁11aに沿って図中左回りに略一周し、その後、外壁11aに沿って真っ直ぐ上側に所定距離移動して再び外壁11aに沿って左周りに略一周した後、再び外壁11aに沿って真っ直ぐ上側に所定距離移動する、という流れを繰り返しながら高温液流体出口18まで進み、その高温液流体出口18から図示せぬ高温液流体貯留タンクへ向かうように形成されている。   That is, FIG. 4 shows a first modification of the flow path 15 for the high-temperature side liquid flow. The high-temperature liquid fluid entering from the high-temperature liquid fluid inlet 17 is counterclockwise in the drawing along the outer wall 11a of the inner tube heat transfer tube 11. , And then moved a predetermined distance straight up along the outer wall 11a, and then made a full left turn along the outer wall 11a again, and then moved again a predetermined distance straight up along the outer wall 11a. The process proceeds to the high temperature liquid fluid outlet 18 while repeating the above, and is formed so as to go from the high temperature liquid fluid outlet 18 to a high temperature liquid fluid storage tank (not shown).

図5は高温側液流れの流路15の第2変形例を示すもので、高温液流体入口17から入った高温液流体が内筒伝熱管11の外壁11aに沿って図中右回りに略一周し、その後、外壁11aに沿って真っ直ぐ上側に所定距離移動して再び外壁11aに沿って右周りに略一周した後、再び真っ直ぐ上側に所定距離移動する、という流れを繰り返しながら高温液流体出口18まで進み、その高温液流体出口18から図示せぬ高温液流体貯留タンクへ向かうように形成されている。   FIG. 5 shows a second modification of the flow path 15 for the high-temperature side liquid flow. The high-temperature liquid fluid entering from the high-temperature liquid fluid inlet 17 is approximately clockwise in the figure along the outer wall 11a of the inner tube heat transfer tube 11. The outlet of the high-temperature liquid fluid repeats the flow of making a round, then moving a predetermined distance straight up along the outer wall 11a, and making a round once clockwise around the outer wall 11a again, and then moving again a predetermined distance straight up again. The high temperature liquid fluid outlet 18 is formed so as to go to a high temperature liquid fluid storage tank (not shown).

図6は高温側液流れの流路15の第3変形例を示すもので、低温液流体入口17から入った低温液流体が内筒伝熱管11の外壁11aに沿って真っ直ぐ上側端部近傍まで移動し、次いで外壁11aに沿って右回りに所定距離移動し、続いて真っ直ぐ下側端部近傍まで移動し、その後、右回りに所定距離移動し、再び真っ直ぐ上側端部近傍まで移動する、という流れを繰り返し、最後に上端部近傍から低温液流体出口18まで進み、その低温液流体出口18から図示せぬ高温液流体貯留タンクへ向かうように形成されている。   FIG. 6 shows a third modification of the flow path 15 for the high temperature side liquid flow. The low temperature liquid fluid entering from the low temperature liquid fluid inlet 17 is straight along the outer wall 11a of the inner tube heat transfer tube 11 to the vicinity of the upper end. And then move clockwise along the outer wall 11a for a predetermined distance, then move straight to the vicinity of the lower end, then move clockwise for a predetermined distance, and again move straight to the vicinity of the upper end. The flow is repeated, and finally, it proceeds from the vicinity of the upper end portion to the low temperature liquid fluid outlet 18 and is formed so as to go from the low temperature liquid fluid outlet 18 to a high temperature liquid fluid storage tank (not shown).

図7乃至図9は本発明の実施形態に係る流下液膜蒸発式熱交換器の第2実施例を示す。なお、第1実施例では1個の外筒ジャケット12内に1本の内筒伝熱管11を設けた構造を開示したが、第2実施例は1個の外筒ジャケット内に複数本(本実施例では9本)の内筒伝熱管を設けたものである。そして、図1乃至図3の実施例と同じ構成部分は同一符号を付して説明する。   7 to 9 show a second example of the falling liquid film evaporation heat exchanger according to the embodiment of the present invention. In the first embodiment, a structure in which one inner cylinder heat transfer tube 11 is provided in one outer cylinder jacket 12 is disclosed. However, in the second embodiment, a plurality of (one book) are provided in one outer cylinder jacket. In the embodiment, 9) inner tube heat transfer tubes are provided. The same components as those in the embodiment of FIGS. 1 to 3 are described with the same reference numerals.

同図において、流下液膜蒸発式熱交換器20は、9本の内筒伝熱管21と、1個の外筒ジャケット12と、内筒伝熱管21と外筒ジャケット12を接合保持している上部液溜めハウジング23とを有している。   In the figure, a falling liquid film evaporation type heat exchanger 20 holds nine inner tube heat transfer tubes 21, one outer tube jacket 12, and inner tube heat transfer tube 21 and outer tube jacket 12. And an upper liquid reservoir housing 23.

前記各内筒伝熱管21は、下面が閉じられ、上面が開口されてなる円筒状をした管体である。これら9個に内筒伝熱管11は、それぞれが前記上部液溜めハウジング23から平行に垂下された状態にして、その上部液溜めハウジング23に取り付けられている。また、各内筒伝熱管21の間には円板状をした仕切り板24が複数枚(本例では8枚)、互いに上下方向に離して配設されている。また、各仕切り板24にはそれぞれ、9本の内筒伝熱管21を各々貫通させる複数個(本例では9個)の孔24aと、高温側液流れの流路25の一部を形成する図8に示す半月状をした切り欠き24bが形成されている。   Each of the inner tube heat transfer tubes 21 is a cylindrical tube having a lower surface closed and an upper surface opened. The nine inner tube heat transfer tubes 11 are attached to the upper liquid reservoir housing 23 in such a state that they are suspended from the upper liquid reservoir housing 23 in parallel. In addition, a plurality of disc-shaped partition plates 24 (eight in this example) are arranged between the inner tube heat transfer tubes 21 and separated from each other in the vertical direction. Each partition plate 24 is formed with a plurality of (9 in this example) holes 24a that penetrate the nine inner tube heat transfer tubes 21 and a part of the high-temperature side liquid flow passage 25. A half-moon-shaped notch 24b shown in FIG. 8 is formed.

そして、各仕切り板24は、それぞれの内筒伝熱管21を対応する孔24aに挿入させるとともに、互いに上下方向に離され、かつ、切り欠き24bが互いに180度ずれた位置となるようにして配設され、更に上部液溜めハウジング23の下面から垂下された複数(本例では4本)の支持棒26により、上部液溜めハウジング23の下面に吊り下げられた片端支持状態にして支持固定されている。   The partition plates 24 are arranged so that the inner tube heat transfer tubes 21 are inserted into the corresponding holes 24a, are separated from each other in the vertical direction, and the notches 24b are shifted from each other by 180 degrees. Further, a plurality of (four in this example) support rods 26 suspended from the lower surface of the upper liquid reservoir housing 23 are supported and fixed in a single-end supported state suspended from the lower surface of the upper liquid reservoir housing 23. Yes.

また、その仕切り板24は、前記外筒ジャケット12の内周面、すなわち外筒ジャケット12の外筒ジャケット内壁12aとの間に隙間を設けて配設されており、そして該内筒伝熱管21の外壁21aと該外筒ジャケット12aの内壁12aとの間に高温液流体を流す高温側液流れの流路25を画成するものである。この高温側液流れの流路25では、切り欠き24bが設けられた箇所でそれぞれ上側と連通されており、切り欠き24bが設けられている位置を互いに180度ずらして設けていることにより、高温液流体入口17から流入された高温液流体は、途中、千鳥状に蛇行しながら上側の高温液流体出口18に至り、その高温液流体出口18から流出されて行くようになっている。   The partition plate 24 is disposed with a gap between the inner peripheral surface of the outer cylinder jacket 12, that is, the outer cylinder jacket inner wall 12 a of the outer cylinder jacket 12, and the inner cylinder heat transfer tube 21. The flow path 25 of the high temperature side liquid flow which flows a high temperature liquid fluid between the outer wall 21a of this and the inner wall 12a of this outer cylinder jacket 12a is defined. In the flow path 25 of the high temperature side liquid flow, the upper side communicates with the upper side at the position where the notch 24b is provided, and the position where the notch 24b is provided is shifted by 180 degrees from each other. The high-temperature liquid fluid that has flowed from the liquid-fluid inlet 17 reaches the upper high-temperature liquid-fluid outlet 18 while meandering in a zigzag manner, and flows out from the high-temperature liquid-fluid outlet 18.

前記上部液溜めハウジング23は、上面が開口された環状の容器形に形成されて、その内部に低温液化ガス流体を溜めることができるハウジング部23aと、該ハウジング部23aの上面を閉じて該ハウジング部23aに取り付けられた蓋体23bとを有してなる。そのハウジング部23aの底面には前記各内筒伝熱管21の上端部分がそれぞれ、その底面を上面開口側に向かって貫き、該ハウジング部23a内の途中の位置まで突出した状態にして取り付けられている。一方、蓋体23bには、低温液化ガス流体、例えば液体窒素(LN2)、液化天然ガスが送られて来る低温液化ガス流体経路と接続される低温液化ガス流体供給口23cと、内筒伝熱管21内で蒸発した低温液化ガスを大気中に放出するための低温気化ガス排出口23dが設けられている。そして、低温液化ガス流体供給口23cには、一端側が図示しない低温液化ガス流体貯槽に接続されている低温液化ガス流体供給管(図示せず)の他端側が接続される。   The upper liquid reservoir housing 23 is formed in an annular container shape having an upper surface opened, and a housing portion 23a capable of storing a low-temperature liquefied gas fluid therein, and the upper surface of the housing portion 23a being closed. And a lid 23b attached to the portion 23a. The upper end portion of each of the inner tube heat transfer tubes 21 is attached to the bottom surface of the housing portion 23a so as to penetrate the bottom surface toward the top opening side and protrude to a position in the housing portion 23a. Yes. On the other hand, the lid body 23b has a low-temperature liquefied gas fluid supply port 23c connected to a low-temperature liquefied gas fluid path through which a low-temperature liquefied gas fluid, for example, liquid nitrogen (LN2) or liquefied natural gas is sent, and an inner cylinder heat transfer tube. A low-temperature vaporized gas discharge port 23d for releasing the low-temperature liquefied gas evaporated in the air 21 into the atmosphere is provided. And the other end side of the low temperature liquefied gas fluid supply pipe (not shown) which one end side is connected to the low temperature liquefied gas fluid storage tank which is not illustrated is connected to the low temperature liquefied gas fluid supply port 23c.

前記外筒ジャケット12は、第1実施例の場合と同様に、下面が閉じられ、上面が開口された円筒管である。また、外筒ジャケット12の下端外周部には高温液流体入口17が設けられ、上端外周部には高温液流体出口18が設けられている。そして、高温液流体入口17及び高温液流体出口18には、それぞれ例えば高温液流体を流す高温液流体管(図示せず)が連結されている。   As in the case of the first embodiment, the outer cylinder jacket 12 is a cylindrical tube whose lower surface is closed and whose upper surface is opened. Further, a high-temperature liquid fluid inlet 17 is provided on the outer periphery of the lower end of the outer cylinder jacket 12, and a high-temperature liquid fluid outlet 18 is provided on the outer periphery of the upper end. The high temperature liquid fluid inlet 17 and the high temperature liquid fluid outlet 18 are connected to, for example, a high temperature liquid fluid pipe (not shown) for flowing a high temperature liquid fluid, for example.

なお、前記外筒ジャケット12の内径は、前記仕切り板24の外径に略等しく、仕切り板24と上部液溜めハウジング13及び支持棒26で一体化された内筒伝熱管11を外筒ジャケット12の上面側から該外筒ジャケット12内に挿入できるようになっている。また、この第2実施例の場合も、外筒ジャケット12の内壁12a側の長さ(深さ)は、上部液溜めハウジング23の下面から該各内筒伝熱管21の下面までの長さよりも大きく形成されており、内筒伝熱管21が外筒ジャケット12内に、外筒ジャケット12の上端が上部液溜めハウジング23の下面と当接するまで挿入された際、図7に示すように、内筒伝熱管11の下面と外筒ジャケット12の下面の間に隙間αが形成されるように設定されている。   The outer cylinder jacket 12 has an inner diameter substantially equal to the outer diameter of the partition plate 24, and the inner cylinder heat transfer tube 11 integrated with the partition plate 24, the upper liquid reservoir housing 13 and the support rod 26 is connected to the outer cylinder jacket 12. It can be inserted into the outer jacket jacket 12 from the upper surface side. Also in the case of the second embodiment, the length (depth) of the outer cylinder jacket 12 on the inner wall 12a side is longer than the length from the lower surface of the upper liquid reservoir housing 23 to the lower surface of each of the inner cylinder heat transfer tubes 21. When the inner tube heat transfer tube 21 is inserted into the outer tube jacket 12 until the upper end of the outer tube jacket 12 comes into contact with the lower surface of the upper liquid reservoir housing 23, as shown in FIG. A gap α is set between the lower surface of the tube heat transfer tube 11 and the lower surface of the outer tube jacket 12.

そして、流下液膜蒸発式熱交換器20は、上部に上部液溜めハウジング13を取り付けた内筒伝熱管21及び仕切り板24の外側全体を外筒ジャケット12で覆うようにして、外筒ジャケット12の上端が上部液溜めハウジング23の下面と当接するまで、内筒伝熱管21及び仕切り板24を外筒ジャケット12内に挿入し、その後、上部液溜めハウジング23と外筒ジャケット12の間を固定して組み立てられ、またハウジング部23aの開口が上側を向いて垂直に立てられた状態で設置される。   The falling liquid film evaporation type heat exchanger 20 is configured such that the outer cylinder jacket 12 covers the entire outside of the inner cylinder heat transfer tube 21 and the partition plate 24 with the upper liquid reservoir housing 13 attached to the upper part thereof. The inner tube heat transfer tube 21 and the partition plate 24 are inserted into the outer cylinder jacket 12 until the upper end of the upper liquid reservoir abuts the lower surface of the upper liquid reservoir housing 23, and then the upper liquid reservoir housing 23 and the outer cylinder jacket 12 are fixed. The housing portion 23a is installed in a state where the opening of the housing portion 23a faces vertically upward.

また、このように組み立てられた流下液膜式熱交換器20は、内筒伝熱管21の外壁21aと外筒ジャケット12の内壁12aとの間に、上記仕切り板24と、その切り欠き24bで画成してなる、一本の上記ジグザグ状をした前記高温側液流れの流路25が、下端の低温液流体入口17から上端の低温液流体出口18まで連続して作られる。   Further, the falling liquid film type heat exchanger 20 assembled in this way is provided between the outer wall 21a of the inner tube heat transfer tube 21 and the inner wall 12a of the outer tube jacket 12 by the partition plate 24 and the notch 24b. One zigzag-shaped flow path 25 of the high-temperature side liquid flow is formed continuously from the low-temperature liquid fluid inlet 17 at the lower end to the low-temperature liquid fluid outlet 18 at the upper end.

次に、このように形成された流下液膜蒸発式熱交換器20の作用を、図9を使用して説明する。まず、高温冷媒循環経路では、高温液流体が高温液流体入口17から高温側液流れの流路25に入り、高温液流体出口18から出て図示しない高温液流体貯留タンクへ向かう経路で、伝熱面としての内筒伝熱管21の外壁21aに触れながら流れる。   Next, the operation of the falling film evaporation heat exchanger 20 formed in this way will be described with reference to FIG. First, in the high-temperature refrigerant circulation path, the high-temperature liquid fluid enters the flow path 25 of the high-temperature side liquid flow from the high-temperature liquid fluid inlet 17 and exits from the high-temperature liquid fluid outlet 18 toward the high-temperature liquid fluid storage tank (not shown). It flows while touching the outer wall 21a of the inner tube heat transfer tube 21 as a hot surface.

一方、低温液化ガス流体側では、図示せぬ液低温液化ガス流体貯槽からの低温液化ガス流体N(本例では液体窒素)が、低温液化ガス流体供給口23cを通して上部液溜めハウジング23のハウジング部23a内に供給される。また、ハウジング部23a内に溜まった低温液化ガス流体Nの量が、内筒伝熱管21の上端開口縁21bの高さ位置を超えると低温液化ガス流体Nがハウジング部23aから内筒伝熱管21内に溢れ出て、その溢れ出た低温液化ガス流体Nが液膜状をなして各内筒伝熱管21の内周面、すなわち内筒伝熱管内壁21b(以下、単に「内壁21b」という)を流下する。そして、ハウジング部23a内から溢れ出た低温液化ガス流体Nは内筒伝熱管21の内壁21bを流下する際、その低温液化ガス流体Nが内筒伝熱管21を介して高温液流体と伝熱加熱により熱交換して温められ、流下の途中で蒸発・気化して低温気化ガスとなる。また、低温液化ガス流体Nによる気化熱(蒸発潜熱)と高温側液流体の顕熱との熱交換により、最終的には高温液流体出口18から高温液流体貯留タンクに向う高温液流体の温度を下げる。また、内筒伝熱管21内で気化した低温気化ガスは、低温気化ガス排出口23dを通して排気される。   On the other hand, on the low-temperature liquefied gas fluid side, a low-temperature liquefied gas fluid N (liquid nitrogen in this example) from a liquid low-temperature liquefied gas fluid storage tank (not shown) passes through the low-temperature liquefied gas fluid supply port 23c and the housing portion of the upper liquid reservoir housing 23 23a is supplied. When the amount of the low-temperature liquefied gas fluid N accumulated in the housing portion 23a exceeds the height position of the upper end opening edge 21b of the inner cylinder heat transfer tube 21, the low-temperature liquefied gas fluid N is transferred from the housing portion 23a to the inner cylinder heat transfer tube 21. The low-temperature liquefied gas fluid N overflowing into the inside forms a liquid film and forms the inner peripheral surface of each inner cylinder heat transfer tube 21, that is, the inner wall heat transfer tube inner wall 21b (hereinafter simply referred to as “inner wall 21b”). Flow down. When the low-temperature liquefied gas fluid N overflowing from the housing portion 23 a flows down the inner wall 21 b of the inner cylinder heat transfer tube 21, the low-temperature liquefied gas fluid N is transferred to the high-temperature liquid fluid via the inner cylinder heat transfer tube 21. Heat is exchanged by heating to warm, and evaporates and vaporizes in the middle of the flow to become low-temperature vaporized gas. In addition, by the heat exchange between the heat of vaporization (latent heat of vaporization) by the low-temperature liquefied gas fluid N and the sensible heat of the high-temperature side liquid fluid, the temperature of the high-temperature liquid fluid finally flowing from the high-temperature liquid fluid outlet 18 to the high-temperature liquid fluid storage tank Lower. Moreover, the low temperature vaporization gas vaporized in the inner cylinder heat exchanger tube 21 is exhausted through the low temperature vaporization gas discharge port 23d.

したがって、この第2実施例による流下液膜蒸発式熱交換器20の場合でも、内筒伝熱管21の底面と外筒ジャケット12の底面との間に隙間αを設けて二重管に形成しているので、内筒伝熱管21と外筒ジャケット12との間に熱歪みが生じたような場合、その隙間αで歪みを吸収することができる。   Therefore, even in the case of the falling liquid film evaporation type heat exchanger 20 according to the second embodiment, a gap α is provided between the bottom surface of the inner tube heat transfer tube 21 and the bottom surface of the outer tube jacket 12 to form a double tube. Therefore, when a thermal strain is generated between the inner tube heat transfer tube 21 and the outer tube jacket 12, the strain α can be absorbed.

また、内筒伝熱管21と外筒ジャケット12を別々に形成して、その複数本の内筒伝熱管21を複数枚仕切り板24と上部液溜めハウジング23及び支持棒26で1つに束ね、これを外筒ジャケット12の内側に挿入して外筒ジャケット12で外側を覆った形にして接合保持することにより、二重構造を容易に形成することができる。   Further, the inner tube heat transfer tube 21 and the outer tube jacket 12 are separately formed, and the plurality of inner tube heat transfer tubes 21 are bundled together by a plurality of partition plates 24, an upper liquid reservoir housing 23 and a support rod 26, A double structure can be easily formed by inserting this inside the outer cylinder jacket 12 and joining and holding the outer cylinder jacket 12 so as to cover the outside.

さらに、内筒伝熱管21と外筒ジャケット12の間の隙間に形成される高温側液流れの流路25の流路断面積を狭めるように、その隙間内を仕切り板14により区切っているので、高温側液流れの流路15内を流れる高温液流体の流速が上がり、総括的に伝熱効率が良くなる。   Further, the gap is partitioned by the partition plate 14 so as to narrow the cross-sectional area of the flow path 25 of the high-temperature side liquid flow formed in the gap between the inner cylinder heat transfer tube 21 and the outer cylinder jacket 12. The flow rate of the high-temperature liquid fluid flowing in the flow path 15 of the high-temperature side liquid flow is increased, and the heat transfer efficiency is generally improved.

また、本発明は、本発明の精神を逸脱しない限り種々の改変を為すことができ、そして、本発明が該改変されたものに及ぶことは当然である。   The present invention can be variously modified without departing from the spirit of the present invention, and the present invention naturally extends to the modified ones.

本発明の熱交換器は高温側液流体の顕熱と低温側液化ガスの蒸発潜熱の間で熱交換させたい場合に使われ得るものであり、産業上の用途としては、低温液流体冷却設備に組み込まれる熱交換器、貯留液化ガスを燃料等として消費するためにガス化して供給する液化ガス気化設備に組み込まれる熱交換器、圧縮機による機械式冷凍機に組み込まれる冷媒蒸発用熱交換器などに適用可能である。   The heat exchanger of the present invention can be used when it is desired to exchange heat between the sensible heat of the high temperature side liquid fluid and the latent heat of vaporization of the low temperature side liquefied gas. Heat exchangers built in the tank, heat exchangers built into the liquefied gas vaporization equipment that is gasified and supplied to consume the stored liquefied gas as fuel, etc., heat exchangers for refrigerant evaporation built into mechanical refrigerators using compressors It is applicable to.

10 流下液膜蒸発式熱交換器
11 内筒伝熱管
11a 内筒伝熱管外壁
11b 内筒伝熱管内壁
11c 上端開口縁
12 外筒ジャケット
12a 外筒ジャケット内壁
13 上部液溜めハウジング
13a ハウジング部
13b 蓋体
13c 低温液化ガス流体供給口
13d 低温気化ガス排出口
14 仕切り板
15 高温側液流れの流路
16 上端開口部
17 高温液流体入口
18 高温液流体出口
20 流下液膜蒸発式熱交換器
21 内筒伝熱管
21a 内筒伝熱管外壁
23 上部液溜めハウジング
23a ハウジング部
23b 蓋体
23c 液化ガス供給口
23d 気化ガス排出口
24 仕切り板
24a 孔
24b 切り欠き
25 高温側液流れの流路
26 支持棒
N 低温液化ガス流体
α 隙間
DESCRIPTION OF SYMBOLS 10 Falling liquid film evaporation type heat exchanger 11 Inner cylinder heat exchanger tube 11a Inner cylinder heat exchanger tube outer wall 11b Inner cylinder heat exchanger tube inner wall 11c Upper end opening edge 12 Outer cylinder jacket 12a Outer cylinder jacket inner wall 13 Upper liquid reservoir housing 13a Housing part 13b Cover 13c Low-temperature liquefied gas fluid supply port 13d Low-temperature vaporized gas discharge port 14 Partition plate 15 High-temperature side liquid flow passage 16 Upper end opening 17 High-temperature liquid fluid inlet 18 High-temperature liquid fluid outlet 20 Falling liquid film evaporation heat exchanger 21 Inner cylinder Heat transfer tube 21a Inner tube heat transfer tube outer wall 23 Upper liquid reservoir housing 23a Housing part 23b Lid 23c Liquefied gas supply port 23d Vaporized gas discharge port 24 Partition plate 24a Hole 24b Notch 25 High temperature side liquid flow channel 26 Support rod N Low temperature Liquefied gas fluid α Clearance

Claims (7)

高温液流体から低温液化ガス流体への伝熱加熱により低温液化ガスを低温気化ガスに蒸発させる流下液膜蒸発式熱交換器において、前記熱交換器は、下面が閉じられた内筒伝熱管と、該内筒伝熱管を収容配置してなる外筒ジャケットと、該内筒伝熱管と該外筒ジャケットを間に隙間を設けて互いに垂直に接合保持してなる上部液溜めハウジングとを備え、前記内筒伝熱管の外壁と前記外筒ジャケットの内壁との前記隙間で形成された流路に前記高温液流体を通液し、かつ、前記低温液化ガス流体を前記上部液溜めハウジングから前記内筒伝熱管の内壁面に沿って流下させ、該内筒伝熱管を伝熱面とする伝熱加熱により蒸発し発生する低温気化ガスを前記内筒伝熱管上方に排出させることを特徴とする流下液膜蒸発式熱交換器。   In the falling liquid film evaporation heat exchanger that evaporates the low-temperature liquefied gas into the low-temperature vaporized gas by heat transfer heating from the high-temperature liquid fluid to the low-temperature liquefied gas fluid, the heat exchanger includes an inner cylindrical heat transfer tube whose bottom surface is closed, An outer cylinder jacket in which the inner cylinder heat transfer tube is accommodated and disposed, and an upper liquid reservoir housing in which the inner cylinder heat transfer tube and the outer cylinder jacket are joined and held vertically with a gap therebetween, The high-temperature liquid fluid is passed through a flow path formed by the gap between the outer wall of the inner cylinder heat transfer tube and the inner wall of the outer cylinder jacket, and the low-temperature liquefied gas fluid is passed from the upper liquid reservoir housing to the inner wall. Flowing down along the inner wall surface of the tube heat transfer tube, and discharging the low-temperature vaporized gas generated by heat transfer heating using the inner tube heat transfer tube as a heat transfer surface above the inner tube heat transfer tube Liquid film evaporation heat exchanger. 上記内筒伝熱管と上記外筒ジャケットの間の上記隙間内に、前記流路内における液流れ通過断面積を狭める仕切り板を設けてなることを特徴とする請求項1記載の流下液膜蒸発式熱交換器。   2. The falling liquid film evaporation according to claim 1, wherein a partition plate for narrowing a liquid flow passage cross-sectional area in the flow path is provided in the gap between the inner cylinder heat transfer tube and the outer cylinder jacket. Type heat exchanger. 上記仕切り板は、上記内筒伝熱管からその外面に支持固定されていることを特徴とする請求項2記載の流下液膜蒸発式熱交換器。   3. The falling liquid film evaporation heat exchanger according to claim 2, wherein the partition plate is supported and fixed to the outer surface of the inner tube heat transfer tube. 上記仕切り板は、上記外筒ジャケットからその内面に支持固定されていることを特徴とする請求項2記載の流下液膜蒸発式熱交換器。   3. The falling liquid film evaporation heat exchanger according to claim 2, wherein the partition plate is supported and fixed to the inner surface of the outer cylinder jacket. 上記仕切り板は、上記上部液溜めハウジングから支持体にて支持固定されていることを特徴とする請求項2記載の流下液膜蒸発式熱交換器。   3. The falling liquid film evaporation heat exchanger according to claim 2, wherein the partition plate is supported and fixed by a support from the upper liquid reservoir housing. 上記内筒伝熱管が一本のみであり上記外筒ジャケットと円筒同心に配置されていることを特徴とする請求項1,2,3,4または5記載の流下液膜蒸発式熱交換器。   6. The falling film evaporation heat exchanger according to claim 1, 2, 3, 4 or 5, characterized in that there is only one inner tube heat transfer tube and the tube is arranged concentrically with the outer tube jacket. 上記内筒伝熱管が二個以上の複数本備えることを特徴とする請求項1,2または5記載の流下液膜蒸発式熱交換器。   6. The falling liquid film evaporation type heat exchanger according to claim 1, 2 or 5, wherein the inner tube heat transfer tube has a plurality of two or more.
JP2012226915A 2012-10-12 2012-10-12 Flowing film evaporation heat exchanger Expired - Fee Related JP5965281B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012226915A JP5965281B2 (en) 2012-10-12 2012-10-12 Flowing film evaporation heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012226915A JP5965281B2 (en) 2012-10-12 2012-10-12 Flowing film evaporation heat exchanger

Publications (2)

Publication Number Publication Date
JP2014077614A JP2014077614A (en) 2014-05-01
JP5965281B2 true JP5965281B2 (en) 2016-08-03

Family

ID=50783047

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012226915A Expired - Fee Related JP5965281B2 (en) 2012-10-12 2012-10-12 Flowing film evaporation heat exchanger

Country Status (1)

Country Link
JP (1) JP5965281B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11306957B2 (en) 2018-01-23 2022-04-19 The Tisdale Group, LLC Liquid nitrogen-based cooling system

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5855298B1 (en) * 2015-02-25 2016-02-09 東京ガスケミカル株式会社 LNG evaporator and LNG evaporation method using LNG evaporator
CN104792580B (en) * 2015-04-24 2017-09-26 西安热工研究院有限公司 A kind of liquid film heat exchange absorption tube
CN115164631A (en) * 2022-06-15 2022-10-11 江苏科技大学 Falling film type desublimation heat exchanger for low-temperature carbon capture and working method thereof

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4860155U (en) * 1971-11-09 1973-07-31
JPS61149658U (en) * 1985-03-06 1986-09-16
JPH068715B2 (en) * 1987-09-14 1994-02-02 株式会社荏原製作所 Oyster feed multi-cylinder heat exchanger
US5375582A (en) * 1993-12-03 1994-12-27 Mk Rail Corporation Method and apparatus for regulating temperature of natural gas fuel
DK0864830T3 (en) * 1997-03-14 2002-02-04 Borsig Gmbh Heat exchanger with U-shaped pipes
JP4396986B2 (en) * 2005-12-27 2010-01-13 株式会社日本製鋼所 Falling liquid film regenerator

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11306957B2 (en) 2018-01-23 2022-04-19 The Tisdale Group, LLC Liquid nitrogen-based cooling system

Also Published As

Publication number Publication date
JP2014077614A (en) 2014-05-01

Similar Documents

Publication Publication Date Title
JP5965281B2 (en) Flowing film evaporation heat exchanger
JP2010078309A (en) Cooling device
WO2016047185A1 (en) Evaporator and refrigerator
JP2014020755A (en) Downward flow liquid film type evaporator
JP2010010204A (en) Ebullient cooling device
JP6678235B2 (en) Heat exchanger
KR100751974B1 (en) Intermediate Fluid type Vaporizer
JP7467028B2 (en) Low-temperature liquefied gas vaporizer, cooling system, and method for suppressing ice formation in the vaporizer
KR20180041299A (en) A Plate and Shell Heat Exchanger Capable of Making Steam
KR101165304B1 (en) Heat-Exchange Apparatus with Micro-channels
JP4553741B2 (en) Absorption refrigerator
JP6136944B2 (en) Evaporator
RU2570275C1 (en) Cryogenic fluid evaporator
JP6666703B2 (en) Heat exchanger
KR101917484B1 (en) Piping structure, cooling device using same, and refrigerant vapor transport method
JP4649349B2 (en) Evaporator with excellent distribution performance
JP4313605B2 (en) Fluid cooler
JP2011002120A (en) Hot water bath type vaporizer
KR101765434B1 (en) Reactor having increased heat exchanger tube
CN106017169A (en) LNG vaporizer adopting self-circulation intermediate and implementation method
WO2017203973A1 (en) Thermoelectric power generation device
JP5329127B2 (en) Cooling system
JP7333022B2 (en) Heat exchanger
JP5489143B2 (en) Two-stage absorption refrigerator and manufacturing method thereof
JP2019086254A (en) Evaporator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150701

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160414

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160607

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160701

R150 Certificate of patent or registration of utility model

Ref document number: 5965281

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees