JPS60154688A - Laser device - Google Patents

Laser device

Info

Publication number
JPS60154688A
JPS60154688A JP1012684A JP1012684A JPS60154688A JP S60154688 A JPS60154688 A JP S60154688A JP 1012684 A JP1012684 A JP 1012684A JP 1012684 A JP1012684 A JP 1012684A JP S60154688 A JPS60154688 A JP S60154688A
Authority
JP
Japan
Prior art keywords
light
reflecting
laser
angle
energy density
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1012684A
Other languages
Japanese (ja)
Other versions
JPH0624276B2 (en
Inventor
Masao Kodera
小寺 正雄
Michio Ichikawa
市川 三知男
Akiyasu Okazaki
岡崎 明泰
Fumio Shibata
柴田 文夫
Isao Mori
功 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP1012684A priority Critical patent/JPH0624276B2/en
Publication of JPS60154688A publication Critical patent/JPS60154688A/en
Publication of JPH0624276B2 publication Critical patent/JPH0624276B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/08Construction or shape of optical resonators or components thereof

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Lasers (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)

Abstract

PURPOSE:To stabilize the energy density of an output by oppositely disposing a pair of reflecting mirrors formed with sawtooth-shaped obliqud surfaces of the prescribed direction on the reflecting surface, and disposing to perpendicularly cross one oblique surface and the other oblique surface, thereby equalizing the laser light between the mirrors. CONSTITUTION:The incident light 9A of a laser light 9 is introduced to the vertical oblique surface 23, again becomes reflected light 9B by a reflecting surface 21, and introduced as an incident light to the horizontal oblique surface 22. At this time the angle formed by the lights 9A, 9B is called a reflecting angle (n). Thus, the light 9b from one surface 23 is advanced substantially in parallel to the other surface 22, accumulated in the angle (n) in the mount of the following oblique angle 0 deg. to become n1n2n3.... The light 9 is excited and amplified while resonating laterally from the upper right to the lower left. Accordingly, the light 9 is uniformly mixed in the surfaces 20, 21, and the energy density characteristics of the laser light output is stabilized.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は反射ミラーの組合を改良したレーザ装置に関す
る。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a laser device with an improved combination of reflecting mirrors.

〔発明の背景〕[Background of the invention]

一般にレーザ発生器は、ミラーを有する共振器内でグロ
ー放電を行ないガス媒体たとえば炭酸ガス、ヘリウムガ
ス、窒素ガス等を励起して、レーザ光を発生する。レー
ザ光は共振器内で複数の反射ミラー間で共振して、レー
ザ光を増幅し、一方の半透過鏡たとえばZn5eである
出力鏡より外部に照射される。レーザ光は被加工物に照
射すれば、被加工物を切断、溶接1表面処理等の加工を
施すことができる。被加工物の加工時間は、レーザ光の
エネルギー密度が大きいほど早く加工できる。
Generally, a laser generator generates laser light by exciting a gas medium such as carbon dioxide gas, helium gas, nitrogen gas, etc. by generating a glow discharge within a resonator having a mirror. The laser beam resonates between a plurality of reflecting mirrors within the resonator, is amplified, and is irradiated to the outside from one semi-transmissive mirror, for example, an output mirror made of Zn5e. By irradiating the workpiece with laser light, the workpiece can be processed such as cutting, welding, and surface treatment. The higher the energy density of the laser beam, the faster the workpiece can be processed.

レーザ光のエネルギー密度を大きくするには、反射ミラ
ー間の励起空間を大きくする為に共振距離を長くして、
レーザ光を増幅したり、或い(は反射ミラーの反射率を
良くしたり、することである。
In order to increase the energy density of the laser beam, the resonance distance is lengthened to increase the excitation space between the reflecting mirrors.
This means amplifying the laser beam or improving the reflectance of the reflecting mirror.

従来、反射ミラーの製作法は、無酸素銅、ベリリウム銅
、アルミニウム等の被研磨部材をラッピング法により製
作する。ラッピング法は、回転台に固定した被研磨部利
上に研磨器を接触させる。
Conventionally, reflective mirrors are manufactured by lapping a polished member made of oxygen-free copper, beryllium copper, aluminum, or the like. In the lapping method, a polisher is brought into contact with a part to be polished fixed on a rotary table.

回転台を回転しながら、被研磨部材の一方面を研磨器で
揺動すると共に、この間に研磨剤を含有した液体を適当
に滴下して、被研磨部材の一方面に反射ミラーを形成す
る。反射ミラーを形成するまでに、研共皿、液体は荒ラ
ップ、中ラップ、仕上ラップに応じて取換える。したが
って、多大々作業時間と熟練を要する。
While rotating the rotary table, one side of the member to be polished is oscillated by a polisher, and a liquid containing an abrasive is appropriately dropped during this period to form a reflective mirror on one side of the member to be polished. Before forming the reflective mirror, the polishing plate and liquid are replaced depending on the rough lap, medium lap, and finishing lap. Therefore, it requires a lot of time and skill.

そこで、超精密加工によるダイヤモンド切削加工法によ
って、被加工部材を加工して、反射ミラーを形成すれば
、作業時間を大幅に短縮することができると共に、あま
り熟練を要しないでできる。
Therefore, if a reflecting mirror is formed by processing a workpiece using a diamond cutting method using ultra-precision processing, the working time can be significantly shortened and it can be done without requiring much skill.

しかし、切削反射ミラーは、反射面をミクロ的に観察す
れば、断面ノコギリ波形状をなし、ノコギリ波形状は傾
斜面を形成している。このため、単に反射ミラーを組合
せれば、各傾斜面でのレーザ光は、進入光と反射光とで
成す入射角度が犬きくなυ、レーザ光は反射ミラー間以
外に放散するのが多くなったり、或いはレーザ光が各反
射ミラー間で特定方向に照射し、共振距離が一様でなく
、レーザ光出力のエネルギー密度特性が不安定になる。
However, when the reflective surface of a cut reflective mirror is microscopically observed, it has a sawtooth cross section, and the sawtooth waveform forms an inclined surface. Therefore, if you simply combine reflecting mirrors, the angle of incidence of the laser beam on each inclined surface between the incident light and the reflected light will be very large, and the laser beam will often be scattered outside of the areas between the reflecting mirrors. Or, the laser beam irradiates between each reflecting mirror in a specific direction, the resonance distance is not uniform, and the energy density characteristic of the laser beam output becomes unstable.

不安定なレーザ光で被加工物を加工たとえば窪みを形成
する場合には、奇麗に出来ない。
When machining a workpiece using an unstable laser beam, for example, forming a depression, it cannot be done neatly.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、反射ミラー間でのレーザ光を均等にし
て、レーザ光出力のエネルギー密度を安定にしたレーザ
装置を提供することになる。
An object of the present invention is to provide a laser device in which the energy density of laser light output is stabilized by equalizing the laser light between reflecting mirrors.

〔発明の概要〕[Summary of the invention]

この目的を達成するために、本発明のレーザ装置は、反
射面に一定方向のノコギリ波形状の傾斜面を形成した一
対の反射ミラーを対応配置し、一方の傾斜面と他方の傾
斜面とを直交させるように配置ずれば、反射ミラー丙で
レーザ光が均等にできるので、レーザ光出力のエネルギ
ー密度を安定させることができる。
In order to achieve this object, the laser device of the present invention has a pair of reflecting mirrors each having a sawtooth wave-shaped inclined surface in a fixed direction arranged in a corresponding manner, and one inclined surface and the other inclined surface are arranged in correspondence with each other. If they are arranged so as to be orthogonal to each other, the laser beam can be uniformly emitted by the reflecting mirror C, so that the energy density of the laser beam output can be stabilized.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の実施例を第1図に示す直交型ガスレーザ
発生装置により説明する。
Embodiments of the present invention will be described below using an orthogonal gas laser generator shown in FIG.

混合ガス1は陽極2と陰極3との間に流通し、両電極に
電圧を印加し、グロー放電を発生すれば、励起空間4を
形成するつ励起空間と対応して出力ミラー5および全反
射ミラー6と平面ミラーである第1および第2折返ミラ
ー7.8を配置し、これらのミラー間をレーザ光9が共
振している。レーザ光9の光軸9A〜9 Eは、励起空
間内に5個ある。各ミラーは第2図に示すように構成し
ている。
The mixed gas 1 flows between the anode 2 and the cathode 3, and when a voltage is applied to both electrodes and a glow discharge is generated, an excitation space 4 is formed. A mirror 6 and first and second folding mirrors 7.8, which are plane mirrors, are arranged, and a laser beam 9 resonates between these mirrors. There are five optical axes 9A to 9E of the laser beam 9 in the excitation space. Each mirror is constructed as shown in FIG.

共振器本体10は側面に示威したガス流通口11と直角
方向にベローズ12を介して端板13゜14を取付けて
いる。各端板13,14の外側面には、ベローズ15を
介して出力ミラー5および全反射ミラー6を取付けてい
る。各端板13゜14の内側面には、出力ミラー5およ
び全反射ミラー6と隣接して、第1および第2折返ミラ
ー7゜8が取付台1Gを介して取付けられている。第1
折返ミラー7とM2折返ミラー8とは、互いに反射面2
0.21が傾斜状態で対応するように取伺台16に取付
けられている。
End plates 13 and 14 are attached to the resonator body 10 via bellows 12 in a direction perpendicular to the gas flow port 11 shown on the side surface. An output mirror 5 and a total reflection mirror 6 are attached to the outer surface of each end plate 13, 14 via a bellows 15. First and second folding mirrors 7.8 are attached to the inner surface of each end plate 13.degree. 14, adjacent to the output mirror 5 and total reflection mirror 6, via mounting bases 1G. 1st
The folding mirror 7 and the M2 folding mirror 8 each have a reflective surface 2.
0.21 is attached to the pick-up stand 16 so as to correspond to the inclined state.

反射面20.21は第3図囚、 ([3>、 (C)に
示す如く、1更面ノーブギリ波形状をしている。一方の
反射面20tfzk干方向に複数個の傾斜面22を形成
しているっ他方の反射面21は一方の反射面2oと直交
する垂直方向に複数個の傾斜面23を形成している。傾
斜面22.23の高さ寸法Hに、凸部24から凹部25
に行くに従い高さ寸法を順次低く形成している。水平方
向の傾斜面22と垂直方向の傾斜面23とを直交する方
法は、l−1e−N eレーザからのレーザ光を反射面
に照射し、反射光この構成で、レーザ光9の進入光9A
が垂直方向の傾斜面23に進入し、再び反射面21より
反射光9Bとなって、水平方向の傾斜面22にイ(−入
光となって進入する。この時、進入光9Aと反射光9B
とでなす角度を反射角nと称する。このため一方の傾斜
面23からの反射光9Bが01は平行に他方の傾斜面2
2に進み、匂降傾斜角θ分だけ反射角nに累積されn1
n2n3・・・となり、図示上右上から左下に共振しな
からレーザ光9ば、励起・増幅されてゆくので、レーザ
光9は反射面20.21内で均等に混合されて、レーザ
光出力のエネルギー密度特性AVi第4図(9)、 (
1−3)に示す如く安定する。
As shown in Figure 3, (C), the reflecting surfaces 20 and 21 have a single-surface nob-shaped wave shape.One reflecting surface 20tfzk has a plurality of inclined surfaces 22 in the dry direction. The other reflecting surface 21 has a plurality of inclined surfaces 23 in the vertical direction orthogonal to the one reflecting surface 2o.The height dimension H of the inclined surface 22.23 has a convex portion 24 to a depressed portion. 25
The height dimension is gradually decreased as the height increases. The method of orthogonally intersecting the horizontal inclined surface 22 and the vertical inclined surface 23 is to irradiate the reflective surface with laser light from the l-1e-N e laser, and with this configuration, the incident light of the laser light 9 9A
enters the vertical inclined surface 23, becomes reflected light 9B from the reflective surface 21 again, and enters the horizontal inclined surface 22 as A (- incident light. At this time, the incident light 9A and the reflected light 9B
The angle formed by this is called the reflection angle n. Therefore, the reflected light 9B from one inclined surface 23 is parallel to the other inclined surface 23.
2, the reflection angle n is accumulated by the tilt angle θ and n1
n2n3..., and the laser beam 9 resonates from the top right to the bottom left in the figure, and is excited and amplified, so the laser beam 9 is evenly mixed within the reflecting surface 20, 21, and the laser beam output increases. Energy density characteristics AVi Figure 4 (9), (
It is stable as shown in 1-3).

第4図(A)U (41ilりl+にエネルギー密度(
E)を、横軸にレーザ光9の直径tを取り、直径f−の
中心Oかららi−E右の円周端1/2tを示している。
Fig. 4 (A) U (41il + + energy density (
In E), the diameter t of the laser beam 9 is plotted on the horizontal axis, and the circumferential end 1/2t to the right of i-E from the center O of the diameter f- is shown.

エネルギー密度++′3性Aは本発明であるのに対して
、エネルギー密度7111件J3は第3図■、 (IJ
)の傾斜面22゜23を同方向7℃とえは水平方向同志
又は垂直方向同志に配置シフ/こ場合である。この!特
性図から明らかなように、エネルギー密度qも性Aはエ
ネルギー密度特性■(に比べで、波形が一定形状で安定
しでいる。とれらのエネルギー密度11.S性に、f3
をミクロ的に観値−4゛ると、同図(13)に示すよう
に、エネルギー密度ホロ41..Aの振幅8Aは、ニオ
・ルギー密度l持f目3の振幅813より小さい。
Energy density ++'3 property A is the present invention, whereas energy density 7111 cases J3 is shown in Figure 3 ■, (IJ
), the inclined surfaces 22° and 23 are arranged in the same direction at 7° C. In this case, the inclined surfaces 22 and 23 are arranged horizontally or vertically. this! As is clear from the characteristic diagram, energy density q and characteristic A have a stable waveform with a constant shape compared to energy density characteristic ■.
When the microscopic value is -4゜, the energy density holo 41. .. The amplitude 8A of A is smaller than the amplitude 813 of the f-th 3 having a Niolegi density l.

エネルギー’、lv′f度11″h性A、13のレーザ
光9を破卵」二物/ζJ二えはアクリル板30に照射し
た時に生ずるバーンパターン(焼跡)を親察すると、同
図0に示すように、本発明の焼跡A′では凸凹部を生じ
にくいが、工オルギー密度t1眉・′1ユ13の焼跡B
′では鎖線で示すように凸凹部を生じる。このため、本
発明のレーザ’J−Wt、により加工処理たとえば人肺
energy', lv'f degree 11'' As shown in FIG.
′, an uneven portion is produced as shown by the chain line. For this purpose, the laser 'J-Wt' of the present invention is used to process, for example, human lungs.

切断等をすれば、奇麗に出来る。If you do some cutting, etc., it will come out beautifully.

反射ミラーの反射面20.21は、第5図(ホ)。The reflective surfaces 20 and 21 of the reflective mirror are shown in FIG. 5 (e).

(ト))に示す如く、傾斜面22.23を形成(7で、
一方の傾斜面22と鎖線の傾斜面23とを直交τNせて
もよい。傾斜面に代えて、凸凹部を形成1−7でもよい
As shown in (G)), the sloped surfaces 22 and 23 are formed (in 7,
One inclined surface 22 and the inclined surface 23 indicated by the chain line may be perpendicular to each other by τN. Instead of the inclined surface, an uneven portion 1-7 may be formed.

上述の実施例では重文型レーザ発生装置に)いて説明し
たが、第6図に示す軸流型レーザ発生装置に使用しても
よい。これらのレーザ発生装置t、L、第7図に示すよ
うに折り返し順序でミラー而の傾斜方向に一定の角度を
もつで反射ミラー分配−8分配設しても、上述と同様な
効果を達成できる。この場合に、反射ミラーの少なくと
も1つには切削型でない反射ミラーを使用してもよい。
Although the above-mentioned embodiment has been explained using a heavy-duty type laser generator, it may also be used in an axial flow type laser generator shown in FIG. The same effect as described above can be achieved even if these laser generators t and L are arranged in eight reflecting mirrors in the order of folding and at a certain angle in the direction of inclination of the mirrors as shown in FIG. . In this case, a non-cutting type reflective mirror may be used as at least one of the reflective mirrors.

」二連の実施例の他にレーザ加工装置で少なくとも、一
対の反射ミラー間でレーザ光を共振する場合にも、使用
できることは勿論である。
It goes without saying that, in addition to the two embodiments, the present invention can also be used in a laser processing apparatus in which the laser beam is resonated between at least a pair of reflecting mirrors.

〔発明の効果〕〔Effect of the invention〕

以上のように、本発明のレーザ装置によれば、レーザ光
出力のエネルギー密度を安定することができる。
As described above, according to the laser device of the present invention, the energy density of laser light output can be stabilized.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例として示した直交型ガスレーザ
発生器の概略説明図、第2図は第1図の共振器附近の説
明図、第3図は折返しミラーを示すもので、同図(ト)
、 CF4は斜視図、同図(Qは概略側断面図、第4図
(A)はレーザ光出力のエネルギー密度特性図、同図(
功は同図(5)の振幅特性を示す図、同図(C)はアク
リル板のバーンパターン図、第5図囚、 (B)は他の
実施例として示した反射ミラーの平面図、第6図および
第7図は他の実施例として示したレーザ発生器の概略説
明図である。 7.8・・・折返ミラー、9・・・レーザ光、20.2
1剣3 口 (/l] (B) 第1頁の続き 0発 明 者 森 功 日立市国分町 場内
Fig. 1 is a schematic explanatory diagram of an orthogonal gas laser generator shown as an embodiment of the present invention, Fig. 2 is an explanatory diagram of the vicinity of the resonator in Fig. 1, and Fig. 3 shows a folding mirror. (to)
, CF4 is a perspective view, the same figure (Q is a schematic side sectional view, FIG. 4 (A) is an energy density characteristic diagram of laser light output, the same figure (
Figure (5) shows the amplitude characteristics; Figure (C) shows the burn pattern of the acrylic plate; 6 and 7 are schematic illustrations of laser generators shown as other embodiments. 7.8... Reflection mirror, 9... Laser light, 20.2
1 sword 3 mouths (/l) (B) Continued from page 1 0 Inventor Isao Mori Inside Kokubu-cho, Hitachi City

Claims (1)

【特許請求の範囲】 1、複数の反射ミラー間をレーザ光が伝達する装置にお
いで、上記複数の反射ミラーの少なくとも一対の反射ミ
ラーの反射面を切削加工して、一定方向の凸凹部より成
る反射面を形成し、一方の反射面の凸凹部と他方の反射
面の凸凹部とが直交するように配(6,することを特徴
とするレーザ装置。 2、上記反射面は傾斜面より成る断面ノコギリ波形状に
形成することを特徴とする特許請求の範囲第1項記載の
レーザ装置6゜ 3、上記反射ミラーの一部に切削方向の目印を設けるこ
とを特徴とする特許請求の範囲第1項又は第2項記載の
レーザ装置。
[Claims] 1. In a device in which laser light is transmitted between a plurality of reflecting mirrors, the reflecting surface of at least one pair of the plurality of reflecting mirrors is cut to form uneven portions in a certain direction. A laser device characterized in that a reflective surface is formed and the concave and convex portions of one reflective surface are arranged so that the concave and convex portions of the other reflective surface are orthogonal (6). 2. The reflective surface is composed of an inclined surface. A laser device 6゜3 according to claim 1, characterized in that the cross section is formed into a sawtooth wave shape, and claim 1, characterized in that a mark in the cutting direction is provided on a part of the reflecting mirror. The laser device according to item 1 or 2.
JP1012684A 1984-01-25 1984-01-25 Laser device Expired - Lifetime JPH0624276B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1012684A JPH0624276B2 (en) 1984-01-25 1984-01-25 Laser device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1012684A JPH0624276B2 (en) 1984-01-25 1984-01-25 Laser device

Publications (2)

Publication Number Publication Date
JPS60154688A true JPS60154688A (en) 1985-08-14
JPH0624276B2 JPH0624276B2 (en) 1994-03-30

Family

ID=11741591

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1012684A Expired - Lifetime JPH0624276B2 (en) 1984-01-25 1984-01-25 Laser device

Country Status (1)

Country Link
JP (1) JPH0624276B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01125884A (en) * 1987-11-10 1989-05-18 Fanuc Ltd Laser oscillator
WO1989006449A1 (en) * 1988-01-08 1989-07-13 Fanuc Ltd Laser oscillator
JPH03289185A (en) * 1990-04-06 1991-12-19 Nec Corp Random polarization he-ne gas laser
JP2011204942A (en) * 2010-03-26 2011-10-13 Mitsubishi Electric Corp Laser oscillator

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01125884A (en) * 1987-11-10 1989-05-18 Fanuc Ltd Laser oscillator
WO1989006449A1 (en) * 1988-01-08 1989-07-13 Fanuc Ltd Laser oscillator
JPH03289185A (en) * 1990-04-06 1991-12-19 Nec Corp Random polarization he-ne gas laser
JP2011204942A (en) * 2010-03-26 2011-10-13 Mitsubishi Electric Corp Laser oscillator

Also Published As

Publication number Publication date
JPH0624276B2 (en) 1994-03-30

Similar Documents

Publication Publication Date Title
JPS583478B2 (en) Laser heating method and device
US4391519A (en) Axis-monitoring apparatus for a laser beam
JPH06170571A (en) Laser polishing method for diamond and device and diamond product formed by utilizing this method and device
JPS60154688A (en) Laser device
JPH0768395A (en) Method and device for cutting glass
JPS6317035B2 (en)
JPH05504723A (en) Cutting method using high energy radiation
JPH0563273B2 (en)
CN105436704B (en) Double processing head laser processing devices based on radial polarized light beam
JPS6363594A (en) Gas laser device
CN106660170A (en) Laser processing mask
JPH0159076B2 (en)
JP2003025084A (en) Laser beam processing device and laser beam processing method
JP2809181B2 (en) LD pumped solid-state laser device
JPS63194887A (en) Head for laser beam machine
JPH03171785A (en) Laser oscillation device
JPH071807Y2 (en) Diode laser pumped solid state laser device
JPS61132288A (en) Laser welding device
JPH05131282A (en) Method and device for laser beam welding
JPS60217678A (en) Laser resonator
JPS58122195A (en) Laser working method
JP3493373B2 (en) Laser oscillator
JPS60231588A (en) Method of laser cutting of new ceramic
JPH05309489A (en) Excimer laser beam machine
JPH09189881A (en) Optical system in laser device