JPH0624276B2 - Laser device - Google Patents

Laser device

Info

Publication number
JPH0624276B2
JPH0624276B2 JP1012684A JP1012684A JPH0624276B2 JP H0624276 B2 JPH0624276 B2 JP H0624276B2 JP 1012684 A JP1012684 A JP 1012684A JP 1012684 A JP1012684 A JP 1012684A JP H0624276 B2 JPH0624276 B2 JP H0624276B2
Authority
JP
Japan
Prior art keywords
energy density
laser light
laser
mirror
mirrors
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1012684A
Other languages
Japanese (ja)
Other versions
JPS60154688A (en
Inventor
正雄 小寺
三知男 市川
明泰 岡崎
文夫 柴田
功 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP1012684A priority Critical patent/JPH0624276B2/en
Publication of JPS60154688A publication Critical patent/JPS60154688A/en
Publication of JPH0624276B2 publication Critical patent/JPH0624276B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/08Construction or shape of optical resonators or components thereof

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Lasers (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明はレーザ装置に係り、特に、複数の反射ミラー間
をレーザ光が伝達するものに好適なレーザ装置に関す
る。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a laser device, and more particularly to a laser device suitable for transmitting laser light between a plurality of reflecting mirrors.

〔発明の背景〕[Background of the Invention]

一般にレーザ発生器は、ミラーを有する共振器内でグロ
ー放電を行ないガス媒体たとえば炭酸ガス,ヘリウムガ
ス,窒素ガス等を励起して、レーザ光を発生する。レー
ザ光は共振器内で複数の反射ミラー間で共振して、レー
ザ光を増幅し、一方の半透過鏡とえばZnSeである出力
鏡より外部に照射される。レーザ光は被加工物に照射す
れば、被加工物が切断,溶接,表面処理等の加工を施す
ことができる。被加工物の加工時間は、レーザ光のエネ
ルギー密度が大きいほど早く加工できる。レーザ光のエ
ネルギー密度を大きくするには、共振距離を長くして反
射ミラー間の励起空間を大きくしレーザ光を増幅した
り、或いは反射ミラーの反射率を良くしたりすればよ
い。
Generally, a laser generator emits a laser beam by performing glow discharge in a resonator having a mirror to excite a gas medium such as carbon dioxide gas, helium gas or nitrogen gas. The laser light resonates between a plurality of reflection mirrors in the resonator, amplifies the laser light, and is radiated to the outside from one of the semitransparent mirrors, which is ZnSe, for example. If the workpiece is irradiated with the laser light, the workpiece can be subjected to processing such as cutting, welding, and surface treatment. The processing time of the workpiece can be processed faster as the energy density of the laser light is higher. In order to increase the energy density of the laser light, the resonance distance may be lengthened to increase the excitation space between the reflection mirrors to amplify the laser light, or the reflectance of the reflection mirror may be improved.

従来、反射ミラーの製作は、無酸素銅、ベリリウム銅、
アルミニウム等の被研磨部材をラツピング法により行っ
ていた。ラッピング法とは、回転台に固定した被研磨部
材上に研磨皿を接触させ、回転台を回転しながら、被研
磨部材の一方面を研磨皿で揺動すると共に、この間に研
磨剤を含有した液体を適当に滴下して、被研磨部材の一
方面に反射ミラーを形成するものである。反射ミラーを
形成するまでに、研磨皿,液体は荒ラツプ,中ラツプ,
仕上ラツプに応じて取換える。したがつて、多大な作業
時間と熟練を要する。
Traditionally, reflection mirrors have been manufactured using oxygen-free copper, beryllium copper,
The member to be polished such as aluminum has been processed by the lapping method. The lapping method is a method in which a polishing dish is brought into contact with a member to be polished fixed to a rotary table, one side of the member to be polished is swung by the polishing dish while the rotary table is rotated, and an abrasive is contained between them. A liquid is appropriately dropped to form a reflection mirror on one surface of the member to be polished. By the time the reflective mirror is formed, the polishing dish, the liquid is rough, medium and
Replace according to the finishing lap. Therefore, a lot of work time and skill are required.

そこで、超精密加工によるダイヤモンド切削加工法によ
って、被加工部材を加工して、反射ミラーを形成すれ
ば、作業時間を大幅に短縮することができると共に、あ
まり熟練を要しないでできる。しかし、切削反射ミラー
は、反射面をミクロ的に観察すれば、断面ノコギリ波形
状をなし、ノコギリ波形状は傾斜面を形成している。こ
のため、単に反射ミラーを組合せれば、各傾斜面でのレ
ーザ光は、進入光と反射光とで成す入射角度が大きくな
り、レーザ光は反射ミラー間以外に放散するのが多くな
つたり、或いはレーザ光が各反射ミラー間で特定方向に
照射し、共振距離が一様でなく、レーザ光出力のエネル
ギー密度特性が不安定になる。エネルギー密度特性が不
安定なレーザ光で被加工物を加工、例えば窪みを形成す
ると加工が奇麗に出来ないという問題があった。
Therefore, if the member to be processed is processed by the diamond cutting method by ultra-precision processing to form the reflection mirror, the working time can be greatly shortened and less skill is required. However, when the reflecting surface of the cutting reflecting mirror is observed microscopically, the cutting reflecting mirror has a sawtooth wave shape in cross section, and the sawtooth wave shape forms an inclined surface. For this reason, if the reflecting mirrors are simply combined, the incident angle of the incident light and the reflected light of the laser light on each inclined surface becomes large, and the laser light often radiates to other than between the reflecting mirrors. Alternatively, laser light is emitted between the reflection mirrors in a specific direction, the resonance distance is not uniform, and the energy density characteristic of the laser light output becomes unstable. There is a problem in that the work cannot be neatly processed when the work is processed with a laser beam having an unstable energy density characteristic, for example, a recess is formed.

〔発明の目的〕[Object of the Invention]

本発明の目的は、反射ミラー間でのレーザ光を均等にし
て、レーザ光出力のエネルギー密度を安定に保ち、加工
を奇麗に行うことのできるレーザ装置を提供するにあ
る。
An object of the present invention is to provide a laser device which can make laser light uniform between reflection mirrors, keep the energy density of laser light output stable, and perform processing neatly.

〔発明の概要〕[Outline of Invention]

この目的を達成するために、本発明のレーザ装置は、反
射面表面に一定方向のノコギリ波形状の傾斜面を形成し
た一対の反射ミラーを相対向配置させ、一方の傾斜面と
他方の傾斜面とを直交させるように配置したことを特徴
とする。
In order to achieve this object, the laser device of the present invention, a pair of reflection mirrors having a sawtooth wave-shaped inclined surface of a certain direction formed on the surface of the reflection surface are arranged to face each other, one inclined surface and the other inclined surface. It is characterized in that they are arranged so as to be orthogonal to each other.

〔発明の実施例〕Example of Invention

以下、本発明の実施例を第1図に示す直交型ガスレーザ
発生装置により説明する。
An embodiment of the present invention will be described below with reference to the orthogonal gas laser generator shown in FIG.

該図に示すごとく、通常は混合ガス1は陽極2と陰極3
との間に流通し、両電極に電圧を印加させてゲロー放電
を発生すれば、励起空間4を形成する。励起空間と対応
して出力ミラー5および全反射ミラー6と平面ミラーで
ある第1および第2折返ミラー7,8を配置し、これら
のミラー間をレーザ光9が共振している。レーザ光9の
光軸9A〜9Eは、励起空間内に5個ある。各ミラーは
第2図に示すように構成している。
As shown in the figure, the mixed gas 1 is usually an anode 2 and a cathode 3.
And a voltage is applied to both electrodes to generate a Gello discharge, an excitation space 4 is formed. An output mirror 5 and a total reflection mirror 6 and first and second folding mirrors 7 and 8 which are plane mirrors are arranged corresponding to the excitation space, and a laser beam 9 resonates between these mirrors. There are five optical axes 9A to 9E of the laser light 9 in the excitation space. Each mirror is constructed as shown in FIG.

共振器本体10は側面に示したガス流通口11と直角方
向にベローズ12を介して端板13,14を取付けてい
る。各端板13,14の外側面には、ベローズ15を介
して出力ミラー5および全反射ミラー6を取付けてい
る。各端板13,14の内側面には、出力ミラー5およ
び全反射ミラー6と隣接して、第1および第2折返ミラ
ー7,8が取付台16を介して取付けられている。第1
折返ミラー7と第2折返ミラー8とは、互いに反射面2
0,21が傾斜状態で対応するように取付台16に取付
けられている。
The resonator body 10 has end plates 13 and 14 mounted in a direction perpendicular to the gas flow port 11 shown on the side surface via a bellows 12. An output mirror 5 and a total reflection mirror 6 are attached to the outer surfaces of the end plates 13 and 14 via bellows 15. First and second folding mirrors 7 and 8 are attached to the inner surface of each of the end plates 13 and 14 adjacent to the output mirror 5 and the total reflection mirror 6 via a mount 16. First
The folding mirror 7 and the second folding mirror 8 are reflective surfaces 2 with respect to each other.
0 and 21 are attached to the mounting base 16 so as to correspond in an inclined state.

反射面20,21は第3図(A),(B),(C)に示す如く、
断面ノコギリ波形状をなしている。一方の反射面20は
水平方向に複数個の傾斜面22を形成している。他方の
反射面21は一方の反射面20と直交する垂直方向に複
数個の傾斜面23を形成している。傾斜面22,23の
高さ寸法Hは、断面ノコギリ波形状の傾斜面凸部24か
ら凹部25に行くに従い高さ寸法を順次低く形成してい
る。水平方向の傾斜面22と垂直方向の傾斜面23とを
直交する方向は、He−Neレーザからのレーザ光を反
射面に照射し、反射光をスクリーンに投写し、映し出さ
れた凸部方向に目印26,27を附し、これを直交させ
る。(目印は反射ミラーの裏面に附してもよい。) この構成で、レーザ光9の進入光9Aが垂直方向の傾斜
面23に進入し、再び反射面21より反射光9Bとなつ
て、水平方向の傾斜面22に進入光となつて進入する。
この時、進入光9Aと反射光9Bとでなす角度を反射角
nと称する。このため一方の傾斜面23からの反射光9
Bがほぼ平行に他方の傾斜面22に進み、以降傾斜角θ
分だけ反射角nに累積されn…となり、図示
上右上から左下に共振しながらレーザ光9は、励起・増
幅されてゆくので、レーザ光9は反射面20,21内で
均等に混合されて、レーザ光出力のエネルギー密度特性
Aは第4図(A),(B)に示す如く安定する。
The reflecting surfaces 20 and 21 are, as shown in FIGS. 3 (A), (B) and (C),
It has a sawtooth cross section. One reflecting surface 20 forms a plurality of inclined surfaces 22 in the horizontal direction. The other reflecting surface 21 forms a plurality of inclined surfaces 23 in the vertical direction orthogonal to the one reflecting surface 20. The height dimension H of the inclined surfaces 22 and 23 is formed such that the height dimension is gradually reduced from the inclined surface convex portion 24 having a sawtooth-shaped cross section to the concave portion 25. The direction in which the horizontal inclined surface 22 and the vertical inclined surface 23 are orthogonal to each other irradiates the reflecting surface with laser light from a He-Ne laser, projects the reflected light on a screen, and projects the projected light toward the projected portion. Marks 26 and 27 are attached to make them orthogonal. (The mark may be attached to the back surface of the reflection mirror.) With this configuration, the incident light 9A of the laser light 9 enters the vertically inclined surface 23, and again becomes the reflected light 9B from the reflecting surface 21 and is horizontal. The light enters the inclined surface 22 in the direction as incoming light.
At this time, the angle formed by the incident light 9A and the reflected light 9B is referred to as a reflection angle n. Therefore, the reflected light 9 from the one inclined surface 23
B advances to the other inclined surface 22 substantially in parallel, and thereafter the inclination angle θ
The laser beam 9 is pumped and amplified while resonating from the upper right side to the lower left side in the figure as it is accumulated in the reflection angle n as much as n 1 n 2 n 3 ... After being mixed uniformly, the energy density characteristic A of the laser light output becomes stable as shown in FIGS. 4 (A) and 4 (B).

第4図(A)は縦軸にエネルギー密度(E)を、横軸にレーザ
光9の直径lを取り、直径lの中心Oから左右の円周端
1/2lを示している。エネルギー密度特性Aは本発明
であるのに対して、エネルギー密度特性Bは第3図
(A),(B)の傾斜面22,23を同方向にたとえば水平方
向同志又は垂直方向同志に配置した場合である。この特
性図から明らかなように、エネルギー密度特性Aはエネ
ルギー密度特性Bに比べて、波形が一定形状で安定して
いる。これらのエネルギー密度特性A,Bをミクロ的に
観察すると、同図(B)に示すように、エネルギー密度特
性Aの振幅8Aは、エネルギー密度特性Bの振幅8Bよ
り小さい。
In FIG. 4 (A), the vertical axis represents the energy density (E), the horizontal axis represents the diameter 1 of the laser beam 9, and the left and right circumferential ends ½l from the center O of the diameter 1 are shown. The energy density characteristic A is the present invention, while the energy density characteristic B is shown in FIG.
This is a case where the inclined surfaces 22 and 23 of (A) and (B) are arranged in the same direction, for example, horizontally or vertically. As is clear from this characteristic diagram, the energy density characteristic A is more stable than the energy density characteristic B with a constant waveform. Microscopically observing these energy density characteristics A and B, the amplitude 8A of the energy density characteristic A is smaller than the amplitude 8B of the energy density characteristic B as shown in FIG.

エネルギー密度特性A,Bのレーザ光9を被加工物たと
えばアクリル板30に照射した時に生ずるバーンパター
ン(焼跡)を観察すると、同図(C)に示すように、本発
明の焼跡A′では凸凹部を生じにくいが、エネルギー密
度特性Bの焼跡B′では鎖線で示すように凸凹部を生じ
る。このため、本発明のレーザ装置により加工処理たと
えば穴加工、切断等を行えば、奇麗にできあがる。
Observing the burn pattern (burn mark) generated when the laser beam 9 having the energy density characteristics A and B is applied to the work piece, for example, the acrylic plate 30, the burn pattern A ′ of the present invention is uneven as shown in FIG. Although it is difficult to form a portion, in the burn mark B ′ of the energy density characteristic B, an uneven portion is formed as shown by a chain line. Therefore, if the laser device of the present invention is used for processing, such as drilling and cutting, it can be completed neatly.

〔発明の効果〕〔The invention's effect〕

以上のように、本発明のレーザ装置によれば、レーザ光
出力のエネルギー密度を安定することができるので、加
工を奇麗に行えるという効果がある。
As described above, according to the laser device of the present invention, the energy density of the laser light output can be stabilized, so that there is an effect that processing can be performed neatly.

【図面の簡単な説明】 第1図は本発明の実施例として示した直交型ガスレーザ
発生器の概略説明図、第2図は第1図の共振器附近の説
明図、第3図は折返しミラーを示すもので、同図(A),
(B)は斜視図、同図(C)は概略側断面図、第4図(A)はレ
ーザ光出力のエネルギー密度特性図、同図(B)は同図(A)
の振幅特性を示す図、同図(C)はアクリル板のバーンパ
ターン図である。 7,8……折返ミラー、9……レーザ光、20,21…
…反射面、22,23……傾斜面。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic explanatory view of an orthogonal gas laser generator shown as an embodiment of the present invention, FIG. 2 is an explanatory view near a resonator of FIG. 1, and FIG. 3 is a folding mirror. In the figure (A),
(B) is a perspective view, (C) is a schematic side sectional view, (A) is an energy density characteristic diagram of laser light output, and (B) is (A).
FIG. 3C is a burn pattern diagram of an acrylic plate. 7, 8 ... Folding mirror, 9 ... Laser light, 20, 21 ...
… Reflective surfaces, 22, 23 …… Inclined surfaces.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 柴田 文夫 東京都千代田区神田駿河台4丁目6番地 株式会社日立製作所内 (72)発明者 森 功 茨城県日立市国分町1丁目1番1号 株式 会社日立製作所国分工場内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Fumio Shibata 4-6 Kanda Surugadai, Chiyoda-ku, Tokyo Inside Hitachi, Ltd. (72) Inventor Isao Mori 1-1-1 Kokubuncho, Hitachi City, Ibaraki Stock Company Hitachi Kokubu Factory

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】複数の反射ミラー間をレーザ光が伝達する
レーザ装置において、 上記複数の反射ミラーのうち、相対向する一対の反射ミ
ラーの反射面表面に、一定方向の断面ノコギリ波形状の
傾斜面を形成し、これら相対向する一対のミラーの一方
の上記傾斜面と他方の傾斜面とが互いに直交するように
配置されていることを特徴とするレーザ装置。
1. A laser device in which laser light is transmitted between a plurality of reflecting mirrors, wherein, of the plurality of reflecting mirrors, a pair of reflecting mirrors facing each other has a reflecting surface having a sawtooth-shaped inclination in a certain direction. A laser device in which a surface is formed, and the one inclined surface and the other inclined surface of a pair of mirrors facing each other are arranged so as to be orthogonal to each other.
JP1012684A 1984-01-25 1984-01-25 Laser device Expired - Lifetime JPH0624276B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1012684A JPH0624276B2 (en) 1984-01-25 1984-01-25 Laser device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1012684A JPH0624276B2 (en) 1984-01-25 1984-01-25 Laser device

Publications (2)

Publication Number Publication Date
JPS60154688A JPS60154688A (en) 1985-08-14
JPH0624276B2 true JPH0624276B2 (en) 1994-03-30

Family

ID=11741591

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1012684A Expired - Lifetime JPH0624276B2 (en) 1984-01-25 1984-01-25 Laser device

Country Status (1)

Country Link
JP (1) JPH0624276B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2634610B2 (en) * 1987-11-10 1997-07-30 ファナック株式会社 Laser oscillation device
JP2514680B2 (en) * 1988-01-08 1996-07-10 ファナック株式会社 Laser oscillator
JP2630011B2 (en) * 1990-04-06 1997-07-16 日本電気株式会社 Randomly polarized He-Ne gas laser device
JP5419770B2 (en) * 2010-03-26 2014-02-19 三菱電機株式会社 Laser oscillator

Also Published As

Publication number Publication date
JPS60154688A (en) 1985-08-14

Similar Documents

Publication Publication Date Title
JP4024349B2 (en) Optical fiber micro lens and method for forming the same
EP0458576B1 (en) Laser apparatus
EP0468319B1 (en) Laser generating apparatus
US4803694A (en) Laser resonator
US4391519A (en) Axis-monitoring apparatus for a laser beam
US3622739A (en) Device for the production of a laser beam for drilling watch jewels
JPS59150684A (en) Laser working device
JPH0624276B2 (en) Laser device
JPH05504723A (en) Cutting method using high energy radiation
US5513205A (en) End-pumping laser configuration utilizing a retroreflector as an input coupler
JPH0126198B2 (en)
JP2002205184A (en) Device and method for laser beam machining
JP3321317B2 (en) Etalon manufacturing method
JP3493373B2 (en) Laser oscillator
JPH06334245A (en) Laser diode pumping solid state laser
JPS60217678A (en) Laser resonator
JPS5930494A (en) Laser working device
JPH03171785A (en) Laser oscillation device
JPH071807Y2 (en) Diode laser pumped solid state laser device
JPS61132288A (en) Laser welding device
JPH1079550A (en) Solid laser device of exciting semiconductor laser
JPH06252473A (en) Solid-state laser rod and semiconductor laser excitated solid-state laser using the rod
JPH09136251A (en) Device and method for grinding transparent body
JPH08141766A (en) Laser machining method and device therefor
JPH0632348B2 (en) Dye laser device