JP2634610B2 - Laser oscillation device - Google Patents

Laser oscillation device

Info

Publication number
JP2634610B2
JP2634610B2 JP62283949A JP28394987A JP2634610B2 JP 2634610 B2 JP2634610 B2 JP 2634610B2 JP 62283949 A JP62283949 A JP 62283949A JP 28394987 A JP28394987 A JP 28394987A JP 2634610 B2 JP2634610 B2 JP 2634610B2
Authority
JP
Japan
Prior art keywords
mirror
laser oscillation
total reflection
laser
depth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP62283949A
Other languages
Japanese (ja)
Other versions
JPH01125884A (en
Inventor
規夫 軽部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FUANATSUKU KK
Original Assignee
FUANATSUKU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FUANATSUKU KK filed Critical FUANATSUKU KK
Priority to JP62283949A priority Critical patent/JP2634610B2/en
Publication of JPH01125884A publication Critical patent/JPH01125884A/en
Application granted granted Critical
Publication of JP2634610B2 publication Critical patent/JP2634610B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/08Construction or shape of optical resonators or components thereof
    • H01S3/08059Constructional details of the reflector, e.g. shape
    • H01S3/08068Holes; Stepped surface; Special cross-section
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/08Construction or shape of optical resonators or components thereof
    • H01S3/08054Passive cavity elements acting on the polarization, e.g. a polarizer for branching or walk-off compensation

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Optical Elements Other Than Lenses (AREA)
  • Lasers (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は切断等の金属加工及び非金属の加工に使用さ
れるレーザ発振装置に関し、特に直線偏光を簡易な構造
で実現するレーザ発振装置に関する。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a laser oscillation device used for metal processing such as cutting and nonmetal processing, and more particularly to a laser oscillation device which realizes linearly polarized light with a simple structure. .

〔従来の技術〕[Conventional technology]

一般的にレーザ出力光を直線偏光させるためには共振
器内に何等かの偏光素子を設置する必要がある。この偏
光素子の一例として、第7図に示すブリュウスター窓が
ある。図において、1は出力結合鏡、2は全反射鏡、3
はレーザ管であり、4a及び4bはブリュウスター窓であ
る。5は共振器内の定在波光軸、6はレーザ光である。
なお、放電のための電源等は省略してある。
Generally, in order to linearly polarize laser output light, it is necessary to provide some kind of polarizing element in the resonator. An example of this polarizing element is a Brewster window shown in FIG. In the figure, 1 is an output coupling mirror, 2 is a total reflection mirror, 3
Is a laser tube, and 4a and 4b are Brewster windows. Reference numeral 5 denotes a standing wave optical axis in the resonator, and reference numeral 6 denotes a laser beam.
A power supply for discharging is omitted.

この時、よく知られているように紙面に平行なEベク
トル光が得られる。第7図に示す構成はよく知られてい
るが、レーザ加工を可能ならしめる高出力領域では使用
することができない。
At this time, as is well known, E vector light parallel to the paper surface is obtained. Although the configuration shown in FIG. 7 is well known, it cannot be used in a high-power region enabling laser processing.

第8図に直線偏光をさせるための他の例を示す。図に
おいて、1は出力結合鏡、2は全反射鏡、5は共振器内
の定在波光軸、6はレーザ光であり、7は折り返し鏡で
ある。折り返し鏡7の反射率はEベクトルが紙面に対し
て垂直方向の方が、紙面に平行な反射率に比べ高い。こ
の結果、Eベクトルが紙面に対して垂直方向の偏光状態
でレーザ発振が行われる。
FIG. 8 shows another example for linearly polarized light. In the figure, 1 is an output coupling mirror, 2 is a total reflection mirror, 5 is a standing wave optical axis in a resonator, 6 is a laser beam, and 7 is a folding mirror. The reflectance of the folding mirror 7 is higher when the E vector is perpendicular to the plane of the paper than in the direction parallel to the plane of the paper. As a result, laser oscillation is performed with the E vector polarized in a direction perpendicular to the plane of the drawing.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

しかし、上記の例では下記のような応用上望ましくな
い点が存在する。
However, the above example has the following undesired applications.

第7図に示す例では、高出力レーザに使用できないの
で、一般の高出力を要求する加工用レーザ装置に使用す
ることはできない。これは、高出力に耐えるブリュウス
ター窓材が存在しないからである。レーザ加工では円偏
光を必要とするために、まずレーザ発振器からの出力ビ
ームは直線偏光である必要があり、この点は致命的な欠
点である。
In the example shown in FIG. 7, it cannot be used for a high-output laser, and therefore cannot be used for a general processing laser device requiring a high output. This is because there is no Brewster window material that can withstand high output. Since laser processing requires circularly polarized light, the output beam from the laser oscillator must first be linearly polarized, which is a fatal drawback.

第8図の構成では、ミラーが3枚であるので、2枚の
場合よりも共振器損失が増大して、出力が低下する。出
力低下は装置の設計条件にもよるが、実際のCO2レーザ
で実験した結果では、出力低下率は15%にもなる。
In the configuration of FIG. 8, since there are three mirrors, the resonator loss increases and the output decreases as compared with the case of two mirrors. Although the power reduction depends on the design conditions of the equipment, the results of experiments with an actual CO 2 laser show that the power reduction rate is as high as 15%.

本発明の目的はこれらの問題点を除去し、直線偏光を
簡易な構造で実現するレーザ発振装置を提供することに
ある。
An object of the present invention is to eliminate these problems and to provide a laser oscillation device that realizes linearly polarized light with a simple structure.

〔問題点を解決するための手段〕[Means for solving the problem]

本発明では上記の問題点を解決するために、 レーザ共振器内の光軸が出力結合鏡及び全反射鏡のい
ずれにもほぼ垂直入射する単管あるいは多重折り返し型
レーザ発振装置において、前記出力結合鏡、前記全反射
鏡の少なくとも1枚が表面上一方向に条痕がほぼ平行に
配列した構造を有し、前記条痕の深さがレーザ発振波長
における前記出力結合鏡あるいは前記反射鏡の鏡面材質
の表波効果深さより大で、前記レーザ発振波長より小さ
い値を有することを特徴とするレーザ発振装置が、提供
される。
In the present invention, in order to solve the above-mentioned problem, in a single-tube or multi-fold type laser oscillation device in which an optical axis in a laser resonator is substantially perpendicularly incident on both an output coupling mirror and a total reflection mirror, At least one of the mirror and the total reflection mirror has a structure in which the streaks are arranged substantially parallel in one direction on the surface, and the depth of the streaks is a mirror surface of the output coupling mirror or the reflecting mirror at a laser oscillation wavelength. A laser oscillation device is provided, which has a value larger than the surface wave effect depth of the material and smaller than the laser oscillation wavelength.

〔作用〕[Action]

出力結合鏡、全反射鏡に平行な条痕を設けたので、条
痕の方向と同一方向の直線偏光出力を得ることができ
る。特に、条痕の深さを出力結合鏡、全反射鏡の鏡面材
質の表皮効果深さより大で、レーザ発振波長より小さい
値としたので、効率よく直線偏光出力を得ることができ
る。
Since a parallel striation is provided on the output coupling mirror and the total reflection mirror, a linearly polarized light output in the same direction as the direction of the striation can be obtained. In particular, since the depth of the streak is larger than the skin effect depth of the mirror surface material of the output coupling mirror and the total reflection mirror and smaller than the laser oscillation wavelength, a linearly polarized light output can be efficiently obtained.

〔実施例〕〔Example〕

以下、本発明の一実施例を図面に基づいて説明する。 Hereinafter, an embodiment of the present invention will be described with reference to the drawings.

第1図に本発明の一実施例のレーザ発振装置の構成図
を示す。図において、1は出力結合鏡、8は全反射鏡、
5は共振器内の定在波光軸、6はレーザ光である。な
お、放電のための電源等は省略してある。
FIG. 1 shows a configuration diagram of a laser oscillation device according to one embodiment of the present invention. In the figure, 1 is an output coupling mirror, 8 is a total reflection mirror,
Reference numeral 5 denotes a standing wave optical axis in the resonator, and reference numeral 6 denotes a laser beam. A power supply for discharging is omitted.

ここで、全反射鏡8は下部に示すように、Y軸方向に
平行な格子構造を有する。図では、格子の寸法は理解し
易いように、大きく表しているが、実際は後述するよう
に、10μm以下の細かいものである。
Here, the total reflection mirror 8 has a lattice structure parallel to the Y-axis direction, as shown at the bottom. In the figure, the dimensions of the grating are shown large for easy understanding, but are actually small as 10 μm or less as described later.

次に、この全反射鏡8の格子の作用を詳細に述べる。
第2図に全反射鏡の断面図を示す。図において、8は全
反射鏡であり、5は共振器内の定在波光軸である。全反
射鏡8の表面が図に示すように格子構造であると、マク
ロ的には垂直入射光であっても、実際には図で示すよう
に斜方向入射になる。しかも第2図に示すように、入射
光波長に対する表波効果深さ(skin depth)dが格子深
さDに比較して十分小さい場合には、反射はこの表波効
果深さ内部における自由電子の振動に由来し発生するの
で、反射率はX,Y両偏光成分(Eベクトルがそれぞれ、
X軸及びY軸に平行であると定義する)に対して、よく
知られているように、異なった値、 Rx=tan2〔θ−φ〕/tan2〔θ+φ〕 Ry=sin2〔θ−φ〕/sin2〔θ+φ〕 (但し、θ=sin-1(sinφ)) を取る。但し、ここでは金属の複素屈折率であり、φ
は入射角である。Rx、Ryの値は及びφに依存するが、
銅などの高反射率金属で、 φ=π/4に対しては通常Ryの方がRxよりも1〜2%高い
値を示す。このときY偏光成分はX偏光成分に対して共
振器損失がそれだけ低いことになるので、レーザ光はこ
の偏光成分に限ることになる。以上は、d<Dの場合に
ついて述べた。
Next, the operation of the grating of the total reflection mirror 8 will be described in detail.
FIG. 2 shows a sectional view of the total reflection mirror. In the figure, 8 is a total reflection mirror, and 5 is a standing wave optical axis in the resonator. If the surface of the total reflection mirror 8 has a lattice structure as shown in the drawing, even if the light is vertically incident macroscopically, the light is actually incident obliquely as shown in the drawing. Moreover, as shown in FIG. 2, when the skin depth d for the wavelength of the incident light is sufficiently smaller than the grating depth D, the reflection is caused by free electrons inside the depth of the surface wave. The reflectance is derived from the vibration of the X and Y polarization components (E vector is
Rx = tan 2 [θ−φ] / tan 2 [θ + φ] Ry = sin 2 [θ, as is well known for the X and Y axes). −φ] / sin 2 [θ + φ] (where θ = sin -1 (sinφ)). However, here is the complex refractive index of the metal, φ
Is the angle of incidence. The values of Rx and Ry depend on and φ,
For high reflectivity metals such as copper, for φ = π / 4, Ry usually shows a value that is 1-2% higher than Rx. At this time, since the Y-polarized light component has a lower resonator loss than the X-polarized light component, the laser beam is limited to this polarized light component. The above is the case where d <D.

次にD<dの場合について検討する。第3図にこの場
合の全反射鏡8の断面図を示す。図において、8は全反
射鏡であり、5は共振器内の定在波光軸である。Dは格
子の深さであり、dは表波効果深さである。第3図の場
合も自由電子の振動は図の斜線で示す表波効果深さdの
部分で行われるので、鏡面平面の凸凹構造が大半の自由
電子の振動に影響を与えないことは自明であって、当然
Rx、Ryは同一の値を取ることになる。この結果格子深さ
Dは、 D≧d の下限値を有することが明らかである。すなわち、全反
射鏡等の光学部品の表面の凸凹の深さは発振波長におけ
る鏡面材質の表波効果深さ(skin depth)以上でなけれ
ばならない。例えば、CO2レーザの10.6μmの場合、ダ
イヤモンド旋盤で切削した銅ミラーを使用すると表波効
果深さ(skin depth)dは62Åになる。幸いにダイヤモ
ンド旋盤切削の銅鏡面の面精度は第4図及び第5図に示
すように凸凹構造になっており、本発明の目的に叶って
いる。第4図は単結晶の銅ミラーをダイヤモンド旋盤で
切削した場合の鏡面を拡大した図であり、第5図は多結
晶の銅ミラーをダイヤモンド旋盤で切削した場合の鏡面
を拡大した図である。両図とも、平面方向の単位はμm
であり、縦方向の単位はnmである。すなわち、第4図で
は深さの最大は約49nmであり、第5図では61nmである。
本発明に使用するのは、第4図に示す単結晶の方が格子
の形状が規則的で好ましい。
Next, the case of D <d will be considered. FIG. 3 shows a sectional view of the total reflection mirror 8 in this case. In the figure, 8 is a total reflection mirror, and 5 is a standing wave optical axis in the resonator. D is the depth of the grating and d is the surface wave effect depth. In the case of FIG. 3 as well, the oscillation of free electrons occurs at the portion of the surface wave effect depth d indicated by oblique lines in the figure, so it is obvious that the irregular structure of the mirror plane does not affect the oscillation of most free electrons. There, of course
Rx and Ry take the same value. As a result, it is clear that the lattice depth D has a lower limit of D ≧ d. That is, the depth of the irregularities on the surface of an optical component such as a total reflection mirror must be greater than the skin depth of the mirror surface material at the oscillation wavelength. For example, for a CO 2 laser of 10.6 μm, the use of a copper mirror cut with a diamond lathe results in a skin depth d of 62 °. Fortunately, the surface accuracy of the copper mirror surface in diamond lathe cutting has an uneven structure as shown in FIGS. 4 and 5, which fulfills the object of the present invention. FIG. 4 is an enlarged view of a mirror surface when a single crystal copper mirror is cut by a diamond lathe, and FIG. 5 is an enlarged view of a mirror surface when a polycrystalline copper mirror is cut by a diamond lathe. In both figures, the unit in the plane direction is μm
And the unit in the vertical direction is nm. That is, the maximum depth is about 49 nm in FIG. 4 and 61 nm in FIG.
For use in the present invention, the single crystal shown in FIG. 4 is preferable because the lattice shape is regular.

次に格子の深さDの上限について考察する。格子の深
さDが、上記の説明の領域から増大していくと、やがて
鏡面は回折格子として動作し始める。この時の反射光は
0次だけでなく、高次項にも分散されるので、0次項の
みを使用する本発明の装置のような場合は実質反射率が
低下することとなり、出力が低下し、望ましくない。
Next, the upper limit of the grating depth D will be considered. As the grating depth D increases from the region described above, the mirror will eventually begin to operate as a diffraction grating. The reflected light at this time is dispersed not only in the zero-order term but also in the higher-order terms. Therefore, in the case of the apparatus of the present invention using only the zero-order term, the substantial reflectance is reduced, and the output is reduced. Not desirable.

さらに、格子の深さDが増大すると、第2図に示す格
子構造の各凹みが正確なルーフプリズムになった時のみ
にレーザ発振器は高効率で発振すると考えられる。この
時にもY方向偏光には十分になっている。その意味で
は、本発明の目的に適しているが、以下のような問題が
ある。
Further, when the depth D of the grating increases, it is considered that the laser oscillator oscillates with high efficiency only when each recess of the grating structure shown in FIG. 2 becomes an accurate roof prism. At this time, it is sufficient for the polarization in the Y direction. In that sense, it is suitable for the purpose of the present invention, but has the following problems.

第1にそのような精密にルーフプリズムを配列した鏡
面は非常に製作が困難であって、高価なものになる。
First, such a mirror surface on which a roof prism is precisely arranged is very difficult to manufacture and expensive.

第2に頂点と谷に相当した領域が発振に寄与しないで
あろうから、出力低下が発生し、本発明には適用できな
いと考えられる。
Second, since the regions corresponding to the vertices and valleys will not contribute to the oscillation, the output is reduced, and it is considered that the present invention cannot be applied to the present invention.

従って、ここでは格子の深さDの上限値はレーザ波長
に等しいとすることが妥当と考えられる。勿論、CO2
ーザの場合、レーザ波長は10.6μmである。
Therefore, it is considered appropriate here that the upper limit of the grating depth D is equal to the laser wavelength. Of course, in the case of a CO 2 laser, the laser wavelength is 10.6 μm.

なお、本発明では鏡面にY方向と平行な条痕があるこ
とが必要条件であり、構造が必ずしも第2図に示すよう
にルーフプリズムの配列になっている必要はない。
In the present invention, it is a necessary condition that the mirror surface has a streak parallel to the Y direction, and the structure does not necessarily have to be a roof prism arrangement as shown in FIG.

次に他の実施例を第6図に示す。本実施例では、共振
器は1枚の出力結合鏡1と複数枚の全反射鏡21、22、2
3、24…………2からなっている。この構成ではレーザ
出力を増大させるために、多段折り返し構造になってい
るが、各光学部品にはほぼ垂直入射が行われているの
で、通常は直線偏光は得られない。本構成では光学部品
の一枚か、あるいは複数枚を上記説明のような、条痕を
有するミラーにすることにより、直線偏光を得ることが
できる。勿論、複数個のミラーに条痕を設ける場合は条
痕の方向を、これら総てについて同一の方向にとるべき
ことは当然である。
Next, another embodiment is shown in FIG. In this embodiment, the resonator is composed of one output coupling mirror 1 and a plurality of total reflection mirrors 21, 22, 2.
3, 24 ………… 2. In this configuration, a multi-stage folded structure is used to increase the laser output. However, since the optical components are almost perpendicularly incident, linearly polarized light cannot be normally obtained. In this configuration, linearly polarized light can be obtained by using one or more optical components as mirrors having streaks as described above. Of course, when a streak is provided on a plurality of mirrors, it is natural that the direction of the streak should be the same for all of these mirrors.

〔発明の効果〕〔The invention's effect〕

以上説明したように本発明では、出力結合鏡、全反射
鏡に平行な条痕を設けたので、条痕の方向と同一方向の
直線偏光出力を得ることができる。特に、条痕の深さを
出力結合鏡、全反射鏡の鏡面材質の表皮効果深さより大
で、レーザ発振波長より小さい値としたので、効率よく
直線偏光出力を得ることができる。
As described above, in the present invention, since the striation parallel to the output coupling mirror and the total reflection mirror is provided, a linearly polarized light output in the same direction as the direction of the striation can be obtained. In particular, since the depth of the streak is larger than the skin effect depth of the mirror surface material of the output coupling mirror and the total reflection mirror and smaller than the laser oscillation wavelength, a linearly polarized light output can be efficiently obtained.

また、出力結合鏡、全反射鏡をダイヤモンド旋盤を使
用して容易に加工することができる。
Further, the output coupling mirror and the total reflection mirror can be easily processed by using a diamond lathe.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の一実施例のレーザ発振装置の構成図、 第2図は格子の深い全反射鏡の断面図、 第3図は格子の浅い全反射鏡の断面図、 第4図は単結晶の銅ミラーをダイヤモンド旋盤で切削し
た場合の鏡面を拡大した図、 第5図は多結晶の銅ミラーをダイヤモンド旋盤で切削し
た場合の鏡面を拡大した図、 第6図は本発明の他の実施例のレーザ発振装置の構成を
示す図、 第7図は偏光素子の一例としてのブリュウスター窓を示
す図、 第8図は直線偏光をさせるための他の例を示す図であ
る。 1……出力結合鏡 2……全反射鏡 21〜24……全反射鏡 3……放電管 4a、4b……ブリュウスター窓 5……共振器内の光軸 6……レーザ光 7……折り返し鏡 8……全反射鏡
FIG. 1 is a configuration diagram of a laser oscillation device according to one embodiment of the present invention, FIG. 2 is a cross-sectional view of a total reflection mirror having a deep grating, FIG. 3 is a cross-sectional view of a total reflection mirror having a shallow grating, and FIG. FIG. 5 is an enlarged view of the mirror surface when a single crystal copper mirror is cut with a diamond lathe, FIG. 5 is an enlarged view of the mirror surface when a polycrystalline copper mirror is cut with a diamond lathe, and FIG. FIG. 7 is a diagram showing a configuration of a laser oscillation device according to the embodiment, FIG. 7 is a diagram showing a Brewster window as an example of a polarizing element, and FIG. 8 is a diagram showing another example for linearly polarizing. DESCRIPTION OF SYMBOLS 1 ... Output coupling mirror 2 ... Total reflection mirror 21-24 ... Total reflection mirror 3 ... Discharge tube 4a, 4b ... Brewster window 5 ... Optical axis in a resonator 6 ... Laser beam 7 ... Folding mirror 8: Total reflection mirror

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】レーザ共振器内の光軸が出力結合鏡及び全
反射鏡のいずれにもほぼ垂直入射する単管あるいは多重
折り返し型レーザ発振装置において、 前記出力結合鏡、前記全反射鏡の少なくとも1枚が表面
上一方向に条痕がほぼ平行に配列した構造を有し、前記
条痕の深さがレーザ発振波長における前記出力結合鏡あ
るいは前記反射鏡の鏡面材質の表波効果深さより大で、
前記レーザ発振波長より小さい値を有することを特徴と
するレーザ発振装置。
1. A single-tube or multiple-turn laser oscillation device in which an optical axis in a laser resonator is substantially perpendicularly incident on both an output coupling mirror and a total reflection mirror, wherein at least one of the output coupling mirror and the total reflection mirror is provided. One sheet has a structure in which the streaks are arranged substantially in parallel in one direction on the surface, and the depth of the streaks is larger than the surface wave effect depth of the mirror surface material of the output coupling mirror or the reflecting mirror at the laser oscillation wavelength. so,
A laser oscillation device having a value smaller than the laser oscillation wavelength.
【請求項2】前記条痕の深さが、60Åと10μmの間にあ
ることを特徴とする特許請求の範囲第1項記載のレーザ
発振装置。
2. The laser oscillation device according to claim 1, wherein the depth of said streak is between 60 ° and 10 μm.
【請求項3】前記出力結合鏡、或いは前記全反射鏡の鏡
面をダイヤモンド旋盤を使用して、切削加工したことを
特徴とする特許請求の範囲第1項記載のレーザ発振装
置。
3. The laser oscillation device according to claim 1, wherein a mirror surface of said output coupling mirror or said total reflection mirror is cut using a diamond lathe.
【請求項4】前記出力結合鏡あるいは前記反射鏡のうち
複数に前記条痕を設け、前記条痕が同一方向を向いてい
ることを特徴とする特許請求の範囲第1項記載のレーザ
発振装置。
4. The laser oscillation device according to claim 1, wherein said striations are provided on a plurality of said output coupling mirrors or said reflecting mirrors, and said striations are directed in the same direction. .
JP62283949A 1987-11-10 1987-11-10 Laser oscillation device Expired - Fee Related JP2634610B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62283949A JP2634610B2 (en) 1987-11-10 1987-11-10 Laser oscillation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62283949A JP2634610B2 (en) 1987-11-10 1987-11-10 Laser oscillation device

Publications (2)

Publication Number Publication Date
JPH01125884A JPH01125884A (en) 1989-05-18
JP2634610B2 true JP2634610B2 (en) 1997-07-30

Family

ID=17672310

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62283949A Expired - Fee Related JP2634610B2 (en) 1987-11-10 1987-11-10 Laser oscillation device

Country Status (1)

Country Link
JP (1) JP2634610B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04124889A (en) * 1990-09-14 1992-04-24 Juki Corp Laser oscillator and cutting apparatus provided with said laser oscillator
JP5419770B2 (en) * 2010-03-26 2014-02-19 三菱電機株式会社 Laser oscillator
JP2011204943A (en) * 2010-03-26 2011-10-13 Mitsubishi Electric Corp Laser oscillator and reflective diffraction optical element

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0624276B2 (en) * 1984-01-25 1994-03-30 株式会社日立製作所 Laser device
JPS60211989A (en) * 1984-04-06 1985-10-24 Mitsubishi Electric Corp Laser oscillator

Also Published As

Publication number Publication date
JPH01125884A (en) 1989-05-18

Similar Documents

Publication Publication Date Title
US5995523A (en) Single mode laser suitable for use in frequency multiplied applications and method
EP1493213B1 (en) Intracavity resonantly enhanced fourth-harmonic generation using uncoated brewster surfaces
US20090147344A1 (en) Integrated high efficiency multi-stage acousto-optic modulator
US3928817A (en) Multiple-selected-line unstable resonator
JP2514680B2 (en) Laser oscillator
JP2634610B2 (en) Laser oscillation device
CN107748472B (en) BBO crystal with special chamfer, frequency tripling optical frequency converter and working method thereof
US5502738A (en) Polarization control element and solid-state laser system
US6173001B1 (en) Output couplers for lasers
US5164946A (en) Birefringent filter for use in a tunable pulsed laser cavity
US5038360A (en) Birefringent filter for use in a tunable pulsed laser cavity
JPH01189972A (en) Laser oscillator
EP0076270A4 (en) Unpolarised electro-optically q-switched laser.
JPH07281140A (en) Electro-optic modulator
JP3322724B2 (en) Optical parametric oscillator
SU1277271A1 (en) Submillimeter laser
KR20050062677A (en) Highly efficient frequency selecting device with diffraction grating and parallel mirror pair
JPH0669569A (en) Optical wavelength conversion apparatus
CN114552348A (en) 532nm natural polarized light frequency multiplier
JP4211399B2 (en) Wavelength conversion element and fundamental wave processing method
JP2665024B2 (en) Semiconductor laser
AU551954B2 (en) Unpolarised electro-optically q-switched laser
JPH0627509A (en) Wavelength shifting element
JPH03102886A (en) Solid state laser device
CN118174122A (en) Laser for inhibiting beam rotation annular unstable cavity backward wave

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees