JPS60151292A - Metallization of non-oxide ceramic - Google Patents

Metallization of non-oxide ceramic

Info

Publication number
JPS60151292A
JPS60151292A JP346284A JP346284A JPS60151292A JP S60151292 A JPS60151292 A JP S60151292A JP 346284 A JP346284 A JP 346284A JP 346284 A JP346284 A JP 346284A JP S60151292 A JPS60151292 A JP S60151292A
Authority
JP
Japan
Prior art keywords
chromium
alloy
ceramics
ceramic
silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP346284A
Other languages
Japanese (ja)
Inventor
久宣 岡村
浩 秋山
鴨志田 睦男
邦夫 宮崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP346284A priority Critical patent/JPS60151292A/en
Priority to CN85101472.0A priority patent/CN1005110B/en
Publication of JPS60151292A publication Critical patent/JPS60151292A/en
Pending legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は特に非酸化物系セラミックスの金属化方法に係
り、特に比較的低温かつ短時間e@着強度の高い接合界
面を有する金属化層を形成するに好適な非酸化物系セラ
ミックスの金属化方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention particularly relates to a method for metallizing non-oxide ceramics, and in particular to a method for metallizing non-oxide ceramics, particularly for forming a metallized layer having a bonding interface with high bonding strength at a relatively low temperature and in a short time. The present invention relates to a method of metallizing non-oxide ceramics suitable for forming.

詳しくは、クロムの融点より低い温度でクロ11と反応
し得るtツい素化合物を在む非酸化物系セラミックスの
所望表面に密着力の強いクロム含有金属層を比較的短時
間で形成する方法及びそのクロム含有金属層上に他の金
属を形成する方法に関する。
Specifically, a method for forming a chromium-containing metal layer with strong adhesion in a relatively short time on a desired surface of a non-oxide ceramic containing a t-triple compound capable of reacting with chromium-11 at a temperature lower than the melting point of chromium. and a method of forming another metal on the chromium-containing metal layer.

〔発明の背景〕[Background of the invention]

従来、酸化物系セラミックス、特にアルミナセラミック
スの金属化方法は古くからケ)Tられている。
Conventionally, oxide ceramics, especially alumina ceramics, have been metallized for a long time.

例えば電子工業界におけるセラミックスコンデンサの電
接焼付けや電子管など気密封止、11/、導体装置にお
ける半導体素子接合技術などセラミックスの金属化は極
めて重要である。特にアルミナ系、ベリリア系等の酸化
物セラミックス系については古くから研究され、各種の
金、ρ他方法が7iF立されている。例えば、アルミナ
セラミックスの全屈法として、マンガン粉末とモリブデ
ン9末とのa合ペーストを塗付し、水素中で焼結して金
属化層を作り、しかる後、Niめつき又はC11めっき
を施してろう付けする方法が一般的である。その他に酸
化物系セラミックスの金属化法として、活性金属法、酸
化物ソルダー法、酸化銅法、更にこれらを改良した各種
の金属化法が確立されている。
For example, the metallization of ceramics is extremely important in the electronics industry, such as electrical firing of ceramic capacitors, hermetic sealing of electron tubes, and semiconductor element bonding technology in conductor devices. In particular, oxide ceramics such as alumina and beryllia have been studied for a long time, and various gold, ρ and other methods have been established at 7iF. For example, in the total bending method for alumina ceramics, a paste of manganese powder and molybdenum 9 powder is applied, sintered in hydrogen to create a metallized layer, and then Ni plating or C11 plating is applied. The most common method is brazing. In addition, as methods for metallizing oxide-based ceramics, active metal methods, oxide solder methods, copper oxide methods, and various metallization methods improved on these methods have been established.

これに対し、窒化珪ip (S i 3 N4 ) 、
炭化珪素(S i C)などの非酸化物系セラミックス
の金属化法についてはあまり知られていない。
On the other hand, silicon nitride ip (S i 3 N4),
Not much is known about metallization methods for non-oxide ceramics such as silicon carbide (S i C).

牛、5開昭55−1 I 368:3号公報によれば、
炭化珪素セラミックスの&a化法として、粉末状のIV
 a 。
According to Ushi, 5 Kaisho 55-1 I 368:3,
As a method for converting silicon carbide ceramics, powdered IV
a.

Va、Vla及び■a族金名の1抑具−1−を10〜+
00ffTEt部とTa+ II a 、 III 、
1r IV a及び■族元z4の1種類以」−を90重
量l:部以−トとからなる余属化用紀成物が示さ、hて
いる1、上記組成物はベーストの形でル2翼比しづい素
セラミックスの表面に塗付し、加熱(1〔100〜1.
800℃)シ、て、セラミックス表面に金属膜を形成す
る。例えば銅1つ末20欧景γ)とマンガン粉末80%
からなるベーストを炭化けい素上う三ニックに塗(−j
’ L、こ2しを真空中で焼付けている。公報ではベー
ストの焼(1時間は明記されていないが、金属の拡散を
利用するものでJ)乙から、長時間の加年が必要である
Va, Vla and ■1 suppression of group a metal name -1- from 10 to +
00ffTEt part and Ta+ II a, III,
1r IV a and 90 parts by weight of one or more of the group elements z4 and 1. It is applied to the surface of two-wing ceramics and heated (1 [100-1.
800° C.) to form a metal film on the ceramic surface. For example, 1 copper powder (20% copper powder) and 80% manganese powder
A base plate consisting of silicon carbide is coated on three nicks (−j
' L, I'm baking the 2 pieces in a vacuum. The bulletin states that base baking (1 hour is not specified, but it uses metal diffusion, J), and requires a long period of time.

また、特開昭55−51771−号では、タングステン
粉末とマンガン粉末とを含むベーストで窒化けい素セラ
ミツクツ、を1550°Cで拡散枠金によって金属化さ
れると述べている。
JP-A-55-51771 also states that silicon nitride ceramics are metallized with a diffusion frame at 1550 DEG C. using a base material containing tungsten powder and manganese powder.

更に特開昭56−191522号では、Cr−N1−F
 e −M n −S i系合金を窒化けい粛セラミッ
クスの表面に融着さげる方法で金属化を行っている。
Furthermore, in JP-A-56-191522, Cr-N1-F
Metallization is carried out by a method in which an e-Mn-Si alloy is fused onto the surface of nitride silicon ceramics.

特開昭57−85423号では、焔結セラミツグツ、表
面にマンガン含有金属層を形成し、該金属をマンガンの
融点より低い温度に加熱し、てマンガンと番づイ索どの
結合反応により特に炭化けい崇セラミックスを金属化で
きると述べている。
In JP-A No. 57-85423, a manganese-containing metal layer is formed on the surface of flame-set ceramics, the metal is heated to a temperature lower than the melting point of manganese, and a bonding reaction between the manganese and the carbon dioxide is used to form silicon carbide. He states that it is possible to turn ceramics into metals.

上記のごとく、非酸化物系セラミックスの金属化法につ
いての特許も出願されつつあるが、」1.酸化物系セラ
ミックスは物理的、化学的にも安定であるため、金属と
のぬれ性が極めて悪く、短1:!1l(jlで十分な密
着強度を有する金属化方法は確立されていない。
As mentioned above, patent applications are being filed for methods of metallizing non-oxide ceramics. Oxide-based ceramics are physically and chemically stable, so they have extremely poor wettability with metals. 1l (jl) A metallization method with sufficient adhesion strength has not been established.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、窒化けい素、炭化けい素などけい素化
合物を含む非酸化物系セラミックスの金属化処理が比較
的低温かつ短時間で行え、強力な密着強徳を有する金属
化方法を提供するにあン)。
An object of the present invention is to provide a metallization method that can metallize non-oxide ceramics containing silicon compounds such as silicon nitride and silicon carbide at a relatively low temperature and in a short time, and has strong adhesion properties. Surunian).

〔発明の概要〕[Summary of the invention]

本発明はけい素化合物をaむ非酸化物系セラミックスの
表面に形成したクロ/、含有金属の状態によって、従来
千8Mできなかった全く新しい接合のメカニズ11が生
じ、これによって、クロムの融点より低い温度で容易に
金属反応が起るという新しい事実の発見に基づいている
In the present invention, a completely new bonding mechanism 11, which could not be achieved conventionally, is created due to the state of the metal contained in chromium formed on the surface of a non-oxide ceramic containing a silicon compound. It is based on the new discovery that metal reactions occur easily at low temperatures.

より詳しくは、クロムを含む&金を上記セラミックスの
表面に密着した状態で接触させ、非酸化性雰囲気内にお
いて、これを該クロム含4q 、@金の融点以上に加熱
し、クロム原子と上記セラミックス中のシリコン原子と
の結合反応を行わせ、接合界面にクロl\シリザイドを
形成して密着強度を高めたものである。
More specifically, chromium-containing gold is brought into close contact with the surface of the ceramic, and heated in a non-oxidizing atmosphere to a temperature higher than the melting point of the chromium-containing gold. A bonding reaction with the silicon atoms inside is carried out to form chloro\\silicide at the bonding interface to increase the adhesion strength.

(1)ラセミックス相料 本発明の対象となるセラミックス材料は、その中に含ま
れるけい素成分がクロ11と反応してクロムシリサーr
l−″を形成し樗・るようなものであり、特に窒化りい
素及び炭化けい素等のけいメモ化合物をBtJ−ジ1゛
酸化物系セラミッタスである。
(1) Racemic phase material The ceramic material that is the object of the present invention is produced by the silicon component contained therein reacting with chromium silica r.
In particular, silicon nitride and silicon carbide are used as BtJ-dioxide-based ceramitas.

(11)クロム含有金属層 本発明の目的を達成するために(土、窒化りい素や炭化
けい素とクロ15が容易に反応し1′↑る状態を形成す
る必要がある。かかるIP、 flを形成する手段とし
て次の方法がある。
(11) Chromium-containing metal layer In order to achieve the object of the present invention, it is necessary to form a condition in which chromium-15 easily reacts with soil, silicon nitride, and silicon carbide. Such an IP, The following method is available as a means for forming fl.

(イ)クロムを含む合金を箔、絋、粉末、膜のいずれか
の状態で、」二記セラミックスの所望表面に密着させ、
これを非酸化性雰囲気内で該合金の融点以上に加熱する
と、液相が形成される。このようにして形成されたクロ
l\を含む液相は、セラミックス基板のけい素化合物と
接近し、シリコン原子とクロム原子は容易に結合し′!
Gることを実験により確+11’?’、した。
(a) Chromium-containing alloy is brought into close contact with the desired surface of the ceramics in the form of foil, mesh, powder, or film;
When this is heated above the melting point of the alloy in a non-oxidizing atmosphere, a liquid phase is formed. The liquid phase containing chlorine \\ thus formed approaches the silicon compound of the ceramic substrate, and the silicon atoms and chromium atoms easily combine'!
Experimentally confirmed that G +11'? ',did.

特に好ましい合金組成は、1 ] −15重力(%Cr
と9〜11屯−リ(%Pてダニ部が1・11からなる合
金(融点890℃)及び18〜20重量%C1−と9〜
11重区%Siで残部かN iからなる合金(融点12
00”C) 、 39〜41重量%C「と28〜31重
ht%Geで残部がNiからなる合金(融点約1000
℃)、19貢旦%Cr−24重星%I” d −39重
量%Ni−4重地%Si (融点約1050℃)、18
〜20重清’lo L’−、r 47 ”−57重μ%
Ge−4〜5重μ′″<11.i残部がNiからアγる
合金(琺点約1000”C)である1、特に好1:シク
は、前記こり、らの合金は非晶質であることが望ましい
A particularly preferred alloy composition is 1 ] −15 gravity (% Cr
and 9 to 11 tons (% P) and an alloy consisting of 1 and 11 (melting point 890°C) and 18 to 20 weight % C1 and 9 to
An alloy consisting of 11% Si and the balance Ni (melting point 12%)
00"C), an alloy consisting of 39~41wt% C", 28~31wt%Ge, and the balance Ni (melting point approximately 1000%).
°C), 19%Cr-24%I”d-39%Ni-4%Si (melting point approximately 1050°C), 18
~20 heavy supernatant 'lo L'-, r 47''-57 heavy μ%
Ge-4 to 5 times μ'''<11. i is an alloy in which the remainder is Ni (approximately 1000" C), especially preferred 1: the above alloy is amorphous; It is desirable that

特に11=]5%、t%Crと9〜j1重−%1〕で残
部がNiからなる合金を非晶質にした+4J自に該セラ
ミックスの密着強度が飛ld的に向上するという新しい
事実を発兄1.た。
In particular, it is a new fact that the adhesion strength of the ceramics is dramatically improved in +4J, which makes an alloy consisting of 11=]5%, t%Cr and 9~j1weight-%1] and the balance Ni, to an amorphous state. Brother 1. Ta.

更に各種の共晶合金にクロlXを少量添加しても本発明
の目的を達成できる。
Furthermore, the object of the present invention can also be achieved by adding a small amount of chlorine to various eutectic alloys.

例えば25〜・45重重景lvl n −C’、 u合
金(融点870℃±約10°C)及び50〜70重址%
M n −N i合金(融点10]8℃±10°C)等
の共晶合金がぜい化しない程度に数重尺%のクロムを添
加することにより、クロムの円I点よりかなり低い温度
で融液を形成でさ、密着力の高い金属化層を得ることが
できる。
For example, 25 to 45 heavy weight lvl n -C', u alloy (melting point 870°C ± about 10°C) and 50 to 70 heavy weight %
By adding several weight percent of chromium to the extent that eutectic alloys such as M n -N i alloy (melting point 10] 8°C ± 10°C) do not become brittle, temperatures considerably lower than the circle I point of chromium can be achieved. By forming a melt, a metallized layer with high adhesion can be obtained.

第1図は40重量%λ4 n −Cu台金にクロムを添
加した合金箔を用いて窒化けい素表面に金属化層を形成
した場合の該合金箔中のクロム含有旦と密着強度との関
係を示す。
Figure 1 shows the relationship between the chromium content in the alloy foil and the adhesion strength when a metallized layer is formed on the silicon nitride surface using an alloy foil in which chromium is added to a 40% by weight λ4 n -Cu base metal. shows.

尚、第11司の金属化方法は、JIfさ21n+1)、
縦。
In addition, the metallization method of the 11th director is JIfsa21n+1),
vertical.

横20nnnの窒化けい素セラミックス表面にノアさ5
0μmの」二記合金λ)をdjjq置し、アルゴン雰囲
気内で試料にl Okl!、/ c6イ(7CIJI圧
を加え、該合金箔の融点まで加背後、自然玲)ilj 
した1゜上記方法により形成された金属化層の密着強度
の測定は第2図に示−ル一方法で行った。すなわち、第
2Mに示1ごとく、前記方d;によつ′C窒化しづい素
セラミックス】に形成した金属化層2に銀ろうによって
5 Q 7ノの(”、、 11 箔1を接合し、Cu 
M 3の自由tMを1釘(す、分層化層の密着強度を強
めた#)のである6第1図に示すごとく、該合金箔のり
rJ A Jγ−が2重量Q+では(耐強度は最大にな
り、それ以下では低ドして。この密着強度の低下は該合
金箔が過剰なりロムの絡加によってぜい化したためであ
り、3喧量%が望ましい、。
Noa 5 on the silicon nitride ceramic surface with a width of 20nnn
A 0μm alloy λ) was placed on the sample in an argon atmosphere. ,/c6i (after applying 7CIJI pressure and heating it to the melting point of the alloy foil, naturally)ilj
The adhesion strength of the metallized layer formed by the above method was measured by the method shown in FIG. That is, as shown in Section 2M, a 5 Q 7 foil 1 was bonded with silver solder to the metallized layer 2 formed on the nitrided nitride ceramic according to the method d above. , Cu
The free tM of M3 is 1 nail (#, which strengthens the adhesion strength of the separated layer).6 As shown in Figure 1, when the alloy foil glue rJ A Jγ- is 2 weight Q+ (the strength is This decrease in adhesion strength is due to the excessive amount of the alloy foil, which becomes brittle due to the entanglement of the ROM, and a desirable amount is 3%.

なお、50=70重扇%M ri −N i合金(融点
約1018℃)にクロ11を添加した場合も第1図とば
ぼ同様の結果であった。
In addition, when Chloro 11 was added to a 50=70% M ri -N i alloy (melting point about 1018° C.), the same results as in FIG. 1 were obtained.

(ロ)−I−記りrJlxを1゛Tむ合金で粉末を作成
し、これを倉)M他用ベースI〜状に調:z(シ、この
ペーストをセラミックス表面に塗(’J又は印刷する。
(B)-I-Create a powder from an alloy with a Jlx of 1゛T, and prepare it into the shape of a base for other uses. Print.

これを非酸化性雰囲気内で該合金の融、貨以上に加熱す
ることにより融液が形成され、該粉末中のクロム原子と
セラミックス中のシリコンJJX J′が接近して容易
に反応し得る。
By heating this in a non-oxidizing atmosphere to a temperature higher than that of the alloy, a melt is formed, and the chromium atoms in the powder and the silicon JJX J' in the ceramics come close to each other and can easily react.

(ニ)クロム叉はクロムを含むご金を真空13着又はス
パッタリング等でセラミックスの所望表面に密着する。
(d) Chromium or gold containing chromium is adhered to the desired surface of the ceramic by vacuum deposition or sputtering.

こオ(5を該合金の拍点又1まQ)へ直上まで加熱し金
属処理を行う。
Metal treatment is carried out by heating the alloy to just above it (5 is the peak point of the alloy or 1 or Q).

J−記(イ)へ′(ニ)の方法にょ−ノで、りUノ、の
Qi+ =より低い温しワで融液を形成し、クロ12は
セラミックス中のシリコンと結僑反応し、良りrな金J
r’S IIζ(を形成できる3、ここでりr」ムとシ
)jコン反応し接合界面にり「1ムシリサイドをtty
成する。このT!f ′に:はラセミックスと金属化層
との接合界面を元二〇分析及びX線回折することによっ
て確められた。
In the method of J-Note (a) and (d), a melt is formed at a lower temperature than the Qi+ of RiU-no, and chromium 12 reacts with the silicon in the ceramic, Good money J
r'SIIζ(3, where r'm and sh)jcon react and form '1m silicide at the bonding interface.
to be accomplished. This T! f' was confirmed by x-ray analysis and X-ray diffraction of the bonding interface between the racemic and the metallized layer.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の詳細な説明する。。 The present invention will be explained in detail below. .

実jj’(1ノ例1 厚さ2111:11、@、横30胴の窒化けい素の表面
に厚さ30 μl’nの19重量%Crと11重重電P
、残部がNiからなる非晶質の合金箔を載置し1.アル
ゴン雰囲気内で該合金箔の融点(890″C)より約1
) O”CLい温度に30秒間加が後自然冷却した。そ
の後、上記方法によって、形成された金、1ト。
Real jj' (Example 1 of 1 Thickness 2111:11, @, 19 wt% Cr and 11 heavy electric P with a thickness of 30 μl'n on the surface of the silicon nitride of the horizontal 30 cylinder.
, an amorphous alloy foil with the remainder made of Ni is placed; 1. Approximately 1 from the melting point (890″C) of the alloy foil in an argon atmosphere
) O"CL was heated to a low temperature for 30 seconds and then allowed to cool naturally. Thereafter, the gold formed by the above method was prepared.

化層のセラミツ))ス表面との密着強度を調べるため、
該金属層の表面に50μのNi箔奈銀ろう付によって1
4コ合した。これを第2図と同様の方法で密着強度を調
べた結果25 kg f /n+m′の密着強度が賀ら
れ、銀ろう付部より破断した。
In order to examine the adhesion strength of the ceramic layer to the ceramic surface,
1 by brazing 50 μm of Ni foil onto the surface of the metal layer.
Four matched. The adhesion strength of this was examined in the same manner as shown in FIG. 2, and as a result, the adhesion strength was 25 kg f /n+m', and it broke at the silver soldered part.

実施例2 実施例1ど同様の形状の窒化けい素の表面に19重爪%
Crと11重蝦%P、残部がNiからなる粒度が約20
μmの粉末を有機溶剤でペースト状にしたものを塗付し
、アルゴン雰囲気内で該粉末の融点(890°C)より
約50℃高い温度に30秒間加熱後、自然昂Jiil 
シた。−1−0記方法によって得ら11だ金属化j・ガ
のセラミツゲス表面どの1に合強度を調べるため、該金
属化の表面に50/1. +11 (7,1Ni箔を銀
ろう伺し、第2図と同様の方法で密尤強度を調べた結果
、28にに/關1′の密着強度か(、”1・られ、銀ろ
う何部より僚断した。
Example 2 19% heavy nails were applied to the surface of silicon nitride having the same shape as in Example 1.
The particle size is approximately 20% consisting of Cr, 11% P, and the balance Ni.
Apply a paste of μm powder with an organic solvent and heat it for 30 seconds at a temperature approximately 50°C higher than the melting point (890°C) of the powder in an argon atmosphere.
Shita. In order to examine the bonding strength on the surface of the 11-metalized ceramic material obtained by the method described in -1-0, 50/1. +11 (7,1Ni foil was coated with silver solder and the adhesion strength was investigated using the same method as shown in Figure 2.) As a result, the adhesion strength was found to be 28 to 1/1'. I was more decisive.

実施例3 実施例lと同形状の窒化りい崇の表面に19重量%Cr
と10重−歌%Si、残部がNiからなる厚さ251L
 T11の合金箔を載置し、更にその一ヒに50 u 
n+のN i i’i−iを重ね、Q 、 5 kIX
/ w+ ’ の圧力を加え、該合金箔の融点(12o
oc)で約1秒間ノ:11熱した。加熱はアルゴン′1
5′間気内で高周波コ、イルで行った後、自然冷却した
Example 3 19% by weight Cr was added to the surface of nitrided silicon having the same shape as Example 1.
and 10% Si, the balance is Ni, thickness 251L
Place a T11 alloy foil and add 50 u on top of it.
Overlap N i i'i-i of n+, Q , 5 kIX
/w+' pressure is applied, and the melting point of the alloy foil (12o
oc) for about 1 second. Heating is done with argon'1
The mixture was heated in a high-frequency coil for 5' and then cooled naturally.

上記方法に得られた金ノ4化層の密着強度を第2図の方
法で測定結果、30眩f/+nm”の密着強度が得ら扛
、Ni箭から破IQ1シた。
The adhesion strength of the gold oxide layer obtained by the above method was measured by the method shown in FIG. 2. As a result, an adhesion strength of 30 dazzling f/+nm was obtained, which was 1Q higher than that of the Ni layer.

実施6す4 厚さl jIjI11. my jIj 2 On+、
表面粗さ5μの炭化重量%Crと30重量%Si、残部
がNiからなる合金を2μ蒸着した。この場合、該セラ
ミックスは蒸着中300’Cに加熱した。更にこの試料
を3 X 10−41’orrの真空内で最高]000
℃、5分間加熱し金属化処理を行った。
Implementation 6 4 Thickness l jIjI11. my jIj 2 On+,
An alloy consisting of carbonized weight % Cr, 30 weight % Si, and the balance Ni was deposited with a surface roughness of 2 μm. In this case, the ceramic was heated to 300'C during deposition. Furthermore, this sample was heated in a vacuum of 3
℃ for 5 minutes to perform metallization treatment.

上記方法により形成された金属化層の表面に銀ろう付に
より、30μのNi箔を接合し、第2図の方法で密着強
度を調べた結果20 kgf / myu”以上の4着
強度が得られた。
A 30 μm Ni foil was bonded to the surface of the metallized layer formed by the above method by silver brazing, and the adhesion strength was examined using the method shown in Figure 2. As a result, a 4 bond strength of 20 kgf/myu” or more was obtained. Ta.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、非酸化物系セラミックスの金属化処理
が、比較的低温かつ短時間で行える。その結果、セラミ
ックスの特性を劣ドすることなく。
According to the present invention, metallization treatment of non-oxide ceramics can be performed at a relatively low temperature and in a short time. As a result, the properties of ceramics are not degraded.

密着強度の高い金属化層が得られる。A metallized layer with high adhesion strength is obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はクロム添加旦と密着強度との関係線図、第2図
は密着強度とΔ1り定力法を示す説明図である。 叉1、
FIG. 1 is a diagram showing the relationship between the degree of chromium addition and adhesion strength, and FIG. 2 is an explanatory diagram showing the adhesion strength and the Δ1 constant force method. Fork 1,

Claims (1)

【特許請求の範囲】 1、けい素化合物を主成分とする非酸化物系セラミック
スの所望円面に予めクロム含有金属層を密着した状態で
形成し、次いで該金属層を該金)M W’。 の融点以」二に加熱し、該金属層のクロムと該セラミッ
クス中のけい素とを結合反応させることを特徴とする非
酸化物系セラミックスの金属化方法。
[Claims] 1. A chromium-containing metal layer is formed in advance in close contact with the desired circular surface of a non-oxide ceramic whose main component is a silicon compound, and then the metal layer is applied to the gold) M W' . 1. A method for metallizing non-oxide ceramics, which comprises heating to a temperature above the melting point of chromium to cause a bonding reaction between chromium in the metal layer and silicon in the ceramic.
JP346284A 1984-01-13 1984-01-13 Metallization of non-oxide ceramic Pending JPS60151292A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP346284A JPS60151292A (en) 1984-01-13 1984-01-13 Metallization of non-oxide ceramic
CN85101472.0A CN1005110B (en) 1984-01-13 1985-04-01 Combined ceramic products and its fabricating method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP346284A JPS60151292A (en) 1984-01-13 1984-01-13 Metallization of non-oxide ceramic

Publications (1)

Publication Number Publication Date
JPS60151292A true JPS60151292A (en) 1985-08-09

Family

ID=11557989

Family Applications (1)

Application Number Title Priority Date Filing Date
JP346284A Pending JPS60151292A (en) 1984-01-13 1984-01-13 Metallization of non-oxide ceramic

Country Status (1)

Country Link
JP (1) JPS60151292A (en)

Similar Documents

Publication Publication Date Title
US4877760A (en) Aluminum nitride sintered body with high thermal conductivity and process for producing same
EP0069510B1 (en) Method of metallizing sintered ceramics materials
US4663649A (en) SiC sintered body having metallized layer and production method thereof
JP6619075B2 (en) Metal coating on ceramic substrate
JPS63103886A (en) Metallizing paste and metallization of ceramics therewith
JPS60151292A (en) Metallization of non-oxide ceramic
JPS5844635B2 (en) Method of brazing metal and ultra-hard artificial material and brazing agent therefor
JPS6270284A (en) Metallized silicon carbide ceramics body and its production
JP3103208B2 (en) Solder preform substrate
JPS593076A (en) Method of bonding ceramic member and metal
JPH059396B2 (en)
JPS6272472A (en) Joining method for ceramics and metal or the like
JPS59156981A (en) Ceramic metallization
JPH0798706B2 (en) Surface treatment method for non-oxide ceramics
JPS6369787A (en) Aluminum nitride sintered body with metallized surface and manufacture
JPH1161292A (en) Copper-carbon fiber composite and its production
JPS6317279A (en) Aluminum nitride sintered body with metallized surface and manufacture
JPS62179893A (en) Brazing filler metal for joining metal and ceramics
JPS60166282A (en) Ceramic composite composition and manufacture
JPS62207788A (en) Metallization of non-oxide base ceramics
JPS61174185A (en) Metallization of carbide base ceramic body
JPS6126573A (en) Method of bonding silicon nitride sintered body and metal
JPS63299238A (en) Substrate for die bonding of semiconductor device
JPH01249681A (en) Aluminum nitride sintered compact having metallized surface and its production
JPS6350382A (en) Formation of metal coating for ceramic