JPS60150034A - Electrochromic element - Google Patents

Electrochromic element

Info

Publication number
JPS60150034A
JPS60150034A JP59006195A JP619584A JPS60150034A JP S60150034 A JPS60150034 A JP S60150034A JP 59006195 A JP59006195 A JP 59006195A JP 619584 A JP619584 A JP 619584A JP S60150034 A JPS60150034 A JP S60150034A
Authority
JP
Japan
Prior art keywords
iridium
layer
thin film
coloring layer
sputtering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59006195A
Other languages
Japanese (ja)
Other versions
JPH0443251B2 (en
Inventor
Ryoji Fujiwara
良治 藤原
Isamu Shimizu
勇 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP59006195A priority Critical patent/JPS60150034A/en
Publication of JPS60150034A publication Critical patent/JPS60150034A/en
Publication of JPH0443251B2 publication Critical patent/JPH0443251B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/15Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect
    • G02F1/1514Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect characterised by the electrochromic material, e.g. by the electrodeposited material
    • G02F1/1523Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect characterised by the electrochromic material, e.g. by the electrodeposited material comprising inorganic material
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/15Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect
    • G02F1/1514Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect characterised by the electrochromic material, e.g. by the electrodeposited material
    • G02F1/1523Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect characterised by the electrochromic material, e.g. by the electrodeposited material comprising inorganic material
    • G02F1/1524Transition metal compounds
    • G02F1/15245Transition metal compounds based on iridium oxide or hydroxide

Abstract

PURPOSE:To improve transparency, response speed, etc. by using a thin film formed by sputtering iridium in the presence of gaseous oxygen having a high gaseous pressure and (or) steam as an oxidation coloring layer. CONSTITUTION:An electrochromic element is formed by forming successively an electrode 12 (e.g.; indium oxide, tin oxide), a reduction coloring layer 13 (e.g.; tungsten dioxide layer, molybdenum dioxide layer), an intermediate layer 14 (e.g.; zirconium dioxide layer, silicon dioxide layer), an oxidation coloring layer 15 and an electrode 16 on a substrate 11. The intended electrochromic element is obtd. in this stage by using the thin film of iridium oxide or the thin film of iridium hydroxide formed by sputtering iridium in the presence of gaseous oxygen having >=0.1 gaseous pressure and (or) steam as the layer 15.

Description

【発明の詳細な説明】 固 本発明は、全国体薄膜積層型エレクトロクロミック素子
(以下rE CD Jとい5)に関し、詳しくは改善さ
れた透明性を有する酸化発色層を用いたj13cDに関
するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a thin film laminated electrochromic device (hereinafter referred to as rECDJ5), and specifically relates to a j13cD using an oxidized coloring layer with improved transparency. .

ECDは例えば数字表示素子、X−Yマトリクス表示素
子、光学シャッタや絞り機構等に応用することができる
もので、例えば第1図に示す全固体薄膜積層構造のRC
Dが知られている。すなわち、第1図に示すECDは、
1対の電極12と16間に還元発色層16、中間層14
と酸化発色層15の薄膜積層構造が配置されている。こ
のECDは、可逆的な電気化学反応により発色状態と消
色状態の光学変化が得られ、例えば還元発色層16の側
の電極12に負極性とし、酸化発色層15の側の電極1
6に正極性とした電圧を印加することによって、還元発
色層16と酸化発色層15を発色状態とすることができ
、又この電圧の極性をそれぞれ逆極性とすることにより
、発色状態から消色状態へと光学変化を生じさせること
ができる。
ECD can be applied to, for example, numeric display elements, X-Y matrix display elements, optical shutters, aperture mechanisms, etc. For example, an RC with an all-solid thin film laminated structure shown in Fig.
D is known. That is, the ECD shown in FIG.
A reduction coloring layer 16 and an intermediate layer 14 are provided between the pair of electrodes 12 and 16.
A thin film laminated structure of a color forming layer 15 and an oxidized color forming layer 15 is arranged. In this ECD, an optical change between a colored state and a decolored state is obtained by a reversible electrochemical reaction. For example, the electrode 12 on the side of the reduction coloring layer 16 has a negative polarity, and the electrode 1 on the side of the oxidation coloring layer 15 has a negative polarity.
By applying a voltage with a positive polarity to 6, the reduction coloring layer 16 and the oxidation coloring layer 15 can be brought into a colored state, and by making the polarities of these voltages opposite to each other, the colored state can be changed from a colored state to a decolored state. Optical changes can be made to the state.

ところで、米国特許第4,191,453号公報には酸
化イリジウムがアノード反応で発色するECDのアノー
ド材料となることが提案されており、又特開昭56−4
679号公報には酸化イリジウムを前述の如き全固体薄
膜積層型ECDの酸化発色層として適用したECDが提
案されている。
By the way, U.S. Patent No. 4,191,453 proposes that iridium oxide can be used as an anode material for ECD that develops color through an anode reaction, and Japanese Patent Application Laid-Open No. 56-4
Japanese Patent No. 679 proposes an ECD in which iridium oxide is applied as an oxidized coloring layer of the above-mentioned all-solid-state thin film laminated type ECD.

しかし、この様な従来で用いられている酸化イリジウム
の酸化発色層は応答速度が遅い点や透過率が低いなど実
用上の点で十分な性能をもっていない欠点を有している
0 このため、例えば米国特許第4 、258.984号公
報に記載されている様に、スパッタリングにより形成し
た酸化イリジウムの薄膜あるいは金属イリジウムの薄膜
を硫酸水溶液中で低周波駆動による陽極酸化スるウェッ
トプロセスにより、前述の欠点を解消する方法が提案さ
れているが、この方法で形成した酸化イリジウム薄膜の
透過率はせいぜい下 70チ程度以上で、十分な透明性を有しておらず又この
方法は薄膜積層構造体を作成す4時のピンホール発生の
原因となっていて適当なものではな一%0 又、反応性スパッタリングにより作製した酸化イリジウ
ム薄膜もやはり透明性の高いものが得られず、しかも十
分なEC特性(可逆的な電気化学反応特性)を得るため
には、この酸化イリジウム薄膜に前述の陽極酸化処理を
施す必要がある。
However, such conventionally used iridium oxide oxidation coloring layers have drawbacks such as slow response speed and low transmittance, and do not have sufficient performance in practical terms.For this reason, for example, As described in U.S. Pat. No. 4,258.984, a thin film of iridium oxide or a thin film of metallic iridium formed by sputtering is anodized in an aqueous sulfuric acid solution by low frequency driving. A method has been proposed to overcome this drawback, but the transmittance of the iridium oxide thin film formed by this method is at most about 70° or more, and it does not have sufficient transparency. It is not suitable because it causes pinholes at 4 o'clock when creating the iridium oxide thin film.Furthermore, the iridium oxide thin film produced by reactive sputtering also cannot obtain a highly transparent film, and has a sufficient EC. In order to obtain the characteristics (reversible electrochemical reaction characteristics), it is necessary to subject this iridium oxide thin film to the aforementioned anodic oxidation treatment.

本発明者らは、ECDの酸化発色層として酸化イリジウ
ム薄膜を適用する際に生じて〜・た前述の如き諸問題を
解決すべく、鋭意検討を重ねたところ、特に反応性スパ
ッタリングによシ酸化イリジウム又は水酸化イリジウム
の薄膜を形成する際の反応ガス圧が薄膜の透過率特性と
因果関係を有している点を見い出した。
The inventors of the present invention have conducted intensive studies in order to solve the above-mentioned problems that occurred when applying an iridium oxide thin film as an oxidized coloring layer of an ECD, and found that, in particular, oxidation using reactive sputtering We have discovered that the reaction gas pressure when forming a thin film of iridium or iridium hydroxide has a causal relationship with the transmittance characteristics of the thin film.

従って、本発明の目的はECDの酸化発色層として透過
率の高い酸化イリジウム(1rox ; 0.5〈xく
2、好ましくは1〈xく2)又は水酸化イリジウム(1
r(OH)n ; n <2)の薄膜を設けたECDを
提供することにある。
Therefore, the object of the present invention is to use iridium oxide (1rox; 0.5<x2, preferably 1<x2) or iridium hydroxide (1rox; 0.5<x2) or iridium hydroxide (1rox;
An object of the present invention is to provide an ECD provided with a thin film of r(OH)n; n <2.

すなわち、本発明は反応性スパッタリングにより1rO
zl1g又は1r(OH)n 膜を形成する際の反応ガ
ス(酸素ガス)圧を従来の1O−8TOrrにより高い
反応ガス圧であるQ、1Torr 以上好ましくは0.
1Torr〜1’rorrとする点に特徴を有しており
、これにより良好なEC特性を有しているとともに透過
率の高い酸化発色層をもつECDを提供することができ
る。しかも、本発明による酸化発色層は十分に可逆的な
電気化学反応を生じうる適度な多孔表面状態を有してお
り、応答速度の速いECDを提供することができる。
That is, the present invention provides 1rO by reactive sputtering.
zl1g or 1r(OH)n When forming the film, the reaction gas (oxygen gas) pressure is Q, which is higher than the conventional 10-8 TOrr, preferably 0.1 Torr or more.
It is characterized in that it is 1 Torr to 1'rorr, and as a result, it is possible to provide an ECD having good EC characteristics and an oxidized color forming layer with high transmittance. Moreover, the oxidized coloring layer according to the present invention has an appropriate porous surface state that can cause a sufficiently reversible electrochemical reaction, and can provide an ECD with a fast response speed.

以下、本発明を図面に従って説明する。The present invention will be explained below with reference to the drawings.

本発明のRCDは、第1図に示す薄膜積層構造体を用い
ることができ、図中の酸化発色層15として前述の1r
Ox膜又は1r(OH)n膜を設けたものである0又、
図中の還元発色層13は、省略することも可能である。
The RCD of the present invention can use the thin film laminated structure shown in FIG.
Omata, which is provided with an Ox film or a 1r(OH)n film,
The reduction coloring layer 13 in the figure can also be omitted.

本発明のECDで用いうる還元発色層13としては、例
えば二酸化タングステン(Wow)、三酸化タングステ
ン(Woe)、二酸化モリブデン(M。
Examples of the reduction coloring layer 13 that can be used in the ECD of the present invention include tungsten dioxide (Wow), tungsten trioxide (Woe), and molybdenum dioxide (M).

Oり、三酸化モリブデン(Mo5s )や五酸化バナジ
ウム(VgOs )などの薄膜を用いることができる。
A thin film of molybdenum trioxide (Mo5s), vanadium pentoxide (VgOs), or the like can be used.

中間層14Fi、二酸化ジルコン(ZrOt ) 、r
il化ケイ累(SiO,り、二酸化ケイ素(Sing)
 、五酸化タンタル(Ta*Os )などの酸化物ある
いけフッ化リチウム(”) 、フッ化マグネシウム(M
gFs)などのフッ化物で代表される誘電体からなる絶
縁膜である。
Intermediate layer 14Fi, zircon dioxide (ZrOt), r
Silicon oxide (SiO, Ri, Silicon dioxide (Sing)
, oxides such as tantalum pentoxide (Ta*Os), lithium fluoride (''), magnesium fluoride (M
This is an insulating film made of a dielectric material such as fluoride (gFs).

この様な酸化発色層15/中間層14/還元発色層13
からなる可逆的な電気化学反応性構造体は、電極12と
16の間に挾持され、電極12は基体11によって支持
されている。この基体11は一般的にガラス板によって
形成されるが、これはガラス板に限らず、プラスチック
板を用いることもでき、又その位置に関しても電極16
の側に設けてもよいし、目的に応じて(例えば、保護カ
バーとするなどの目的)両側に設けてもよい。又、電極
12と16としては酸化インジウム、酸化錫やI T 
O(Indium Tin 0xiee)などの透明導
電膜を用いることができるが、必要に応じて電極12と
16のうち何れか1方を適当な金属膜とすることもでき
る。
Such oxidation coloring layer 15/intermediate layer 14/reduction coloring layer 13
A reversibly electrochemically reactive structure consisting of is sandwiched between electrodes 12 and 16, with electrode 12 being supported by substrate 11. This base 11 is generally formed of a glass plate, but it is not limited to a glass plate, and a plastic plate can also be used.
It may be provided on either side, or it may be provided on both sides depending on the purpose (for example, as a protective cover). In addition, the electrodes 12 and 16 may be made of indium oxide, tin oxide or IT.
A transparent conductive film such as O (Indium Tin Oxiee) can be used, but if necessary, one of the electrodes 12 and 16 can be made of a suitable metal film.

本発明で用いる酸化発色層15は、第2図に示ス1rO
z又は1r(0)1)n 薄膜作成用スパッタリング装
置により形成することができる。
The oxidized coloring layer 15 used in the present invention is shown in FIG.
z or 1r(0)1)n It can be formed using a sputtering device for forming thin films.

第2図に示すスパッタリング装置は、真空槽201の内
部にITO膜を設けたガラス板などの被蒸着体202(
図中では2つの被蒸着体202a と202bを配置)
とターゲットになる金属イリジウム(1r)とパレット
206がそれぞれ所定の位置に配置され、被蒸着体20
2け冷却水循環パイプ204によって冷却されている支
持体205によって支えられておりスパッタリングの際
には被蒸着体を室温程度に保つことができる。又金属イ
リジウムパレット206は電極体206(ステンレスな
ど)の上に配置されている。又、この金属イリジウムパ
レット206に代えて、他のイリジウムに例えばイリジ
ウム酸化物、イリジウム水酸化物を用いることもできる
。この電極体206は高周波電源207に接続されたマ
ツチングボックス208と接続している。
The sputtering equipment shown in FIG.
In the figure, two deposition objects 202a and 202b are arranged)
, metal iridium (1r) as a target, and a pallet 206 are placed at predetermined positions, and the object to be evaporated 20
It is supported by a support body 205 that is cooled by two cooling water circulation pipes 204, and the object to be deposited can be kept at about room temperature during sputtering. Further, the metal iridium pallet 206 is placed on the electrode body 206 (made of stainless steel or the like). Further, instead of this metal iridium pallet 206, other iridium such as iridium oxide or iridium hydroxide may be used. This electrode body 206 is connected to a matching box 208 connected to a high frequency power source 207.

又、真空槽21にはそれぞれ反応ガスとして酸素ガスを
導入する酸素ガスボンベ209と真空ポンプ310に接
続され、それぞれにバルブ311と312が取シ付けら
れている。
Further, the vacuum chamber 21 is connected to an oxygen gas cylinder 209 for introducing oxygen gas as a reaction gas and a vacuum pump 310, respectively, and valves 311 and 312 are attached to each of them.

本発明の酸化発色層となる1rO,riQを形成するに
際して、真空槽201の内部を真空ポンプ610の作動
により真空状態(10Torr )とした後に、バルブ
312を閉じて真空状態を維持する。しかる後に、バル
ブ311を開放6して酸素ガスボンベ209 ヨり J
C空槽201の内部に酸素ガスを導入し、そのガス圧が
3.1’l”orr 以上、好ましくは0.1TOrr
〜1TOrrとなる様にする。その後、高周波電力(周
波数13.56MHz ;電力1 w76J以下、好ま
しくは0.4w/cJ以下)を電極体206に付与し、
グロー放電を生じさせてスパッタリングを行なうことに
よって、1roz膜を被蒸着体202aと202bの上
に形成することができる。この際に形成されるIr0r
l[は一般的ECDの酸化発色層として有効に機能する
ことができる。
When forming 1rO,riQ, which is the oxidized color forming layer of the present invention, the inside of the vacuum chamber 201 is brought to a vacuum state (10 Torr) by operating the vacuum pump 610, and then the valve 312 is closed to maintain the vacuum state. After that, open the valve 311 and turn on the oxygen gas cylinder 209.
Oxygen gas is introduced into the C empty tank 201, and the gas pressure is 3.1'l"orr or more, preferably 0.1TOrr.
〜1 TOrr. After that, high frequency power (frequency 13.56 MHz; power 1 w76 J or less, preferably 0.4 w/cJ or less) is applied to the electrode body 206,
By generating a glow discharge and performing sputtering, a 1roz film can be formed on the deposited bodies 202a and 202b. Ir0r formed at this time
l[ can effectively function as an oxidized coloring layer of a general ECD.

第3図は、発振波長633nmのヘリウム・ネオンレー
ザに対する350AのIr1s膜の透過率と0.2WA
IIIの昼周波(13,5(S MHz)電力下テノス
パッタリングの際の酸素ガス圧との関係を明らかにして
いる。すなわち、スパッタリングの際の酸素ガス圧をQ
、Q5Torr 、 Q、1Torr 、 Q、2To
rrとQ、;Torrにそれぞれ設定した時に形成され
た650AのIrOx膜の透過率をヘリウム・ネオンレ
ーザを用いて測定したところ、0.1Torr以上の酸
素ガス圧に設定した時に十分に高い透過率の1rOgg
を得られることが判明した。又、混合ガス圧の上限値は
、均一なグロー放電を発生することができるまでの値に
設定すべきである。
Figure 3 shows the transmittance of a 350A Ir1s film for a helium-neon laser with an oscillation wavelength of 633nm and a 0.2WA
The relationship between Q
, Q5Torr, Q,1Torr, Q,2Torr
Using a helium-neon laser, we measured the transmittance of a 650A IrOx film formed when the pressure was set to rr, Q, and Torr, and found that the transmittance was sufficiently high when the oxygen gas pressure was set to 0.1 Torr or higher. 1rOgg
It turns out that you can get . Further, the upper limit of the mixed gas pressure should be set to a value that allows uniform glow discharge to occur.

又、前述のスパッタリングの際酸素ガスに代えて、水蒸
気を用いることによって1r(OH)n膜を形成するこ
とができ、さらに酸素ガスと水蒸気の混合ガスを用いる
こともでき、何れの場合において前述と同様の効果が得
られる。
In addition, the 1r(OH)n film can be formed by using water vapor instead of oxygen gas during the sputtering described above, and a mixed gas of oxygen gas and water vapor can also be used. The same effect can be obtained.

又、本発明の酸化発色層を形成する際に用いた前のスパ
ッタリング装置の他に反応性高周波イオン7’ V −
ティング法や反応性アーク放電イオンブレーティング法
を用いることができ、この場合でも前述と同様の効果が
得られる。
In addition to the previous sputtering device used to form the oxidized color forming layer of the present invention, reactive high frequency ion 7'V-
It is possible to use the irradiation method or the reactive arc discharge ion blating method, and the same effects as described above can be obtained in this case as well.

従来のスパッタリングで得た1rOx膜は、透過性が悪
く、陽極酸化等の後処理をしなければ品位のよい膜は得
られなかった。これは第6図から明らかなよ5にガスの
低いところで(およそ1o−8Torr以下)成膜して
いたからである。
The 1rOx film obtained by conventional sputtering has poor permeability, and a high-quality film cannot be obtained without post-treatment such as anodic oxidation. This is because, as is clear from FIG. 6, the film was formed at a low gas level (approximately 10-8 Torr or less).

ガス圧を高めれば、たしかに膜の透過性はあがるわけで
、しかしECDの酸化発色層として用いた場合には応答
速度の速いECDを得ることができる。
It is true that increasing the gas pressure increases the permeability of the membrane, but when used as an oxidized color forming layer of an ECD, an ECD with a fast response speed can be obtained.

以下、本発明を実施例に従って説明する。Hereinafter, the present invention will be explained according to examples.

実施例1 1TO膜を設けた0、8+++!′11のガラス基板と
金属イリジウムを用意し、それぞれ給2図に示すスパッ
タリング装置に取シ付けた。しかる後、スパッタリング
装置の真空槽中の空気を真空ポンプにょシ排気し、l!
ji2累ガス導入管より酸素ガスを真空槽内に導入し、
0.2Torrの酸素ガス圧状態とした。次いで、周波
数13.56MHzの高周波を0.2弓佃の電力下で電
極体に付与して、約1時間のスパッタリングを行い、l
To股上に35OAのlr[有]膜を形成した。
Example 1 0,8+++ with 1TO film provided! A glass substrate of '11 and metallic iridium were prepared, and each was attached to a sputtering apparatus shown in Figure 2. After that, the air in the vacuum chamber of the sputtering equipment is evacuated using a vacuum pump, and the air is pumped out.
Introduce oxygen gas into the vacuum chamber from the ji2 gas introduction pipe,
The oxygen gas pressure was set at 0.2 Torr. Next, a high frequency wave of 13.56 MHz was applied to the electrode body under a power of 0.2 yen, and sputtering was performed for about 1 hour.
A 35OA lr film was formed on the To crotch.

この膜の上に、真空蒸着法によりTa5ks膜を300
OAの膜厚で設けた、この時の真空度1d2.1x10
 Torr、蒸着速戻け8 A/seeであった。さら
に、この膜の上に還元発色層となるWOs膜を真空蒸着
法により4000 Aの膜厚で設げ、さらに半透明Am
膜を3001の膜厚で設けた。
On top of this film, a 300% Ta5ks film is deposited by vacuum evaporation method.
The degree of vacuum at this time was 1d2.1x10, provided with a film thickness of OA.
Torr, vapor deposition speed return was 8 A/see. Furthermore, a WOs film, which will become a reduction coloring layer, was formed on this film to a thickness of 4000 A using a vacuum evaporation method, and a translucent Am
The membrane was provided with a thickness of 3001 mm.

この様にして作成したECDは、従来のものと比較して
同い透明性を有していた。さらに、このBCDの電極(
ITOJ[と半透明An膜)間に2.2Vの直流電圧(
ITO14電極を正極性にし、半透明ハ膜を極を負極性
にした)を印刀nしたところ、極めて速い応答速度で発
色状態に変化した。次いで、電圧の供給をとめたところ
、この発色状態は維持されており、さらに前述の極性の
逆の極性で2.2■の直流電圧を印加したところ1発色
状態から消色状態へと光学変化を生じた。
The ECD thus prepared had the same transparency compared to the conventional one. Furthermore, this BCD electrode (
A DC voltage of 2.2 V (
When the ITO14 electrode was set to positive polarity and the translucent membrane was set to negative polarity), it changed to a colored state with an extremely fast response speed. Next, when the supply of voltage was stopped, this colored state was maintained, and when a DC voltage of 2.2 μm was further applied with the opposite polarity to the above-mentioned polarity, an optical change occurred from a 1 colored state to a decolored state. occurred.

実施例2 実施例1で用いた酸素ガスに代えて水蒸気を用いた以外
は、実施例1と同様の方法でECDを作成し、さらにそ
れの評価を行なったところ、実施例1と同様の結果が得
られた。
Example 2 An ECD was prepared in the same manner as in Example 1 except that water vapor was used instead of the oxygen gas used in Example 1, and when it was further evaluated, the same results as in Example 1 were obtained. was gotten.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、エレクトロクロミック菓子の断面図である。 第2図は)本発明で用いたスパッタリング装置を模式的
に表わす断面図である。第6図は、ガス圧と1rOx:
臆の透過率との関係を表わす説明図である。 11;基板 12.16−;%L楡 16:還元発色層 14:中間J− 15二酸化発色層 201;真空槽 202;被、@着体 203 ; 金属イリジウムパレット 204;冷却水循環パイプ 205;支持体 206;電極 207;高周波電源 208;マツチングボックス 209;酸3くガスボンベ 610;真空ポンプ 311 、312 ;バルブ
FIG. 1 is a cross-sectional view of an electrochromic confectionery. FIG. 2 is a sectional view schematically showing the sputtering apparatus used in the present invention. Figure 6 shows gas pressure and 1rOx:
FIG. 2 is an explanatory diagram showing the relationship between light and transmittance. 11; Substrate 12.16-; %L 16: Reduction coloring layer 14: Intermediate J- 15 Dioxide coloring layer 201; Vacuum chamber 202; Cover @adherent 203; Metal iridium pallet 204; Cooling water circulation pipe 205; Support 206; Electrode 207; High frequency power supply 208; Matching box 209; Acid gas cylinder 610; Vacuum pumps 311, 312; Valves

Claims (2)

【特許請求の範囲】[Claims] (1)一対の電極間に酸化発色層を備えたエレクトロク
ロミック素子において、前記酸化発色層が0.1以上の
ガス圧を有する酸素ガスおよび/又祉水蒸気の存在下で
イリジウムをスパッタリングすることにより形成した薄
膜となっていることを特徴とするエレクトロクロミック
素子。
(1) In an electrochromic device having an oxidized coloring layer between a pair of electrodes, the oxidized coloring layer is formed by sputtering iridium in the presence of oxygen gas and/or water vapor having a gas pressure of 0.1 or more. An electrochromic element characterized by being a formed thin film.
(2)前記イリジウムが金属イリジウムである特許請求
の範囲第1項記載のエレクトロクロミック素子。
(2) The electrochromic device according to claim 1, wherein the iridium is metallic iridium.
JP59006195A 1984-01-17 1984-01-17 Electrochromic element Granted JPS60150034A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59006195A JPS60150034A (en) 1984-01-17 1984-01-17 Electrochromic element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59006195A JPS60150034A (en) 1984-01-17 1984-01-17 Electrochromic element

Publications (2)

Publication Number Publication Date
JPS60150034A true JPS60150034A (en) 1985-08-07
JPH0443251B2 JPH0443251B2 (en) 1992-07-16

Family

ID=11631761

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59006195A Granted JPS60150034A (en) 1984-01-17 1984-01-17 Electrochromic element

Country Status (1)

Country Link
JP (1) JPS60150034A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3900244A1 (en) * 1988-01-05 1989-07-13 Nikon Corp METHOD FOR PRODUCING AN ELECTROCHROMIC COMPONENT
JPH0215243A (en) * 1988-03-25 1990-01-18 Saint Gobain Vitrage Electrochromium type variable transmitting glass plate
KR19990084108A (en) * 1999-09-14 1999-12-06 강보선 Discoloration film by electric energy

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3900244A1 (en) * 1988-01-05 1989-07-13 Nikon Corp METHOD FOR PRODUCING AN ELECTROCHROMIC COMPONENT
JPH0215243A (en) * 1988-03-25 1990-01-18 Saint Gobain Vitrage Electrochromium type variable transmitting glass plate
KR19990084108A (en) * 1999-09-14 1999-12-06 강보선 Discoloration film by electric energy

Also Published As

Publication number Publication date
JPH0443251B2 (en) 1992-07-16

Similar Documents

Publication Publication Date Title
US4451498A (en) Method for making oxide based electrochromic display devices
RU2226293C2 (en) Display panel and multilayer plate for its manufacture
JPS60150034A (en) Electrochromic element
JPH0443252B2 (en)
US4632516A (en) Electrochromic element
JPS6033255B2 (en) electrochromic display device
JPS6042739A (en) Preparation of electrochromic element
JPS59102216A (en) Production of fully solid-state type electrochromic element
JPS6175325A (en) Display cell
JP2707112B2 (en) Method for manufacturing electrochromic device
JPS60263125A (en) Electrochromic display device
JPH03119325A (en) Production of electrochromic element
JPS60222827A (en) Electrochromic display device
JPS6127524A (en) Production of electrochromic element
JPS6063522A (en) Production of electrochromic display element
JPS59178434A (en) Fully solid state electrochromic element
JPH0241726B2 (en)
JPH02240293A (en) Production of anodically oxidized film
JPS59232316A (en) Electrochromic element
JPS59121318A (en) All solid-state electrochromic element
JPS60238818A (en) Transmission type electrochromic display device
JPS59178433A (en) Fully solid state electrochromic element
JPS6064326A (en) All solid-state electrochromic element
JPH0261622A (en) Manufacture of electrochromic element
JPS604926A (en) Electrochromic element

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term