JPH0241726B2 - - Google Patents

Info

Publication number
JPH0241726B2
JPH0241726B2 JP56142967A JP14296781A JPH0241726B2 JP H0241726 B2 JPH0241726 B2 JP H0241726B2 JP 56142967 A JP56142967 A JP 56142967A JP 14296781 A JP14296781 A JP 14296781A JP H0241726 B2 JPH0241726 B2 JP H0241726B2
Authority
JP
Japan
Prior art keywords
layer
sio
present
oxide
proton donor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP56142967A
Other languages
Japanese (ja)
Other versions
JPS5843431A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP56142967A priority Critical patent/JPS5843431A/en
Publication of JPS5843431A publication Critical patent/JPS5843431A/en
Publication of JPH0241726B2 publication Critical patent/JPH0241726B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/15Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect
    • G02F1/1514Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect characterised by the electrochromic material, e.g. by the electrodeposited material
    • G02F1/1523Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect characterised by the electrochromic material, e.g. by the electrodeposited material comprising inorganic material
    • G02F1/1524Transition metal compounds

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Nonlinear Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electrochromic Elements, Electrophoresis, Or Variable Reflection Or Absorption Elements (AREA)

Description

【発明の詳細な説明】 本発明は、薄膜タイプのエレクトロクロミツク
表示素子(以下ECDと略称する)の改良に関し、
特にプロトン供給体層を適切な物質及び層構成と
してメモリーおよび見ばえや発色特性を改善し、
さらに消費電流を低減せしめたECDに関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to improvement of a thin film type electrochromic display device (hereinafter abbreviated as ECD).
In particular, the proton donor layer is made with appropriate materials and layer configurations to improve memory, appearance, and coloring properties.
Regarding ECDs that further reduce current consumption.

ECDは、その基本要素である電気化学的発色
物質(以下EC層と略称する)が無機物質である
ものと有機物質であるものに大別でき、さらに
EC層を無機物質とするものはもう1つの基本要
素であるプロトンないしカチオン供給体層(以下
PS層と略称する)が固体であるものと液体であ
るものとに2分できる。EC層がバイオロゲン等
の有機物質であるもの、またはPS層が液体であ
るものは、その表示素子の構成が複雑になるため
とその製造プロセスの煩雑さのため表示素子の製
作コストがきわめて高くなり、LEDや液晶等の
他の表示素子に比較し劣つていた。EC層とPS層
がともに固体であるものは蒸着という1つのプロ
セスで、あるいは印刷というプロセスでも製作で
きるため、コスト面において大きなメリツトがあ
る。
ECDs can be broadly divided into those whose basic element, electrochemical coloring substance (hereinafter referred to as EC layer), is an inorganic substance and those whose basic element is an organic substance.
The EC layer is made of inorganic material, which is another basic element, the proton or cation donor layer (hereinafter referred to as
(abbreviated as PS layer) can be divided into solid and liquid types. If the EC layer is made of an organic substance such as biologen, or if the PS layer is a liquid, the manufacturing cost of the display element becomes extremely high due to the complicated structure of the display element and the complicated manufacturing process. , it was inferior to other display elements such as LED and liquid crystal. A structure in which both the EC layer and the PS layer are solid can be manufactured by a single process called vapor deposition or by a process called printing, which has a significant cost advantage.

従来こうした全固体型のECDが実用化できな
かつたのは寿命の短かさと、発色濃度や応答性を
含めた発色特性が悪かつたためである。本発明は
以下に詳述するようにこれらの欠点を大幅に改良
したものである。
Previously, all-solid-state ECDs could not be put into practical use because of their short lifespan and poor color development characteristics, including color density and response. The present invention significantly improves on these drawbacks, as detailed below.

本発明は、複数の電極と、電気化学的発色層
と、プロトン供給体層を有するエレクトロクロミ
ツクデイスプレイにおいて、該プロトン供給体層
の該電気化学的発色物質層に接する側が酸化クロ
ム富化層であり、該酸化クロム富化層上に二酸化
珪素、酸化ニツケルのいずれか、もしくはこれら
の混合層をすくなくとも一層積層した表示素子に
関するものである。なお、本発明の記述において
プロトン供給体層とは、電圧印加によりプロトン
を放出し、EC層を還元発色させる役目をもつ層
をいう。またEC層とはプロトンによつて還元発
消色する層であり、例えば酸化タングステン
(WO3)、酸化モリブデン(M0O3)、酸化バナジ
ウム(V2O5)、酸化チタン等の金属酸化物があ
る。ただし、本発明においてEC層の物質をこれ
らに限定するものでない。
The present invention provides an electrochromic display having a plurality of electrodes, an electrochemical color forming layer, and a proton donor layer, in which the side of the proton donor layer in contact with the electrochemical color forming material layer is a chromium oxide enriched layer. The invention relates to a display element in which at least one layer of silicon dioxide, nickel oxide, or a mixture thereof is laminated on the chromium oxide-enriched layer. In the description of the present invention, the proton donor layer refers to a layer that releases protons upon application of voltage and has the role of reducing and coloring the EC layer. The EC layer is a layer that undergoes reduction and discoloration by protons, such as metal oxides such as tungsten oxide (WO 3 ), molybdenum oxide (M 0 O 3 ), vanadium oxide (V 2 O 5 ), and titanium oxide. There are things. However, in the present invention, the material of the EC layer is not limited to these.

従来公知の技術として以下に示すものがあつ
た。
Conventionally known techniques include the following.

プロトン供給体層として一酸化珪素(SiO)を
ECDに用いる方法は米国特許3521941号等によつ
て既知である。(ただ、プロトンの還元作用によ
つて発色する事実は当時知られていなかつた。)
SiOは二酸化珪素(SiO2)と異なり、絶縁性に優
れ、また、誘電率も102〔C/S〕の周波数では前
者が約8、後者が約4と電気的性質において差が
ある。光学的性質においても光吸収はSiOの方が
はるかに大きく特に紫外領域において特に強い吸
収がある。従来、ECDにおいてSiO2が軽視され、
その用がほとんど試みられなかつたのは、主に前
記の電気的性質の差異のためとも思われる。
SiO2を混合物(ふつ石水)の形でECDに応用し
た技術(特開昭50−106654号公報)があるが、本
発明のように酸化クロム(Cr2O3)との積層タイ
でなく構成の異なること、さらに本発明で掲げた
Cr2O3をPS層に添加ないし混合した系は開示され
ていない。
Silicon monoxide (SiO) is used as the proton donor layer.
The method used for ECD is known from US Pat. No. 3,521,941 and others. (However, the fact that color is produced by the reducing action of protons was not known at the time.)
Unlike silicon dioxide (SiO 2 ), SiO has excellent insulating properties, and has a dielectric constant of about 8 for the former and about 4 for the latter at a frequency of 10 2 [C/S], which is a difference in electrical properties. In terms of optical properties, SiO has much greater light absorption, particularly in the ultraviolet region. Traditionally, SiO 2 has been neglected in ECD,
The reason why its use has hardly been attempted is thought to be mainly due to the above-mentioned difference in electrical properties.
There is a technology (Japanese Unexamined Patent Publication No. 50-106654) that applies SiO 2 to ECD in the form of a mixture (futsuishizui), but it is not a laminated tie with chromium oxide (Cr 2 O 3 ) as in the present invention. The different configurations and the features mentioned in the present invention
A system in which Cr 2 O 3 is added to or mixed with the PS layer is not disclosed.

また、本発明に類似の物質を用いた技術に特開
昭55−36860号公報があるがこの技術では酸化ク
ロムと珪素の酸化物を混合した層を用いており、
本発明の如く酸化クロムと二酸化珪素との2層な
いし多層といつた構成でなく根本的に本発明とは
異なる。また該公報の明細書5頁に「珪素の酸化
物とは酸化珪素(SiO)である。」と明記されて
おり、本発明で用いる二酸化珪素(SiO2)とは
異なる。特開昭55−36860号公報の明細書では、
その発明による表示装置の寿命が明記されていな
く、その効果が不明であるが、本発明者らの実験
によるとEC層に接する側をCr2O3に、外側を
SiO2としないと寿命が極端に短かくなり、この
意味で本発明の価値大なることを証するものであ
る。
In addition, there is a technology using a substance similar to the present invention in Japanese Patent Application Laid-Open No. 55-36860, but this technology uses a layer containing a mixture of chromium oxide and silicon oxide.
Unlike the present invention, the present invention does not have a two-layer or multilayer structure of chromium oxide and silicon dioxide, but is fundamentally different from the present invention. Furthermore, on page 5 of the specification of the publication, it is clearly stated that "the oxide of silicon is silicon oxide (SiO)," which is different from silicon dioxide (SiO 2 ) used in the present invention. In the specification of JP-A No. 55-36860,
Although the lifespan of the display device according to the invention is not specified and its effectiveness is unknown, according to experiments by the present inventors, the side in contact with the EC layer is made of Cr 2 O 3 and the outside is made of Cr 2 O 3 .
If SiO 2 is not used, the life will be extremely short, and in this sense, this proves the great value of the present invention.

また、特開昭55−109748号公報には、SiO、
SiO2等の記載があるが、このSiO2等は表示部以
外の部分をカバーし、本来の絶縁層として採用し
ているため、本発明のPS層としてのSiO2とは本
質的にも構成の上でも異なる。
In addition, Japanese Patent Application Laid-Open No. 55-109748 describes SiO,
Although there is a description of SiO 2 etc., this SiO 2 etc. covers parts other than the display area and is used as an original insulating layer, so it is essentially different from the SiO 2 used as the PS layer of the present invention. It's also different on top.

さらに、本発明で示してあるように、SiO2
中心構成物質とするPS層はその充填率を0.82以
下もしくは5×10-5torr以下の低真空状態で成膜
しないと十分な発色特性が得られない。また電圧
印加による発消色の繰返しサイクルを102〜103
行いウオーミングアツプを行わないと高い発色濃
度が得られない。この現象は、プロトン供給体と
して既知の単層のCr2O3、またはTa2O5(酸化タ
ンタル)、ZrO2(酸化ジルコニウム)、TiO2(酸化
チタン)では観察されず、SiO2特有のものであ
る。このウオーミングアツプの後は比較的安定
し、初期の発色濃度0.5が106回後でも0.4と大きな
劣化がなく実用価値が高い。ただし、本発明で示
したようにEC層に接する側をCr2O3とし、外側を
SiO2とすることによつてここに示したような長
命化が可能で、SiO2単層では発消色の繰返しを
経るに従いガスが発生し、素子の層構成を破壊し
てしまう。
Furthermore, as shown in the present invention, the PS layer whose main constituent is SiO 2 cannot have sufficient coloring properties unless it is formed at a filling rate of 0.82 or less or in a low vacuum state of 5×10 -5 torr or less. I can't get it. In addition, high color density cannot be obtained unless a warming-up is performed by repeating the cycle of color development and decolorization by voltage application 10 2 to 10 3 times. This phenomenon is not observed in single-layer Cr 2 O 3 , which is known as a proton donor, or in Ta 2 O 5 (tantalum oxide), ZrO 2 (zirconium oxide), or TiO 2 (titanium oxide), but is unique to SiO 2 . It is something. After this warming-up, it is relatively stable, and the initial color density of 0.5 is 0.4 even after 10 6 times, with no significant deterioration and is of high practical value. However, as shown in the present invention, the side in contact with the EC layer is made of Cr 2 O 3 , and the outside is made of Cr 2 O 3.
By using SiO 2 , it is possible to extend the life as shown here, but with a single SiO 2 layer, gas is generated as the coloring and fading occurs repeatedly, destroying the layer structure of the device.

また、PS層の構成をCr2O3/SiO2/Cr2O3と、
あるいはSiO2/Cr2O3とすれば電圧を印加し発色
させた後、回路をオープンのまま保持させておく
と発色が3〜60日も維持し、全固体薄膜型ECD
では画期的なメモリー性を発現する。また本発明
ではSiO2の他に酸化ニツケル(NiO)を提示し
ている。NiOもSiO2と同様、低真空で蒸着し、
充填率を下げて成膜することにより表示素子の発
色特性をあげえる。
In addition, the composition of the PS layer is Cr 2 O 3 /SiO 2 /Cr 2 O 3 ,
Alternatively, if SiO 2 /Cr 2 O 3 is used, the color will be maintained for 3 to 60 days if the circuit is left open after applying a voltage to develop color, making it an all-solid-state thin film ECD.
It exhibits revolutionary memory properties. Further, the present invention proposes nickel oxide (NiO) in addition to SiO 2 . NiO, like SiO 2 , is deposited in a low vacuum,
By forming a film with a lower filling rate, the coloring characteristics of the display element can be improved.

なお、PS層がCr2O3単層の表示素子は寿命が短
かく104〜105回程度の発消色の繰返しサイクルで
発色濃度が半減し、かつ1〜2Vという直流電圧
の印加によつて5〜50mA/cm2というきわめて大
きなリーク電流が生じ実用価値が低い。また、リ
ーク電流が生じることはCr2O3が有効な電子阻止
層となり得ないことを示している。この点に対
し、Ta2O5やZrO2単層をPS層とした表示素子の
リーク電流は1mA/cm2前後とやや少なく、多少
とも電子阻止層としての性質を有するといえる。
しかし、Cr2O3単層のものでは1.3Vの印加電圧で
0.4程度の発色濃度を得ることができるのに対し、
Ta2O5単層のものやZrO2単層のものは、同程度
の発色濃度を得るには2V以上の印加電圧が必要
である。即ち、Cr2O3層内のプロトン移動の活性
化エネルギーはTa2O5やZrO2より低くプロトン
のモビリテイが高いことを示している。本発明は
プロトンのモビリテイの高いCr2O3の特性を活か
すとともに、その外側にSiO2ないしNiOを充填
率を低くして積層することによりリーク電流を軽
減し発色効率を高め応答性を改善したものであ
る。特開昭55−88028号公報ではNiOを用いた固
体エレクトロクロミツク素子を開示し、該発明の
素子の構成は固体エレクトロクロミツク物質層
(電気化学的発色物質層と同義)と誘電体層(本
発明においてはプロトン供給体層とよんでいる
層)との間に電子阻止層を配設したものとなつて
いるが、本発明において前述したように、Cr2O3
は電子阻止層でなくプロトンのモビリテイの高い
プロトン供給体層として中間層に利用するもので
ある。特開昭55−88028号公報では、その詳細な
説明の中でCr2O3を誘電体層として外側に用い、
Cr2O3の特性を十分に利用していない。また
Cr2O3は外側の層として用いると、雰囲気の影響
を受け経時変化しそのEC素子の特性を劣化させ
る。また本発明では、プロトン供給体層の充填率
をその構成物質のバルク密度に対し、0.82以下と
粗化して成膜することを提示しているが、それは
プロトン供給体層が0.82以下の充填率でないと十
分なプロトンのモビリテイが得られないためであ
る。充填率を下げて成膜させる具体的手法として
は、プロトン供給体層の形成を5×10-5torr以下
の低真空で蒸着を実施することが簡便である。ま
た蒸着以外の方法としてスパツタリング、イオン
プレーテイング、CVD、陽極酸化のような各成
膜技術や表面処理の技術の応用が可能である。
Note that display elements whose PS layer is a single layer of Cr 2 O 3 have a short lifespan, and the color density is halved after 10 4 to 10 5 repeated cycles of color development and decolorization. Therefore, an extremely large leakage current of 5 to 50 mA/cm 2 occurs, and the practical value is low. Furthermore, the occurrence of leakage current indicates that Cr 2 O 3 cannot be an effective electron blocking layer. In contrast, the leakage current of a display element using a Ta 2 O 5 or ZrO 2 single layer as a PS layer is slightly lower at around 1 mA/cm 2 , and it can be said that the display element has properties as an electron blocking layer to some extent.
However, with a single layer of Cr 2 O 3 , an applied voltage of 1.3V causes
While it is possible to obtain a color density of about 0.4,
For Ta 2 O 5 single layer and ZrO 2 single layer, an applied voltage of 2 V or more is required to obtain the same color density. That is, the activation energy of proton movement within the Cr 2 O 3 layer is lower than that of Ta 2 O 5 or ZrO 2 , indicating that the proton mobility is high. The present invention takes advantage of the characteristics of Cr 2 O 3 , which has high proton mobility, and also stacks SiO 2 or NiO on the outside at a low filling rate to reduce leakage current, increase coloring efficiency, and improve responsiveness. It is something. JP-A-55-88028 discloses a solid-state electrochromic device using NiO, and the structure of the device of the invention includes a solid electrochromic material layer (synonymous with an electrochemical coloring material layer) and a dielectric layer ( In the present invention, an electron blocking layer is provided between the proton donor layer (a layer called a proton donor layer) ;
is used in the intermediate layer not as an electron blocking layer but as a proton donor layer with high proton mobility. In JP-A-55-88028, in its detailed explanation, Cr 2 O 3 is used as a dielectric layer on the outside,
The properties of Cr 2 O 3 are not fully utilized. Also
When Cr 2 O 3 is used as an outer layer, it changes over time due to the influence of the atmosphere and deteriorates the characteristics of the EC element. In addition, the present invention proposes that the proton donor layer be formed with a rough filling factor of 0.82 or less relative to the bulk density of its constituent materials; Otherwise, sufficient proton mobility cannot be obtained. As a specific method for forming a film with a lower filling rate, it is convenient to form the proton donor layer by vapor deposition in a low vacuum of 5×10 −5 torr or less. Furthermore, as methods other than vapor deposition, various film forming techniques and surface treatment techniques such as sputtering, ion plating, CVD, and anodic oxidation can be applied.

本発明は以上のようにCr2O3を中間的な層と
し、低真空あるいは水富化雰囲気中の低真空で
SiO2またはNiOを充填率の0.82以下として成膜積
層し、適材適所とすることによつて発色特性の高
いEC素子を提供するものである。
As described above, the present invention uses Cr 2 O 3 as an intermediate layer and can be used in a low vacuum or in a water-enriched atmosphere.
By forming and laminating SiO 2 or NiO at a filling factor of 0.82 or less and using the right materials in the right places, an EC element with high coloring characteristics is provided.

次に本発明を実施例により詳細に説明する。 Next, the present invention will be explained in detail with reference to examples.

〈実施例 1〉 第1図に示した実施例は、ガラス基板1上に酸
化スズ5%含有の酸化インジウムの透明電極2を
形成し、この上に7×10-5torrの真空状態でWO3
を4000Åの厚みに設けEC層3とした。さらにこ
のEC層3上に3×10-4torrの真空度にてCr2O3
4を2000Åの厚みで蒸着し、次にSiO2層5を3
×10-4torrの真空度にて共蒸着させ1000Åの厚み
で形成した。この上にAuを150Åの厚みで積層し
対向電極6とした。この表示素子に1.3Vの電圧
を対向電極6を正極として印加したところ3秒後
で濃度0.4の発色濃度を得た。発消色を102回繰返
すと1秒後で濃度0.6の発色濃度が得られ106回後
もほとんど劣化しなかつた。リーク電流は
0.4mA/cm2ときわめて低いものであつた。
<Example 1> In the example shown in FIG. 1, a transparent electrode 2 of indium oxide containing 5% tin oxide is formed on a glass substrate 1, and WO is applied on this in a vacuum state of 7×10 -5 torr. 3
was formed to a thickness of 4000 Å to form the EC layer 3. Furthermore, a Cr 2 O 3 layer 4 with a thickness of 2000 Å was deposited on this EC layer 3 at a vacuum level of 3×10 -4 torr, and then a SiO 2 layer 5 was deposited on the EC layer 3 to a thickness of 2000 Å.
Co-deposition was carried out at a vacuum level of ×10 -4 torr to form a thickness of 1000 Å. On top of this, Au was laminated to a thickness of 150 Å to form a counter electrode 6. When a voltage of 1.3 V was applied to this display element with the counter electrode 6 as the positive electrode, a color density of 0.4 was obtained after 3 seconds. When color development and decolorization were repeated 10 2 times, a color density of 0.6 was obtained after 1 second, and there was almost no deterioration even after 10 6 times. The leakage current is
It was extremely low at 0.4 mA/cm 2 .

〈実施例 2〉 第2図に示す実施例は透明電極2が膜付けされ
たガラス基板1上に、実施例1と同様にEC層3
及びCr2O3層4を設け、次に水分を飽和させた酸
素ガスを真空度2×10-6torrの蒸着機内に導入し
3×10-4torrと調圧してNiO層7を800Åの膜厚
で積層した。このあと、基板温度を上昇させない
よう低温スパツタリング装置にて対向電極6を酸
化スズ5%含有の酸化インジウムにて形成した。
さらに可視光の透過率をあげるためフツ化マグネ
シウムを反射防止膜8として積層した。この表示
素子に対し、対向電極6を正極として1.3Vの電
圧を印加したところ、0.1秒にて発色濃度0.6が得
られ、106回後も濃度の減少はほとんど観察され
なかつた。
<Example 2> In the example shown in FIG.
and Cr 2 O 3 layer 4 was formed, and then oxygen gas saturated with water was introduced into a vapor deposition machine with a vacuum level of 2 × 10 -6 torr, and the pressure was adjusted to 3 × 10 -4 torr to form a NiO layer 7 of 800 Å. Laminated with film thickness. Thereafter, a counter electrode 6 was formed from indium oxide containing 5% tin oxide using a low-temperature sputtering device so as not to increase the substrate temperature.
Further, in order to increase the transmittance of visible light, magnesium fluoride was laminated as an antireflection film 8. When a voltage of 1.3 V was applied to this display element using the counter electrode 6 as the positive electrode, a color density of 0.6 was obtained in 0.1 seconds, and almost no decrease in density was observed even after 10 6 times.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図は本発明の全固体型のエレクト
ロクロミツク表示素子の実施例を示す部分断面図
である。 1……ガラス基板、2……透明電極、3……
EC層、4……Cr2O3層、5……SiO2層、6……
対向電極、7……NiO層、8……反射防止膜。
1 and 2 are partial cross-sectional views showing an embodiment of an all-solid-state electrochromic display element of the present invention. 1...Glass substrate, 2...Transparent electrode, 3...
EC layer, 4... Cr 2 O 3 layer, 5... SiO 2 layer, 6...
Counter electrode, 7... NiO layer, 8... antireflection film.

Claims (1)

【特許請求の範囲】[Claims] 1 電気化学的発色層と、プロトン供給体層を有
するエレクトロクロミツク表示素子において、プ
ロトン供給体層の電気化学的発色層に接する面を
酸化クロム層とし、該酸化クロム層上に二酸化珪
素、酸化ニツケルのいずれか、またはこれらの混
合物をすくなくとも一層積層し、かつ前記プロト
ン供給体層の充填率をその構成物質のバルク密度
に対し、0.82以下として成膜したことを特徴とす
るエレクトロクロミツク表示素子。
1. In an electrochromic display element having an electrochemical coloring layer and a proton donor layer, the surface of the proton donor layer that is in contact with the electrochemical coloring layer is a chromium oxide layer, and silicon dioxide and oxide are formed on the chromium oxide layer. An electrochromic display element characterized in that the film is formed by laminating at least one layer of nickel or a mixture thereof, and the filling ratio of the proton donor layer is 0.82 or less relative to the bulk density of its constituent materials. .
JP56142967A 1981-09-10 1981-09-10 Electrochromic display element Granted JPS5843431A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56142967A JPS5843431A (en) 1981-09-10 1981-09-10 Electrochromic display element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56142967A JPS5843431A (en) 1981-09-10 1981-09-10 Electrochromic display element

Publications (2)

Publication Number Publication Date
JPS5843431A JPS5843431A (en) 1983-03-14
JPH0241726B2 true JPH0241726B2 (en) 1990-09-19

Family

ID=15327817

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56142967A Granted JPS5843431A (en) 1981-09-10 1981-09-10 Electrochromic display element

Country Status (1)

Country Link
JP (1) JPS5843431A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19640515A1 (en) * 1996-10-01 1998-04-09 Flachglas Ag Electrochromic mirror and method for producing an electrochromic mirror
US20090027758A1 (en) * 2005-03-19 2009-01-29 National University Corporation Tokyo University Of Agriculture And Technology Reversible Coloring and Decoloring Solid-State Device, a Reversible Conductive Property Changing Solid-State Device, a Reversible Refractive Index Changing Solid-State Device, a Nonradiative Display Device, a Conducting Path Device and a Light Waveguide Device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5433745A (en) * 1977-08-22 1979-03-12 Nippon Chemical Ind Reflectionnpreventive light control element
JPS5433754A (en) * 1977-05-13 1979-03-12 Steigerwald Strahltech
JPS5536860A (en) * 1978-09-06 1980-03-14 Fuji Photo Film Co Ltd Electrolytic coloring display device
JPS5588028A (en) * 1978-12-27 1980-07-03 Nippon Kogaku Kk <Nikon> Solid electrochromic element

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5433754A (en) * 1977-05-13 1979-03-12 Steigerwald Strahltech
JPS5433745A (en) * 1977-08-22 1979-03-12 Nippon Chemical Ind Reflectionnpreventive light control element
JPS5536860A (en) * 1978-09-06 1980-03-14 Fuji Photo Film Co Ltd Electrolytic coloring display device
JPS5588028A (en) * 1978-12-27 1980-07-03 Nippon Kogaku Kk <Nikon> Solid electrochromic element

Also Published As

Publication number Publication date
JPS5843431A (en) 1983-03-14

Similar Documents

Publication Publication Date Title
US4652090A (en) Dispersed iridium based complementary electrochromic device
JPS6031355B2 (en) All-solid-state electrochromic device
US4182551A (en) Electrochromic display device
US4294520A (en) Electrochromic display device
JPS5940625A (en) Electrochromic element
JPH0241726B2 (en)
US4632516A (en) Electrochromic element
JPH02151838A (en) Fully solid-state electrochromic element
JPH04318525A (en) Reflection type electrochromic element
JPS6033255B2 (en) electrochromic display device
JPH0143934B2 (en)
JPS6011577A (en) All-solid electrochromic display element
JPS6355686B2 (en)
JPS6175325A (en) Display cell
JPS6328288B2 (en)
CA1265603A (en) Dispersed iridium based complementary electrochromic device
JPS6114496B2 (en)
JPS60222827A (en) Electrochromic display device
JPH0372328A (en) Electrochromic element
JPS60238818A (en) Transmission type electrochromic display device
JP2540737B2 (en) Driving device for thin film type EC device
JP2707112B2 (en) Method for manufacturing electrochromic device
JPH02151839A (en) Fully solid-state electrochromic element
JPS61239227A (en) Electrochromic element
JPS6039621A (en) Electrochromic display device