JPS60149374A - Method for controlling fermented unrefined sake in brewing refinded sake - Google Patents

Method for controlling fermented unrefined sake in brewing refinded sake

Info

Publication number
JPS60149374A
JPS60149374A JP59001880A JP188084A JPS60149374A JP S60149374 A JPS60149374 A JP S60149374A JP 59001880 A JP59001880 A JP 59001880A JP 188084 A JP188084 A JP 188084A JP S60149374 A JPS60149374 A JP S60149374A
Authority
JP
Japan
Prior art keywords
fermentation
temperature
sake
cooling water
control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59001880A
Other languages
Japanese (ja)
Inventor
Yasuo Konishi
小西 康夫
Nobuo Saito
信雄 斎藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KIZAKURA SYUZO KK
YAYOI ENG KK
Original Assignee
KIZAKURA SYUZO KK
YAYOI ENG KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KIZAKURA SYUZO KK, YAYOI ENG KK filed Critical KIZAKURA SYUZO KK
Priority to JP59001880A priority Critical patent/JPS60149374A/en
Publication of JPS60149374A publication Critical patent/JPS60149374A/en
Pending legal-status Critical Current

Links

Landscapes

  • Alcoholic Beverages (AREA)

Abstract

PURPOSE:To control the fermentation temperature, etc., by analyzing a gas evolved in fermentation regularly with a gas analyzer, and using the measured value for the control. CONSTITUTION:A tank jacket (b) for circulating cooling water for temperature control of fermented unrefined SAKE, and a pipe (c) for circulating the cooling water is provided to measure ethyl alcohol in a fermentation gas with a measuring device (m) and send concentration signals. The concentration of ethyl alcohol formed every day is set. In case the measured value exceeds the upper limit of the set value, a solenoid valve (l) for introducing cooling water is opened to introduce the external cooling water. When the measured value reaches the lower limit of the set value, the solenoid valve (l) is closed to control the temperature.

Description

【発明の詳細な説明】 清酒醸造におけるアルコール発酵を主としだもろみ管理
において、発酵の進捗にともなって発生するガスは、炭
酸ガスあるいはエタノールガスを主成分とするものであ
るが、この発明はこのようなガス体を赤外線分祈計等の
ガス分析器で定時分析し、この測定値によって発酵温度
等の制御を行ない、正常な発酵を行なわせるようにした
発酵もろみ管理の方法に関するものである。
[Detailed Description of the Invention] In sake brewing, which mainly involves alcoholic fermentation, the gas generated as fermentation progresses is mainly composed of carbon dioxide gas or ethanol gas. This invention relates to a method for managing fermented mash in which such a gas is periodically analyzed using a gas analyzer such as an infrared analyzer, and the fermentation temperature is controlled based on the measured values to ensure normal fermentation.

清酒製造、ビール醸造等、アルコール発酵を主とするも
のにおいて、発酵を目的の方向へ制御することは、その
発酵ろ液そのものがアルコール飲料となる酒類のような
場合、特にデリケートな制御を必要とするもので、単に
アルコール生成や、原料利用率の向上で満足できるもの
ではない。
In processes that primarily involve alcoholic fermentation, such as sake production and beer brewing, controlling fermentation in the desired direction requires particularly delicate control, especially in the case of alcoholic beverages where the fermentation filtrate itself becomes the alcoholic beverage. However, it is not enough to simply improve alcohol production or raw material utilization.

以上のような観点から複雑な発酵の管理が行なわれるが
、管理の最も重要なものは、発酵温度の制御である。(
その他、:g3酵の管理として、もろみ中の固液の物性
後攪拌等の操作によって制御あるいは酵母の生理を制御
するため、もろみ中への溶存酸素の制御等も重要な管理
である。) 発酵温度の制御は単に発酵期間中一定温度を継続させれ
ばそれで満足するものではなく、それぞれ目的とする酒
質に対応した適切な温度の推移が必要となる。
Although complicated fermentation management is performed from the above points of view, the most important management is the control of fermentation temperature. (
Others: As for the management of g3 fermentation, control of dissolved oxygen in the mash is also important in order to control the physical properties of the solid-liquid in the mash by operations such as stirring, or to control the physiology of the yeast. ) Controlling the fermentation temperature is not sufficient simply by maintaining a constant temperature during the fermentation period; it is necessary to maintain an appropriate temperature transition that corresponds to the desired alcohol quality.

この発明は、温度管理を目的として、もろみの発酵ガス
をガス分析器(最近のガス分析器械は、安定した分析値
が長期間にわたって得られる機能を有する)で定時分析
し、この測定値をもってもろみの温度制御への因子とし
たものである。従来、このような発酵も、ろみの管理は
、ろ紙等でろ液を採取して分析を行ない、その測定値に
よって制御を行なっているか、ろ液採取に時間を要し、
その測定時点てのもろみの状態しか把握できないため、
その情報をもって制御をすることは困難である。更に、
採取には相当量の試料を必要とするため、省資源の面か
らも問題がある。最近は各種の液圧センサの開発により
、その時点におけるる液中の成分を測定することも可能
になりつつあるがこの場合、同時に多数点の分析を行な
う必要があるので、測定部分の液洗滌等に時間を要し、
また、それをさけるためには、比較的複雑な設備を要す
る欠点がある。
This invention analyzes the fermentation gas of mash using a gas analyzer (recent gas analyzers have the function of obtaining stable analysis values over a long period of time) for the purpose of temperature control, and uses these measured values to analyze the fermentation gas of mash. This is a factor in temperature control. Conventionally, in this type of fermentation, the sludge has been managed by collecting the filtrate with filter paper, analyzing it, and controlling it based on the measured value, or it takes time to collect the filtrate.
Because we can only grasp the state of the mash at the time of measurement,
It is difficult to control with that information. Furthermore,
Since a considerable amount of sample is required for collection, there is also a problem in terms of resource conservation. Recently, with the development of various liquid pressure sensors, it has become possible to measure the components in the liquid at a given point in time. etc. takes time,
In addition, there is a drawback that relatively complicated equipment is required to avoid this problem.

この発明は、最近開発された赤外線ガス分析計を用いて
検討を行なった結果、発酵ガスの分析値、特に炭酸ガス
濃度(V/V)、エチルアルコール濃度が発酵もろみの
経過を忠実に反映すること、特に大型発酵タンク内に起
りがちな品温の不均一性を示していることが判明した。
As a result of studies using a recently developed infrared gas analyzer, this invention found that the analytical values of fermentation gas, especially carbon dioxide concentration (V/V) and ethyl alcohol concentration, faithfully reflect the progress of fermentation mash. In particular, it was found that the temperature of the product was non-uniform, which tends to occur in large fermentation tanks.

現在、品温の不均一性について、大型発酵タンクの場合
はタンク外側にジャケット、内部にパイプを装置し、こ
の内部を冷却水が循環して発酵温度の制御を行うのが一
般的な制御方法である。この場合、冷却部と、それから
離れた部位とでは、温度差が生じやすい。
Currently, in the case of large fermentation tanks, the common control method for non-uniformity in product temperature is to install a jacket on the outside of the tank and a pipe inside the tank, through which cooling water is circulated to control the fermentation temperature. It is. In this case, a temperature difference is likely to occur between the cooling section and a portion distant from it.

特に清酒もろみのような場合、発酵もろみの初期の状態
と、中期以後では、物性が異なり、特に初期の不均一性
はさけ難いが、中期以後においては、溶解が進み、対流
がおこりやすくなり、温度の不均一性は比較的少ないと
考えられてきたが、この場合においても、発酵ガス濃度
の連続測定により、ガス濃度に変化が生じていることを
見出し、これの原因が上に示すような発酵中期以後のよ
うに、力′なり溶解の進行した発酵もろみにおいても、
温度に不均一を見出した。
Especially in the case of sake mash, the physical properties are different between the initial state of the fermented mash and after the middle stage, and although initial heterogeneity is particularly difficult to avoid, after the middle stage, dissolution progresses and convection becomes more likely to occur. It has been thought that temperature non-uniformity is relatively small, but even in this case, continuous measurements of fermentation gas concentration revealed that changes in gas concentration occurred, and the cause of this was found to be as shown above. Even in fermented mash in which force and dissolution have progressed, such as after the middle stage of fermentation,
We found non-uniformity in temperature.

この結果、生成される清酒等の品質が計画通りに行かな
いことや、あるいは原料利用率の向上がめられないこと
があり、解決は極めて困難である。これに対し、同一タ
ンク内に多くの温度測定点を設ければ、ある程度判明で
きるが、これでは制御上設備費の高騰、解析の複雑化を
招くことになる。この点発酵ガス分析訓は、容易に発酵
もろみの状態の検出を可能にするものである。
As a result, the quality of the sake produced may not be as planned, or the utilization rate of raw materials may not be improved, which is extremely difficult to solve. On the other hand, if many temperature measurement points are installed in the same tank, the temperature can be determined to some extent, but this will increase the cost of control equipment and complicate the analysis. In this respect, fermentation gas analysis makes it possible to easily detect the state of fermented mash.

以下この発明方法実施の一例を第1図、第2図並びに表
1について説明する。
An example of implementing the method of this invention will be described below with reference to FIGS. 1 and 2 and Table 1.

第1図はこの発明方法を実施するに適したステンレス製
円筒型発酵タンクの立面図である。図面中aはタンク本
体、bは発酵もろみの温度制御用冷却水循環のためのタ
ンクジャケットであり、ジャケット内部には仕切りがあ
る。Cは同じく冷却水循環用のタンク内部に取り付けた
パイプであり内部を冷却水が通る。b及びCは内部が連
結されて、また仕切りによってジャケラ1−下部から流
入した冷却水は、順次ジャケット及びパイプを通ってジ
ャケラ1−」二部から排出される。dはタンクのマンホ
ールであり、−基にそれぞれ2箇取り付けられる。e、
fはそれぞれマンホールに取り付ける蓋であり、止具に
よってタンクの密閉化が可能である。gは同タンクの内
部点検用マンホール、11は発酵もろみ取り出し口であ
る。eには発酵ガス測定用の配管並びにバルブが取り付
けられる。またfにはタンクの圧力の安全装置を付ける
。第2図は同タンクにこの発明の方法を実施する装置を
付して図示したものである。同図中iは外部で製造した
冷却水(水温5℃前後)の取り入れ用バルブ、jはポン
プ、kは冷却水のタンクジャケットからの排水温度の測
定用の温度センサ、nlは発酵ガス中のエチルアルコー
ル測定装置及び濃度信号発生装置、Ωは冷却水導入用電
磁弁、nはタンク内部のもろみ温度測定並びに温度信号
発生装置である。温度センサは0−1.0−2.0−3
.0−4の4箇所に装着した。以上のような装置を用い
て常法の通り総仕込量が白米321ヘンの清酒もろみの
仕込を実施した。表1に本実施例においてこの発明によ
る発酵ガス中のエチルアルコール濃度によって発酵もろ
みの品温制御を実施した例(A)、並びにこれを行なわ
なかった対照仕込例(B)の2通りを示す。例(A)、
例(B)共、発酵が旺盛な10日日目ではタンクマンホ
ールを開いているが、この間は全く同一の操作を行なっ
た。その結果は0−1.0−2.0−3.0−4の測定
点での温度経過並びに成分分析値もほぼ同様の経過とな
った。
FIG. 1 is an elevational view of a stainless steel cylindrical fermentation tank suitable for carrying out the method of this invention. In the drawing, a is the tank body, b is a tank jacket for circulating cooling water for controlling the temperature of the fermented mash, and there is a partition inside the jacket. Similarly, C is a pipe installed inside the tank for circulating cooling water, through which the cooling water passes. B and C are connected internally, and the cooling water flowing from the lower part of the jacket 1 is discharged from the second part of the jacket 1 through the jacket and the pipes by a partition. d is a tank manhole, two of which are attached to each base. e,
f is a cover that is attached to each manhole, and the tank can be sealed with a stopper. g is a manhole for internal inspection of the tank, and 11 is a fermented mash outlet. Pipes and valves for measuring fermentation gas are attached to e. Also, f should be equipped with a tank pressure safety device. FIG. 2 shows the same tank with an apparatus for carrying out the method of the invention. In the figure, i is a valve for taking in externally produced cooling water (water temperature around 5°C), j is a pump, k is a temperature sensor for measuring the temperature of the water drained from the cooling water tank jacket, and nl is a temperature sensor for measuring the temperature of water in the fermentation gas. An ethyl alcohol measuring device and a concentration signal generating device, Ω is a solenoid valve for introducing cooling water, and n is a device for measuring the temperature of the mash inside the tank and generating a temperature signal. Temperature sensor is 0-1.0-2.0-3
.. It was installed in four locations, 0-4. Using the above-mentioned apparatus, sake mash with a total amount of 321 hectares of white rice was brewed in a conventional manner. Table 1 shows two examples of this example, an example (A) in which the temperature of the fermented mash was controlled by the ethyl alcohol concentration in the fermentation gas according to the present invention, and a control example (B) in which this was not performed. Example (A),
In Example (B), the tank manhole was opened on the 10th day when fermentation was active, but the same operations were performed during this period. The results showed that the temperature and component analysis values at the measurement points of 0-1.0-2.0-3.0-4 also had almost the same progression.

例(A)においては発酵ガス中のエチルアルコールを制
御信号として電磁弁Qの制御を行ない、これによって品
温の制御を行なった。
In Example (A), the electromagnetic valve Q was controlled using ethyl alcohol in the fermentation gas as a control signal, thereby controlling the product temperature.

すなわち毎日発生するエチルアルコール濃度の設定を行
ない、設定値上限を超えた場合は電磁弁Uが開いて外部
冷却水が入り、設定値下限に達するとQが閉じる方法に
よる制御を行った。発酵ガス中のエチルアルコール濃度
は敏感に発酵もろみ全体の発酵状態を反映してエチルア
ルコール濃度変化として示す。これによって微妙な調節
が可能となった。同じく例(B)は発酵もろみ内部の0
−3点から温度信号で温度の上限、下限を設定し電磁弁
Qの制御を行なった。この結果を表(1)に示した。表
(1)中、(A)−1、(A)−2、(A)=3はそれ
ぞれ、(A)−1は発酵ガス中のエチルアルコール濃度
、(A)−2は炭酸ガス濃度、並びに(A)=3は〇−
1,0−2,0−ml O−4の各測定温度中の最大値
と最小値の差である。また(B)−1、(B’)−2、
(B)”−3はそれぞ九発酵ガス中のエチルアルコール
濃度、同じく炭酸ガス濃度、また0−1,0−2,0−
3、の各測定温度中の最大値と最小値の差である。
That is, the ethyl alcohol concentration generated every day was set, and when the upper limit of the set value was exceeded, the solenoid valve U opened and external cooling water entered, and when the lower limit of the set value was reached, the solenoid valve Q was closed. The ethyl alcohol concentration in the fermentation gas sensitively reflects the fermentation state of the whole fermented mash and is shown as a change in ethyl alcohol concentration. This allows for fine adjustments. Similarly, in example (B), 0 inside the fermented mash
- The upper and lower limits of temperature were set using temperature signals from three points and the solenoid valve Q was controlled. The results are shown in Table (1). In Table (1), (A)-1, (A)-2, and (A)=3 are respectively, (A)-1 is the ethyl alcohol concentration in the fermentation gas, (A)-2 is the carbon dioxide concentration, And (A)=3 is 〇-
It is the difference between the maximum value and the minimum value in each measurement temperature of 1,0-2,0-ml O-4. Also (B)-1, (B')-2,
(B) "-3 is the concentration of ethyl alcohol in the 9 fermentation gas, the same is the concentration of carbon dioxide, and 0-1, 0-2, 0-
3. This is the difference between the maximum value and the minimum value in each measured temperature.

この表(1)から明らかなように、これは11日口の結
果を対比したものであるか−、それ以降の目顔において
も同様に発酵ガス中のエチルアルコール濃度による制御
の方が、発酵−タンク内の温度分布は極めて少なくなる
ことは明白である。これによってこの発明の方法の有効
性が示された。
As is clear from Table (1), this is a comparison of the results for the 11th day, or for the subsequent eyes and faces as well, the fermentation gas is better controlled by the ethyl alcohol concentration in the fermentation gas. - It is clear that the temperature distribution inside the tank will be very small. This demonstrated the effectiveness of the method of this invention.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の方法を実施するに適したステンレス
製円筒型発酵タンクの立面図、第2図は前記タンクにこ
の発明の装置を付設した立面図で、表1はこの発明の方
法と従来の方法との比較を示すグラフである。 特許出願人 黄桜酒造株式会社 手続補正書動式) 昭和59年4月26日 特許庁長官 若 杉 和 夫 殿 、事件の表示 昭和59年特許願第1880号 、発明の名称 清酒醸造における発酵もろみの管理の方法、補正をする
者 事件との関係 特許出願人 名 称 黄桜酒造株式会社 (ほか1名)(別紙のとお
り) (7,補正の内容) 明細書中 1)第7頁第12行の[仕込例(B)の2通りを示す。 例(A)、例」を次の通り訂正し「仕込例(B)の2通
りを示す。すなわち表1 上記表1例(A)、例」 2)第9頁第14行ないし第15行の[立面図で、表1
・・・である。Jを次の通り訂正する「立面図である。 」
FIG. 1 is an elevational view of a stainless steel cylindrical fermentation tank suitable for carrying out the method of the present invention, FIG. 2 is an elevational view of the tank equipped with the device of the present invention, and Table 1 shows the method of the present invention. 1 is a graph showing a comparison between the method and a conventional method. Patent Applicant Kizakura Sake Brewing Co., Ltd. Procedural Amendment Form) April 26, 1980 Mr. Kazuo Wakasugi, Commissioner of the Patent Office, Incident Indication 1988 Patent Application No. 1880, Name of Invention Fermented mash in sake brewing Management method and relationship with the case of the person making the amendment Name of patent applicant Title Kizakura Sake Brewery Co., Ltd. (and 1 other person) (as attached) (7. Contents of amendment) 1) in the specification, page 7, line 12 Two preparation examples (B) are shown below. "Example (A), Example" was corrected as follows: "Two ways of preparation example (B) are shown. Namely, Table 1 Above Table 1 Example (A), Example" 2) Page 9, lines 14 to 15 [In elevation, Table 1
...is... Correct J as follows: ``It is an elevation.''

Claims (1)

【特許請求の範囲】[Claims] 清酒醸造におけるようにアルコール発酵を主としだもろ
みの管理において発酵の進捗に伴って発生する炭酸ガス
、エチルアルコールガスの濃度あるいは生成量を分析計
で短時間に定時測定し、その測定値によりもろみの成分
を推定し、温度制御することによって発酵管Jlljを
行ない、正常な発酵を行なわせることを特徴とした清酒
醸造における発酵もろみの管理の方法。
In sake brewing, where alcoholic fermentation is the main ingredient, the concentration or production amount of carbon dioxide gas and ethyl alcohol gas generated as the fermentation progresses is periodically measured using an analyzer in a short period of time. 1. A method for managing fermentation mash in sake brewing, which comprises estimating the components of the fermentation tube and controlling the temperature to carry out normal fermentation.
JP59001880A 1984-01-11 1984-01-11 Method for controlling fermented unrefined sake in brewing refinded sake Pending JPS60149374A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59001880A JPS60149374A (en) 1984-01-11 1984-01-11 Method for controlling fermented unrefined sake in brewing refinded sake

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59001880A JPS60149374A (en) 1984-01-11 1984-01-11 Method for controlling fermented unrefined sake in brewing refinded sake

Publications (1)

Publication Number Publication Date
JPS60149374A true JPS60149374A (en) 1985-08-06

Family

ID=11513872

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59001880A Pending JPS60149374A (en) 1984-01-11 1984-01-11 Method for controlling fermented unrefined sake in brewing refinded sake

Country Status (1)

Country Link
JP (1) JPS60149374A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103740525A (en) * 2013-12-29 2014-04-23 山东景芝酒业股份有限公司 Stacking machine for fermented grains
CN103789133A (en) * 2014-01-15 2014-05-14 南京合进机电科技有限公司 Saccharifying equipment and method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5248197A (en) * 1975-10-13 1977-04-16 Kubota Seiki Kk Device for cutting waste straw and the like

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5248197A (en) * 1975-10-13 1977-04-16 Kubota Seiki Kk Device for cutting waste straw and the like

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103740525A (en) * 2013-12-29 2014-04-23 山东景芝酒业股份有限公司 Stacking machine for fermented grains
CN103789133A (en) * 2014-01-15 2014-05-14 南京合进机电科技有限公司 Saccharifying equipment and method

Similar Documents

Publication Publication Date Title
AU601393B2 (en) Solute concentration measurement apparatus
GB2329394B (en) Method for quantitation of microorganism contamination of liquids and apparatus therefor
US4720998A (en) Crude oil sampling system
Robillard et al. Improvements of methods for sparkling base wine foam measurements and effect of wine filtration on foam behavior
Austin et al. Studies of on‐line viable yeast biomass with a capacitance biomass monitor
DE102016109250A1 (en) Method for determining the concentration of at least one or more components in a multicomponent mixture
JPS60149374A (en) Method for controlling fermented unrefined sake in brewing refinded sake
Behrendt et al. Mass spectrometry: A tool for on-line monitoring of animal cell cultures
Van Hamersveld et al. Quantification of brewers' yeast flocculation in a stirred tank: Effect of physical parameters on flocculation
WO2002001220A2 (en) Method and equipment for monitoring syntrophic relations in a biological process fluid
AU658971B2 (en) Method for determining gas hold-up
US5854072A (en) Method and apparatus for determining product-specific quality parameters of a liquid
EP0905229B1 (en) Process and device to determine and control the physiologic condition of microbial cultures
CN109207354A (en) A kind of microbial fermentation production potential test device
JPH044096A (en) Method for controlling boundary of microorganism bed of upward current anaerobic treating tank for waste water
CN108645766A (en) Sludge settling ratio online auto monitoring device
Thatipamala et al. Spectrophotometric method for high biomass concentration measurements
Criddle et al. On-line determination of ethanol during fermentation processes using a fuel cell sensor
CN112522352A (en) Feeding method in neomycin sulfate fermentation production
CA1129324A (en) Device for detecting microorganisms
Corrieu et al. Computer-based fermentation process control
JPH01148940A (en) On-line measuring system for measuring concentration of alcohol of mash using liquified liquor as raw material
JPH11253149A (en) Methane fermentation controller and its control
CN209226975U (en) A kind of microbial fermentation production potential test device
Somers The relation between sludge volume index and sludge content in the activated sludge process