JPH044096A - Method for controlling boundary of microorganism bed of upward current anaerobic treating tank for waste water - Google Patents
Method for controlling boundary of microorganism bed of upward current anaerobic treating tank for waste waterInfo
- Publication number
- JPH044096A JPH044096A JP2104788A JP10478890A JPH044096A JP H044096 A JPH044096 A JP H044096A JP 2104788 A JP2104788 A JP 2104788A JP 10478890 A JP10478890 A JP 10478890A JP H044096 A JPH044096 A JP H044096A
- Authority
- JP
- Japan
- Prior art keywords
- interface
- granules
- treatment tank
- bed
- boundary
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 244000005700 microbiome Species 0.000 title claims abstract description 31
- 238000000034 method Methods 0.000 title claims description 30
- 239000002351 wastewater Substances 0.000 title claims description 15
- 239000008187 granular material Substances 0.000 claims abstract description 32
- 238000001514 detection method Methods 0.000 claims abstract description 15
- 239000010802 sludge Substances 0.000 claims description 32
- 230000000813 microbial effect Effects 0.000 claims description 27
- 239000002893 slag Substances 0.000 claims description 13
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 12
- 239000007788 liquid Substances 0.000 claims description 11
- 239000002245 particle Substances 0.000 claims description 9
- 238000000926 separation method Methods 0.000 claims description 8
- 238000004065 wastewater treatment Methods 0.000 claims description 6
- 230000003179 granulation Effects 0.000 claims description 2
- 238000005469 granulation Methods 0.000 claims description 2
- 238000004458 analytical method Methods 0.000 abstract description 8
- 238000005070 sampling Methods 0.000 abstract description 8
- 230000010355 oscillation Effects 0.000 abstract 2
- 238000007599 discharging Methods 0.000 abstract 1
- 239000000969 carrier Substances 0.000 description 4
- 239000000843 powder Substances 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 238000009280 upflow anaerobic sludge blanket technology Methods 0.000 description 3
- 230000001174 ascending effect Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 239000012530 fluid Substances 0.000 description 2
- 238000000691 measurement method Methods 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 238000005191 phase separation Methods 0.000 description 2
- 238000004064 recycling Methods 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 1
- 239000001888 Peptone Substances 0.000 description 1
- 108010080698 Peptones Proteins 0.000 description 1
- 229920002472 Starch Polymers 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000029087 digestion Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 235000013305 food Nutrition 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 239000008103 glucose Substances 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 239000010842 industrial wastewater Substances 0.000 description 1
- 230000031700 light absorption Effects 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 235000019319 peptone Nutrition 0.000 description 1
- 238000007142 ring opening reaction Methods 0.000 description 1
- 238000004062 sedimentation Methods 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 235000019698 starch Nutrition 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 235000000346 sugar Nutrition 0.000 description 1
- 150000008163 sugars Chemical class 0.000 description 1
- 230000008961 swelling Effects 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W10/00—Technologies for wastewater treatment
- Y02W10/10—Biological treatment of water, waste water, or sewage
Landscapes
- Measurement Of Levels Of Liquids Or Fluent Solid Materials (AREA)
- Biological Treatment Of Waste Water (AREA)
- Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明は、糖類、澱粉、アルコール蒸溜等の有機性濃度
の高い工業廃水中の有機物を嫌気的に効率よく分解処理
する廃水処理方法、特に上向流嫌気性スラッジブランケ
ット法(UASB法)の適正運転状況を維持する制御方
法に関する。Detailed Description of the Invention (Field of Industrial Application) The present invention relates to a wastewater treatment method for efficiently decomposing organic substances in industrial wastewater containing high organic concentrations such as sugars, starches, and distilled alcohol in an anaerobic manner. The present invention relates to a control method for maintaining proper operating conditions of an upflow anaerobic sludge blanket method (UASB method).
(従来の技術)
高濃度有機性廃水の嫌気性処理のため、処理槽中の廃水
の緩速上向流域中で種汚泥から出発して嫌気性微生物の
自己増殖粒状化によってペレット状グラニユールを形成
しグラニユールを上向流域の下層寄りに浮遊ブランゲッ
ト状に保持して嫌気性微生物の高濃度の生物床を形成さ
せて上向流廃水を接触処理する方法は、上向流嫌気性ス
ラッジブランケット法(UASB法)として知られてい
る。(Prior art) For anaerobic treatment of highly concentrated organic wastewater, starting from seed sludge in the slowly upward flow area of wastewater in a treatment tank, pelletized granules are formed by self-propagation of anaerobic microorganisms. The upflow anaerobic sludge blanket method is a method for contact treatment of upflow wastewater by holding granules in the form of a floating blanket near the lower layer of the upstream flow area to form a biological bed with a high concentration of anaerobic microorganisms. (UASB method).
この方法において種汚泥を投入して運転を開始した後の
時期に水砕スラグ等の比重2.0以上の無機性の粉状担
体を添加して嫌気性微生物のグラニユール化を促進する
嫌気性廃水処理方法を特膨平1−23350号に出願し
た。In this method, after seed sludge has been introduced and operation has started, an inorganic powder carrier with a specific gravity of 2.0 or more, such as granulated slag, is added to promote granulation of anaerobic microorganisms into anaerobic wastewater. The treatment method was filed in Japanese Patent Application No. 1-23350.
この水砕スラグの粉状担体を用いる上向流嫌気性廃水処
理方法においては処理槽内に沈降性のよいグラニユール
が膨張床状となって集っている微生物床とその上部にグ
ラニユールを含まない浮遊スラッジプランゲット層とさ
らにその上部に清澄化固液分離部の3域が形成される。In this upflow anaerobic wastewater treatment method using a powder carrier of granulated slag, there is a microbial bed in which granules with good sedimentation properties are gathered in an expanded bed shape in the treatment tank, and the upper part does not contain granules. Three regions are formed: a floating sludge plunget layer and a clarified solid-liquid separation section above it.
実際には下層からの発生ガスにより各層はゆるく撹拌さ
れガスは固体を同伴し、各層とも液体、固体および気体
の3相からなり各層の界面は明確には定まらない。In reality, each layer is gently agitated by the gas generated from the lower layer, and the gas is accompanied by the solid, and each layer consists of three phases: liquid, solid, and gas, and the interface between each layer is not clearly defined.
この処理方法は処理槽内になるべく多くのグラニユール
従って微生物量を保有させて処理すれば処理効率は上る
が、あまり多くなり過ぎてスラッジブランケットが固液
分離部の構造に入り込み過ぎると処理水質が急速に極度
に悪化する。従ってこの嫌気性処理では、処理槽内の嫌
気性微生物量を常に適正値に維持して運転することが重
要である。In this treatment method, treatment efficiency can be improved by retaining as many granules and therefore microorganisms as possible in the treatment tank, but if there are too many granules and the sludge blanket enters the structure of the solid-liquid separation section, the quality of the treated water will deteriorate rapidly. becomes extremely aggravated. Therefore, in this anaerobic treatment, it is important to always maintain the amount of anaerobic microorganisms in the treatment tank at an appropriate value.
この目的で従来は処理槽の横側に多数のサンプリング口
を列設し、各点で採取したサンプルの汚泥濃度を分析し
て微生物量を求めている。Conventionally, for this purpose, a large number of sampling ports are installed on the side of the treatment tank, and the sludge concentration of samples taken at each point is analyzed to determine the amount of microorganisms.
(発明が解決しようとする課題)
しかし従来技術のサンプリング口による汚泥量の積算方
式は、分析に手分析の煩しさがあり、時間がかかり、こ
れによって運転状況に即応した自動制御ができない。(Problems to be Solved by the Invention) However, in the prior art method of integrating the amount of sludge using a sampling port, analysis is cumbersome and time-consuming due to manual analysis, and as a result, automatic control that immediately responds to operating conditions cannot be performed.
また微生物量の把握のためにはグラニユール微生物量の
界面を検知するのが的確であり直接的でもあり、界面検
知計としては吸光による濁度測定方式、超音波、静電容
量方式など各種あるが、上向流嫌気性処理方法では、前
記のように各層の界面が明確に区分されず流動的である
ために、これら方法は固液分離部とスラッジブランケッ
ト層の界面の検知に適用できても、微生物量把握に重要
なグラニユール微生物床とスラッジプランゲット層との
界面の検知には適用困難で、境界の検知結果は不正確で
有意性を持たないことがある。In addition, in order to understand the amount of microorganisms, it is accurate and direct to detect the interface of the granule microorganism amount, and there are various interface detection meters such as turbidity measurement method using light absorption, ultrasonic wave, and capacitance method. In the upflow anaerobic treatment method, as mentioned above, the interface between each layer is not clearly separated and is fluid, so these methods can be applied to detect the interface between the solid-liquid separation section and the sludge blanket layer. However, it is difficult to apply to detecting the interface between the granule microbial bed and the sludge plunget layer, which is important for understanding the amount of microorganisms, and the detection results of the boundary may be inaccurate and insignificant.
本発明は、高濃度有機性廃水の上向流嫌気性処理方法に
よる処理槽内の処理状況を最適かつ順調に推移させる運
転制御のため、上記従来技術のサンプリング口による採
取試料の手分析の煩しさをなくして微生物床界面の検知
による測知結果が最も正しくて、それにより自動制御運
転を適切に実施可能とすることを解決課題とする。The present invention aims to achieve operational control that optimally and smoothly progresses the treatment status in a treatment tank using an upward flow anaerobic treatment method for high-concentration organic wastewater. The problem to be solved is to ensure that the measurement results obtained by detecting the microbial bed interface are the most accurate, and thereby enable automatic control operation to be carried out appropriately.
(課題を解決するための手段)
前記課題の解決のため、本発明においては、処理槽内の
微生物床を振動式の界面計で検知し、界面計と連動した
電動弁で自動的に排泥を行って微生物床界面の高さを常
に一定範囲内に保つよう制御する。(Means for Solving the Problems) In order to solve the above problems, the present invention detects the microbial bed in the treatment tank with a vibrating interface meter, and automatically removes sludge using an electric valve linked to the interface meter. The height of the microbial bed interface is controlled to always be within a certain range.
すなわち本発明の上向流嫌気性廃水処理槽における微生
物床界面の制御方法は、全体的構成としでは、高濃度有
機性廃水の嫌気性処理のため処理槽中の廃水の緩速上向
流域で種汚泥から出発して水砕スラグの粉状担体を添加
して嫌気性微生物の自己増殖粒状化によりペレット状グ
ラニユールを形成し、処理槽の上向流域の下層よりにグ
ラニユールか集った微生物床、中層にスラッジブランケ
ット槽、上層に汚泥、処理水、ガスの3相分離の固液分
離部を形成させる上向流嫌気性スラッジブランケット処
理法において、処理槽内の微生物床を振動式の界面計で
検知し、それに連動してグラニユールの排泥を行い微生
物床界面の高さを常に一定範囲内に保つことにより微生
物量を制御することを特徴とする。That is, the method for controlling the microbial bed interface in an upward flow anaerobic wastewater treatment tank of the present invention has an overall configuration in which the wastewater in the treatment tank is slowly upward flowed for anaerobic treatment of highly concentrated organic wastewater. Starting from seed sludge, a powdered carrier of granulated slag is added to form pellet-like granules through self-propagation of anaerobic microorganisms, and the granules are collected in the lower layer of the upper region of the treatment tank as a microbial bed. In the upflow anaerobic sludge blanket treatment method, which forms a sludge blanket tank in the middle layer and a solid-liquid separation section for three-phase separation of sludge, treated water, and gas in the upper layer, the microbial bed in the treatment tank is measured using a vibrating interface meter. The feature is that the amount of microorganisms is controlled by detecting the microorganisms and draining the granules in conjunction with the detection to keep the height of the microorganism bed interface within a certain range.
(作用)
一般に上向流嫌気性スラッジプランゲット法(UASB
法)ではスラッジブランケットは下層のグラニユール層
と明確な界面が生じ難いが、水砕スラグの粉状担体を添
加すると重くなったグラニユールの微生物床が下層に形
成され、これは膨張状態にあるが中層のグラニユールの
ないスラッジブランケット層との界面を示すようになる
。(Operation) Generally, the upflow anaerobic sludge plunget method (UASB
(method), the sludge blanket is difficult to form a clear interface with the underlying granule layer, but when a powdered carrier of water granulated slag is added, a microbial bed of heavier granules is formed in the lower layer, which is in an expanded state but does not form a clear interface with the middle layer. The interface with the sludge blanket layer without granules is shown.
振動式界面計の検出部を微生物床の予定界面の上位に設
置すると、一定周波数で振動している検出部が微生物床
によって拘束され振幅が減少するので、これを電気信号
として検知すれば微生物床の界面をかなり高い精度で常
時測定できる。When the detection part of the vibrating interface meter is installed above the planned interface of the microbial bed, the detection part, which vibrates at a constant frequency, is restrained by the microbial bed and the amplitude decreases, so if this is detected as an electrical signal, the microbial bed can be detected. interface can be constantly measured with fairly high accuracy.
この界面計と連動した電動弁で、グラニユールを自動的
に排泥することにより処理槽内に適正な微生物量が維持
される状態に常時保つことができる。By automatically draining the granules using an electric valve linked to this interface meter, it is possible to maintain an appropriate amount of microorganisms in the treatment tank at all times.
担体として添加する水砕スラグは粒径が0.02〜0゜
1nmの範囲が適切である1粒径が0.02niより小
さいとグラニユールの形成に3ケ月余も時間がかかり過
ぎ、形成されても不安定でグラニユールがこわれ界面が
はっきりしなくなる0粒径が0.1mmより大きいと高
い上向流速が必要となり、やはり運転状態が不安定にな
る。It is appropriate for the granulated slag added as a carrier to have a particle size in the range of 0.02 to 0.1 nm.If the particle size is smaller than 0.02 ni, it will take more than 3 months to form the granule, resulting in the formation of granules. If the particle size is larger than 0.1 mm, a high upward flow velocity is required, and the operating condition will also become unstable.
(実施例)
以下、本発明方法を実施例により一層具体的に説明する
。(Example) Hereinafter, the method of the present invention will be explained in more detail with reference to Examples.
■、実施方法、装置例
第1図は本発明方法を実施する装置の1例を示す。この
装置において、処理槽(1)の底部には原水ポンプ(2
)からの高濃度有機性廃水およびリサイクルポンプ(3
)からのリサイクル処理水が流入し均分数されて槽内を
緩速上向流する。(2) Implementation Method and Apparatus Example FIG. 1 shows an example of an apparatus for implementing the method of the present invention. In this device, a raw water pump (2) is installed at the bottom of the treatment tank (1).
) from highly concentrated organic wastewater and recycling pumps (3
) flows in, is divided into equal fractions, and flows slowly upward in the tank.
槽内では種汚泥から出発して水砕スラグの粉状担体を添
加して嫌気性微生物の自己増殖によりベレット状グラニ
ユールか形成され、処理槽(1)の上向流のもとに下層
にグラニユールの膨張層からなる微生物床(4)、中層
にスラッジブランケット槽(5)が分級形成される。下
層、中層での嫌気性微生物との接触により処理された処
理水はここでの発生ガスとともに上層に入るが、上層は
汚泥、処理水、ガスの3相分離の固液分離部(6)に構
成され、分離された処理水は上水位レベルから処理水(
7)に流出し、その一部は処理槽内の上昇流速の調整の
ため前記のようにリサイクルされ、ガスはガス系(8)
から放出される。In the tank, starting from seed sludge, a powdered carrier of granulated slag is added, and a pellet-shaped granule is formed by self-propagation of anaerobic microorganisms, and the granule is added to the lower layer under the upward flow of the treatment tank (1). A microorganism bed (4) consisting of an expanded layer is formed, and a sludge blanket tank (5) is formed in the middle layer. The treated water that has been treated by contact with anaerobic microorganisms in the lower and middle layers enters the upper layer together with the gas generated here, but the upper layer is transferred to the solid-liquid separation section (6) for three-phase separation of sludge, treated water, and gas. The separated treated water is transported from the upper water level to the treated water (
7), a part of which is recycled as described above to adjust the upward flow rate in the treatment tank, and the gas flows into the gas system (8).
released from.
本発明方法の実施のため、振動式の界面計(9)が設置
され、界面計の検出部のセンサ(10)はガイドバイブ
(11)内を通じて微生物床(4)の上位の位置に配置
され、その信号は界面計本体(12)で信号処理され操
作ライン(13)を介して排泥系(14)の電動弁(1
5)を操作するようになっている。In order to carry out the method of the present invention, a vibrating interface meter (9) is installed, and the sensor (10) of the detection section of the interface meter is placed above the microorganism bed (4) through the guide vibe (11). , the signal is processed by the interface meter body (12) and sent to the electric valve (1) of the sludge removal system (14) via the operation line (13).
5).
II 、実施例1
本発明の微生物床界面の制御方法の有効性を確認するた
め、粉状担体の水砕スラグの最適粒径を求める次のテス
トを実施した。II, Example 1 In order to confirm the effectiveness of the method for controlling the microbial bed interface of the present invention, the following test was conducted to determine the optimum particle size of the granulated slag of the powder carrier.
(II−1>テスト条件
テスト装置:内径100nv、液面高さ1 、0OOn
n、液保有量7.8!のカラムを処理
槽とした。(II-1>Test conditions Test device: inner diameter 100nv, liquid level height 1, 0OOn
n, liquid retention amount 7.8! The column was used as a treatment tank.
廃 水 :ペプトンおよびぶどう糖からなるTOD約
5.00011!J//の合成廃水。Waste water: TOD approximately 5.00011 consisting of peptone and glucose! J// synthetic wastewater.
粉状担体:高炉水砕スラグをミルで破砕後ふるい分けし
た次の3種類の粒径の
ものを供試した。Powdered carrier: The following three types of particle sizes obtained by crushing granulated blast furnace slag in a mill and sifting it were tested.
平均粒径: A:0.1ml、 B:0.04in、
C:0.0111添加量:処理槽容量平均で100.0
001g/)となるよう添加。Average particle size: A: 0.1ml, B: 0.04in,
C: 0.0111 Addition amount: Average treatment tank capacity 100.0
001g/).
上向流速: 0.5〜2.0m/hrの範囲で運転。Upward flow rate: Operate in the range of 0.5 to 2.0 m/hr.
(II−2>テスト結果
(II −2−1)グラニユールの形成担体AおよびB
の場合、2〜3ケ月で直径1111のグラニユールがで
きる。(II-2>Test results (II-2-1) Granule formation carriers A and B
In this case, granules with a diameter of 1111 can be produced in 2 to 3 months.
担体A、Bは多数集り、これが核となってグラニユール
を形成する。担体Cではグラニユールの形成が遅れる。A large number of carriers A and B gather together, and this serves as a core to form a granule. Support C retards the formation of granules.
(II−2−2)床膨張
2ケ月後に形成された微生物床の膨張状況を第2図に上
昇流速LV [i/hr]を横軸にとり膨張率を縦軸に
とって示す。(II-2-2) Bed expansion The state of expansion of the microbial bed formed after two months is shown in FIG. 2, with the ascending flow rate LV [i/hr] on the horizontal axis and the expansion rate on the vertical axis.
担体AおよびBを用いた床では[V・1.01/hrで
20〜30%膨脹してお膨張本発明により微生物床界面
の制御方法は適切に実施できた。The beds using carriers A and B expanded by 20 to 30% at a rate of [V·1.01/hr].The method for controlling the microbial bed interface according to the present invention could be appropriately implemented.
担体Cでは40%以上の膨脂率でやや流動状況にあり、
微生物の系外への流出の可能性が大きく本発明は困難で
あった。Carrier C has a swelling rate of 40% or more and is in a slightly fluid state.
The present invention was difficult because there was a large possibility that microorganisms would leak out of the system.
■、実施例2
本発明の振動式の界面計による微生物床界面の制御方法
の妥当性を従来のサンプリング口分析方法の結果と対比
して確認するテストを実施した。(2) Example 2 A test was conducted to confirm the validity of the method for controlling the microbial bed interface using the vibrating interface meter of the present invention by comparing it with the results of the conventional sampling port analysis method.
(III −1)実施条件
テスト装置:内径500n、塔高3550im、液保有
量600ノの槽を処理槽とした。(III-1) Implementation Conditions Test Apparatus: The treatment tank was a tank with an inner diameter of 500 nm, a tower height of 3550 mm, and a liquid holding capacity of 600 nm.
廃 水 二食品工場廃水(TOD=2,000〜4.
00011(J// )
粉状担# :平均粒径o、 osimの水砕スラグを1
00、 OOOng//添加。Wastewater Two food factory wastewater (TOD=2,000~4.
00011 (J//) Powder support #: 1 granulated slag with average particle size o, osim
00, OOOng//addition.
種汚泥 :嫌気性消化汚泥を3.0OO1(+//添加
。Seed sludge: Add 3.0OO1 (+//) of anaerobic digestion sludge.
上向流速 : LV= 0 、5〜2.0m/ hrで
運転。Upward flow rate: LV = 0, operated at 5-2.0 m/hr.
汚泥濃度 :処理槽の各高さに5ケ所すンブノ分析
リング口を設けvSS濃度を測定。Sludge concentration: sludge analysis at 5 locations at each height of the treatment tank
A ring opening is provided to measure the vSS concentration.
微生物、床:本発明により振動式界面計セン界面0検知
サを上部より吊り下げケーブル長さにより界面を検知
。Microorganisms, floor: Vibrating interface sensor according to the present invention detects the interface by suspending it from the top and detecting the interface by the length of the cable.
(III−2>実施経過
(III −2−1)本発明界面計法の精度第3図に運
転経過日数[週]を横軸にとり、微生物床界面高さ[m
]を縦軸にとって、本発明による振動式界面計センサに
よる計測結果(a)とサンプリング口サンプルのvSS
濃度測定により求めた結果(b)とを比較した。(III-2>Implementation progress (III-2-1) Accuracy of the interfacial measurement method of the present invention In Figure 3, the number of days [weeks] of operation elapsed is plotted on the horizontal axis, and the microbial bed interface height [m
] is taken as the vertical axis, and the measurement result (a) by the vibrating interface sensor according to the present invention and the vSS of the sampling port sample
The results were compared with the result (b) obtained by concentration measurement.
両者にあまり大きな差はみられず、本発明による微生物
床界面の検知結果の精度が高いことが確認された。There was no significant difference between the two, confirming that the detection results of the microbial bed interface according to the present invention are highly accurate.
(lll−2−2>検知濃度
水砕スラグを担体として形成されたグラニユールは微生
物の増殖に伴い微生物と担体との組成比率が変化する。(ll-2-2>Detection Concentration Granules formed using granulated slag as a carrier change the composition ratio of microorganisms and carrier as microorganisms multiply.
この比率をν53/SSで示せば、0.05から0,6
の間で変わり、組成変化に応じて界面計の応答濃度も変
化するが、特に界面計の感度調整をしなくても界面高さ
の検知は可能である。なお、第3図中の各週毎のvSS
濃度を示すと、それぞれ4,500.6,000.8,
500.9.500.12.000および13. O(
1(JIg/ /であった。If this ratio is expressed as ν53/SS, it is from 0.05 to 0.6
Although the response concentration of the interface meter changes depending on the composition change, it is possible to detect the interface height without particularly adjusting the sensitivity of the interface meter. In addition, vSS for each week in Figure 3
The concentration is 4,500.6,000.8, respectively.
500.9.500.12.000 and 13. O(
1 (JIg/ /).
(発明の効果)
以上のように本発明によると、嫌気性微生物グラニユー
ルの形成による上向流嫌気性廃水処理法において処理槽
内に維持される微生物床の界面をサンプリング口手分析
によらないで直ちに精度よく検知でき、検知結果に応じ
て過剰グラニユールを排泥する自動制御を行うことがで
き、適正処理状況の運転を継続することができる。(Effects of the Invention) As described above, according to the present invention, in an upflow anaerobic wastewater treatment method by forming anaerobic microbial granules, the interface of the microbial bed maintained in the treatment tank can be detected without sampling or manual analysis. Immediate and accurate detection is possible, and automatic control to remove excess granule can be performed according to the detection results, allowing continued operation under appropriate processing conditions.
第1図は本発明方法を実施する装置の1例を示す槽縦断
面図、第2図は横軸に上昇流速、縦軸に床膨張率をとり
、各種粒度の水砕スラグ担体の影響を示す図、第3図は
横軸に経過日数、縦軸に床高さをとり本発明による床界
面の検知結果をサンプリング口手分析で求めた結果と比
較して示す図である。
1・・・処理槽、2・・・原水ポンプ、3・・・リサイ
クルポンプ、4・・・微生物床、5・・・スラッジブラ
ンケット層、6・・・固液分離部、7・・・処理水系、
8・・・ガス系、9・・・振動式界面計、10・・・セ
ンサ、11・・・ガイドパイプ、12・・・界面計本体
、13・・・操作ライン、14・・・排泥系、15・・
・電動弁。
界面計本体
0.6 1.O
LV (m/hr)
第2図
経過日数(週)Fig. 1 is a vertical cross-sectional view of a tank showing an example of an apparatus for carrying out the method of the present invention, and Fig. 2 shows the ascending flow rate on the horizontal axis and the bed expansion coefficient on the vertical axis, and shows the influence of granulated slag carriers of various particle sizes. The diagram shown in FIG. 3 is a diagram showing the number of days elapsed on the horizontal axis and the floor height on the vertical axis, and shows the detection results of the floor interface according to the present invention in comparison with the results obtained by sampling technique analysis. DESCRIPTION OF SYMBOLS 1... Treatment tank, 2... Raw water pump, 3... Recycling pump, 4... Microbial bed, 5... Sludge blanket layer, 6... Solid-liquid separation section, 7... Treatment water system,
8... Gas system, 9... Vibrating interface meter, 10... Sensor, 11... Guide pipe, 12... Interface meter body, 13... Operation line, 14... Sludge removal Series, 15...
・Electric valve. Interface meter body 0.6 1. O LV (m/hr) Figure 2 Elapsed days (weeks)
Claims (2)
の廃水の緩速上向流域で種汚泥から出発して水砕スラグ
の粉状担体を添加して嫌気性微生物の自己増殖粒状化に
よりペレット状グラニュールを形成し、処理槽の上向流
域の下層寄りにグラニュールが集つた微生物床、中層に
スラッジブランケット層、上層に汚泥、処理水、ガスの
3相分離の固液分離部を形成させる上向流嫌気性スラッ
ジブランケット処理法において、処理槽内の微生物床を
振動式の界面計で検知し、それに連動してグラニュール
の排泥を行い、微生物床界面の高さを常に一定の範囲に
保つことにより微生物量を制御することを特徴とする上
向流嫌気性廃水処理槽における微生物床界面の制御方法
。(1) For anaerobic treatment of highly concentrated organic wastewater, anaerobic microorganisms self-propagate starting from seed sludge in the slowly upward flow area of the wastewater in the treatment tank and adding a powdered carrier of granulated slag. Pellet-like granules are formed by granulation, and the microbial bed where the granules gather in the lower layer of the upper flow of the treatment tank, the sludge blanket layer in the middle layer, and the solid-liquid separation in the upper layer of sludge, treated water, and gas. In the upflow anaerobic sludge blanket treatment method that forms a separation zone, the microbial bed in the treatment tank is detected by a vibrating interface meter, and the granules are drained in conjunction with the detection to determine the height of the microbial bed interface. 1. A method for controlling a microbial bed interface in an upflow anaerobic wastewater treatment tank, characterized by controlling the amount of microorganisms by always keeping the amount within a certain range.
て粒径が0.02〜0.1mmの水砕スラグを用いる前
記請求項第1項の上向流嫌気性廃水処理槽における微生
物床界面の制御方法。(2) The microbial bed in the upflow anaerobic wastewater treatment tank of claim 1, in which granulated slag with a particle size of 0.02 to 0.1 mm is used as the granular carrier to clarify the microbial bed interface. How to control the interface.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2104788A JPH044096A (en) | 1990-04-19 | 1990-04-19 | Method for controlling boundary of microorganism bed of upward current anaerobic treating tank for waste water |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2104788A JPH044096A (en) | 1990-04-19 | 1990-04-19 | Method for controlling boundary of microorganism bed of upward current anaerobic treating tank for waste water |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH044096A true JPH044096A (en) | 1992-01-08 |
Family
ID=14390203
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2104788A Pending JPH044096A (en) | 1990-04-19 | 1990-04-19 | Method for controlling boundary of microorganism bed of upward current anaerobic treating tank for waste water |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH044096A (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0619900U (en) * | 1992-08-06 | 1994-03-15 | 三菱化工機株式会社 | Upflow anaerobic treatment device |
KR20060019643A (en) * | 2004-08-28 | 2006-03-06 | 주식회사 세신청정 | Improvement of high rate anaerobic digestor to treat organic materials |
JP2009156867A (en) * | 2004-07-05 | 2009-07-16 | Heraeus Electro-Nite Internatl Nv | Method for determining vessel for molten metal, use and interface layer of vessel |
JP2009162696A (en) * | 2008-01-09 | 2009-07-23 | Sumitomo Heavy Industries Environment Co Ltd | Sludge interface detector |
JP2010042352A (en) * | 2008-08-12 | 2010-02-25 | Ebara Corp | Anaerobic treatment method and apparatus |
US20120006745A1 (en) * | 2009-12-30 | 2012-01-12 | Bp Corporation North America Inc. | Methods and Systems for Producing Granules of Biomass in the Treatment of Wastewater |
JP2016521365A (en) * | 2013-04-29 | 2016-07-21 | マイクロ モーション インコーポレイテッド | Boundary detection of sand separator |
JP2019155284A (en) * | 2018-03-13 | 2019-09-19 | 住友重機械エンバイロメント株式会社 | Solid/liquid separation apparatus |
JP2020528544A (en) * | 2017-10-26 | 2020-09-24 | エンヴァイロメント エナジー オーアンドエム インコーポレーテッドEnvironment Energy O&M Inc | Pressure density type water level measurement module |
-
1990
- 1990-04-19 JP JP2104788A patent/JPH044096A/en active Pending
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0619900U (en) * | 1992-08-06 | 1994-03-15 | 三菱化工機株式会社 | Upflow anaerobic treatment device |
JP2009156867A (en) * | 2004-07-05 | 2009-07-16 | Heraeus Electro-Nite Internatl Nv | Method for determining vessel for molten metal, use and interface layer of vessel |
US9829385B2 (en) | 2004-07-05 | 2017-11-28 | Heraeus Electro-Nite International N.V. | Container for molten metal, use of the container and method for determining an interface |
KR20060019643A (en) * | 2004-08-28 | 2006-03-06 | 주식회사 세신청정 | Improvement of high rate anaerobic digestor to treat organic materials |
JP2009162696A (en) * | 2008-01-09 | 2009-07-23 | Sumitomo Heavy Industries Environment Co Ltd | Sludge interface detector |
JP2010042352A (en) * | 2008-08-12 | 2010-02-25 | Ebara Corp | Anaerobic treatment method and apparatus |
US20120006745A1 (en) * | 2009-12-30 | 2012-01-12 | Bp Corporation North America Inc. | Methods and Systems for Producing Granules of Biomass in the Treatment of Wastewater |
JP2016521365A (en) * | 2013-04-29 | 2016-07-21 | マイクロ モーション インコーポレイテッド | Boundary detection of sand separator |
JP2018010000A (en) * | 2013-04-29 | 2018-01-18 | マイクロ モーション インコーポレイテッド | Boundary detection of sand separation device |
US10046252B2 (en) | 2013-04-29 | 2018-08-14 | Micro Motion, Inc. | Sand separator interface detection |
JP2020528544A (en) * | 2017-10-26 | 2020-09-24 | エンヴァイロメント エナジー オーアンドエム インコーポレーテッドEnvironment Energy O&M Inc | Pressure density type water level measurement module |
JP2019155284A (en) * | 2018-03-13 | 2019-09-19 | 住友重機械エンバイロメント株式会社 | Solid/liquid separation apparatus |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA2658909C (en) | Method of treating water by ballasted flocculation-sedimentation including continuous measurement of the ballast, and system corresponding thereto | |
US4632758A (en) | Anaerobic wastewater treatment system | |
US4273658A (en) | Thickener control process | |
US20080217249A1 (en) | Method and equipment for monitoring syntrophic relations in a biological process fluid | |
KR100432518B1 (en) | Waste water treatment system and method for carring out continuous denitrification and nitrification in a single active reaction tank by utilizing an apparatus for judging reaction step | |
Parks et al. | Water column methylmercury in the Wabigoon/English River–Lake System: factors controlling concentrations, speciation, and net production | |
US20100261266A1 (en) | Biological desulfurization apparatus | |
JPH044096A (en) | Method for controlling boundary of microorganism bed of upward current anaerobic treating tank for waste water | |
US4504393A (en) | Method and apparatus for controlling a rotating biological contactor | |
US4793930A (en) | Process for waste water purification employing the activated sludge process | |
Lin et al. | Treating high-turbidity water using full-scale floc blanket clarifiers | |
CN106596434A (en) | Water quality detecting system | |
CA1148282A (en) | Anaerobic filter | |
JPH039837Y2 (en) | ||
Herum | The effect of applied vacuum on the performance of the anaerobic sequencing batch reactor | |
CA1110787A (en) | Thickener control system | |
JPH11138189A (en) | Water cleaner | |
CA2305488C (en) | Method for controlling aeration systems of biological tanks treating waste water | |
CN109205952A (en) | A kind of water process purification system | |
CN211086070U (en) | Sulfide analysis system | |
CN210457612U (en) | Wastewater pretreatment equipment | |
KR20180027796A (en) | An Ultrasound Apparatus for Measuring an Interface Surface and a Method for Same | |
Pavoni et al. | Automation of Wastewater Treatment Systems | |
NL1002311C2 (en) | Method for predicting the result of a cleaning process. | |
Kuntschik | Optimization of surface water treatment by a special filtration technique |