JPS60148142A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS60148142A
JPS60148142A JP339584A JP339584A JPS60148142A JP S60148142 A JPS60148142 A JP S60148142A JP 339584 A JP339584 A JP 339584A JP 339584 A JP339584 A JP 339584A JP S60148142 A JPS60148142 A JP S60148142A
Authority
JP
Japan
Prior art keywords
substrate
implanted
film
mask
impurities
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP339584A
Other languages
Japanese (ja)
Inventor
Teruhide Koga
古賀 輝秀
Ryozo Nakayama
中山 良三
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP339584A priority Critical patent/JPS60148142A/en
Publication of JPS60148142A publication Critical patent/JPS60148142A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Element Separation (AREA)

Abstract

PURPOSE:To contrive to upgrade the element characteristics of a semiconductor device in a simple process by a method wherein, after an etching was performed on the substrate, low-concentration impurities are previously ion-implanted on the whole surface of the substrate and after a masking material was stayed remained in the recessed part of the substrate, high-concentration impurities are separately ion-implanted in the sidewall parts of the recessed part. CONSTITUTION:A thermal oxide film 2 and a polycrystalline silicon film 3 are formed on the whole surface of a semiconductor substrate 1, and after that, masking materials 4 are selectively formed. The substance 1 is performed an etching in such a way as to have a tapered angle using the masking materials 4 respectively as a mask. Impurities of the same conductive type as that of the substrate 1 are selectively ion-implanted in the whole surface using the polycrystalline silicon film 3 as a mask. After an insulating film 6 was deposited, a masking material 4' is formed. An etching is performed on the film 6 using NH4F. Impurities of the same conductive type as that of the substrate 1 are ion- implanted in sidewall parts 8 only using the polycrystalline film 3 as a mask. As a result, the generation of any parasitic channel can be prevented, because high-dose impurities have been already implanted in the corners.

Description

【発明の詳細な説明】 〔発明の属する技術的分野〕 本発明は半導体装置の製造方法に関する。[Detailed description of the invention] [Technical field to which the invention pertains] The present invention relates to a method for manufacturing a semiconductor device.

〔従来技術とその問題点〕[Prior art and its problems]

最近、半導体集積回路の高集積化、微細化が一段と進ん
でいる。そこで従来の選択酸化法(LOCO8)に代わ
シ、基板の素子分離領域をエツチングして凹部を形成し
、その凹部に絶縁膜を埋め込むという新しい素子分離法
(BOX法)が提案されている。
Recently, semiconductor integrated circuits have become increasingly highly integrated and miniaturized. Therefore, instead of the conventional selective oxidation method (LOCO8), a new element isolation method (BOX method) has been proposed in which the element isolation region of the substrate is etched to form a recess and an insulating film is buried in the recess.

従来BOX法は基板を熱酸化膜をマスクに基板をエツチ
ングした後、さらにそれをマスクに反転防止のだめの不
純物(P型基板の場合は、B+)を、イオン注入してい
たのだが、第1図(a)に示すように、これでは、基板
凹部の底部と側壁部に同じドーズ量でイオン注入されて
いる。
In the conventional BOX method, after etching the substrate using a thermal oxide film as a mask, ions of an impurity (B+ in the case of a P-type substrate) to prevent inversion were implanted using this as a mask. As shown in Figure (a), ions are implanted at the same dose into the bottom and sidewalls of the substrate recess.

これでは基板の底部の不純物ドーズ量が高く。This results in a high impurity dose at the bottom of the substrate.

これで素子を作シ動作させると空乏層の伸びが小さくな
シ、これにより寄生容量が大きくなり、素子の動作速度
が遅くなるばかヤでなく配線間の容量も大きくなる。
When the device is operated in this way, the depletion layer stretches only a little, which increases the parasitic capacitance, which not only slows down the device's operation speed, but also increases the capacitance between wirings.

ここでドーズ量を少なくしてイオン注入を行えばよいの
だが、従来法では、側壁部のドーズ量が低くなり、素子
特性が劣化する。特に素子間の耐圧が悪くなる。
At this point, ion implantation could be performed with a reduced dose, but in the conventional method, the dose at the sidewall portion becomes low, resulting in deterioration of device characteristics. In particular, the breakdown voltage between elements deteriorates.

〔発明の目的〕[Purpose of the invention]

この発明は、上述した従来法の問題点を改良したもので
簡単な工程で素子特性の向上を図るものである。
This invention improves the problems of the above-mentioned conventional method and aims to improve device characteristics through a simple process.

〔発明の概要〕[Summary of the invention]

本発明は、第1図(b)に示すように基板をエツチング
した後、あらかじめ低濃度の不純物を全面にイオン注入
し、さらに、基板凹部にマスク材を残置させたのち今度
は側壁部に高濃度の不純物をイオン注入するものである
In the present invention, after etching the substrate, as shown in FIG. 1(b), impurity ions of a low concentration are implanted into the entire surface in advance, a mask material is left in the recessed part of the substrate, and then a high concentration is etched into the side wall part. This method involves ion implantation of impurities at a high concentration.

〔発明の効果〕〔Effect of the invention〕

この発明によれば基板底部には、低濃度の不純物がイオ
ン注入され、側壁部には高濃度の不純物が入るため、空
乏層の延びによる寄生容量は減少しさらに、素子間の耐
圧も優れている。
According to this invention, low-concentration impurities are ion-implanted into the bottom of the substrate, and high-concentration impurities are implanted into the sidewalls, which reduces parasitic capacitance due to the extension of the depletion layer, and also provides excellent breakdown voltage between elements. There is.

〔発明の実施例〕[Embodiments of the invention]

本発明の一実施例を第2図(a)〜(f)を用いて説明
する。
An embodiment of the present invention will be described using FIGS. 2(a) to 2(f).

まず、たとえば主平面(ioo)のP型のSi基板(1
)を用意し全面に例えば熱酸化膜(2)をaoo 7y
程度形成した後その上に例えばポリシリコン(3)を3
000λ程度形成し、その上に写真蝕刻法を用いて選択
的にマスク材(4)を形成した後、反応性イオンエツチ
ング(RIE)を用いてポリシリコン(3)と熱酸化膜
(2)を選択的にエツチングする。
First, for example, a P-type Si substrate (1
) and apply a thermal oxide film (2) on the entire surface, for example, aoo 7y.
After forming a layer of polysilicon (3), for example, 3 layers of polysilicon (3)
After forming a mask material (4) selectively using photolithography, polysilicon (3) and thermal oxide film (2) are formed using reactive ion etching (RIE). Selective etching.

次にマスク材(4)をマスクとして、シリコン基板(1
)を例えば深さ0.6μm8度RIEによってテーパ角
を持つようにエツチングする。次にポリシリコン(3)
をマスクに全面に基板と同導電型の不純物、例えばボロ
ンを、例えばドーズft 1x 1o12/cI、加速
電圧35KeVで選択的にイオン注入し、第2図(b)
の形状を得る。次に絶縁膜例えばCVD−8i02 (
6)を7000A程度デポジットし先後その上に写真蝕
刻法を用いて、選択的にマスク材(4′)を形成する。
Next, using the mask material (4) as a mask, the silicon substrate (1
) is etched by RIE to a depth of 0.6 μm at 8 degrees so as to have a taper angle, for example. Next, polysilicon (3)
Using this as a mask, an impurity of the same conductivity type as the substrate, such as boron, is selectively ion-implanted onto the entire surface at a dose of ft 1x 1o12/cI and an acceleration voltage of 35 KeV, as shown in Fig. 2(b).
obtain the shape of Next, an insulating film such as CVD-8i02 (
6) is deposited at about 7000A, and then a mask material (4') is selectively formed thereon by photolithography.

次K NH4F ヲ用いて、CVD−8i02 (6)
をエツチングし第2図(d)のような型状を得る。次に
、ポリシリコン(3)をマスクに基板(1)と同導電型
の不純物例えばボロンを、例えば加速電圧50KeV 
、ドーズ量lX10’3/−で側壁部(8)のみにイオ
ン注入を行なう。次に平担化のだめの絶縁膜(9)たと
えばCVD −S i02を4oooi程度デポジット
した後平担化用のレジスト(9)を塗布した後、S i
02 (8)とレジスト(9)をRIEで同じエツチン
グレートの条件でエツチングを行ない第2図(f)のよ
うな形状を得る。
Next K Using NH4F, CVD-8i02 (6)
A mold shape as shown in FIG. 2(d) is obtained by etching. Next, using the polysilicon (3) as a mask, an impurity of the same conductivity type as the substrate (1), such as boron, is added at an acceleration voltage of, for example, 50 KeV.
, ion implantation is performed only into the side wall portion (8) at a dose of lX10'3/-. Next, deposit an insulating film (9) for planarization, for example, CVD-S i02, to about 400m, and then apply a resist (9) for planarization.
02 (8) and resist (9) are etched by RIE at the same etching rate to obtain a shape as shown in FIG. 2(f).

この方法によると、絶縁膜(6)を選択的に残置させる
ときに写真蝕刻工程が、通常のBOX工程よシも1回増
すが、マスク合せは容易で厳密な合せ精度は必要としな
い。
According to this method, when selectively leaving the insulating film (6), the photolithography process is increased by one step compared to the normal BOX process, but mask alignment is easy and strict alignment accuracy is not required.

また、従来問題であった基板底部の空乏層の延びによる
、寄生容量が減るのは基よシ、素子の動作速度が速くな
るばかシでなく基板と配線間の容量も減少する。さらに
St断差部のコーナでの電界集中による寄生チャネルの
発生を起こし素子特性の劣化があったがここでは、コー
ナーに高いドーズ量のボロンが打ち込んであるためこの
寄生チャネルの発生を防止することで素子特性の劣化を
防ぐことができる。
In addition, the parasitic capacitance due to the extension of the depletion layer at the bottom of the substrate, which has been a problem in the past, is reduced, and the operating speed of the device is not only increased, but also the capacitance between the substrate and wiring is reduced. Furthermore, parasitic channels were generated due to electric field concentration at the corners of the St difference section, resulting in deterioration of device characteristics. However, here, a high dose of boron is implanted into the corners, so the generation of parasitic channels can be prevented. This can prevent deterioration of device characteristics.

次に本発明の他の一実施例として自己整合的に基板凹に
マスク材を残置させる方法を第3図(a)〜(g)を用
いて説明する。
Next, as another embodiment of the present invention, a method of leaving a mask material in a recess of a substrate in a self-aligned manner will be described with reference to FIGS. 3(a) to 3(g).

まず第2図の実施例と同様の基板(11)を用意し、全
面に例えば熱酸化膜(12)を100(l程度形成した
後、例えばAA! (13)を300C1程度形成する
。次にその上に写真蝕刻法を用いて、マスク材(14)
を選択的に形成した後RIEを用いて/u (13)と
5i02(12)を選択的にエツチングする。次に八#
 (13)をマスクにシリコン基板(11)を、テーパ
角を持つように、深さ0.6μ程度エツチングする。次
にAJI (13)をマスクに反転防止のだめの不純物
、例えばボロンを加速電圧50KeV 、ドーズ量I 
X 1012/d程度イオン注入した後、全面に絶縁膜
例えばプラズマ5102(16)をデボし、例えばNH
4Fでエツチングすると。
First, a substrate (11) similar to the embodiment shown in FIG. 2 is prepared, and after forming, for example, a thermal oxide film (12) of about 100 (l) on the entire surface, for example, about 300 C1 of AA! (13) is formed.Next, On top of that, a mask material (14) is made using photolithography.
After selectively forming , /u (13) and 5i02 (12) are selectively etched using RIE. Next eight #
Using (13) as a mask, the silicon substrate (11) is etched to a depth of approximately 0.6 μm so as to have a taper angle. Next, using AJI (13) as a mask, an impurity to prevent inversion, such as boron, is added at an acceleration voltage of 50 KeV and a dose of I.
After ion implantation of about
When etching on the 4th floor.

第3図(d)に示すように、プラズマ5i02 (16
)がスライドエツチングされる。次にリフトオフ法によ
りAll (13)と同時にAffl(13)上のプラ
ズマ5iOz(16)を剥離すると、図(e)を得る。
As shown in FIG. 3(d), plasma 5i02 (16
) is slide etched. Next, the plasma 5iOz (16) on Affl (13) is removed at the same time as All (13) by the lift-off method to obtain Figure (e).

さらにこの状態で基板側壁部に、熱酸化膜(12)をマ
スクに基板と同導電型の不純物、例えばボロンを、ドー
ズ量I X 1013/! 。
Furthermore, in this state, an impurity of the same conductivity type as the substrate, such as boron, is applied to the side wall of the substrate using the thermal oxide film (12) as a mask at a dose of I x 1013/! .

加速電圧50KeVでイオン注入すれば基板側壁部のみ
に高濃度の反転防止領域(17)が形成される。次vc
絶絶縁何例エバCVD−8i02 (18) ヲ700
 OA 程lK形成した後、レジスト(19)で平担化
を行ない、全面エッチバックを行なえば、第3図(gl
に示すような形状が得られる。
If ions are implanted at an accelerating voltage of 50 KeV, a highly concentrated inversion prevention region (17) is formed only on the side wall of the substrate. next vc
Insulating insulation example Eva CVD-8i02 (18) 700
After forming the OA, planarize it with a resist (19) and etch back the entire surface, as shown in Figure 3 (gl
The shape shown in is obtained.

これによると前記実施例では1回のマスク合せが必要だ
ったのに対して、ここでは、自己整合的に基板凹部にマ
スク材(ここではプラズマ5i02)が形成されるため
工程が簡略化されるとともに、前記実施例と同様の効果
も得られる。
According to this, whereas in the above embodiment, one mask alignment was required, here, the mask material (here, plasma 5i02) is formed in the substrate recess in a self-aligned manner, which simplifies the process. At the same time, the same effects as in the embodiment described above can also be obtained.

第4図(a)に他の実施を示す。第3図(a)〜(g)
の実施例と同様な工程を行い第3図(e)の形状まで行
なう。ここでボロンをイオン注入する変わシにBSG(
ボロンを含むシリカガラス> (26)を形成した後9
50℃、30分の熱処理を加えると、BSG中のボロン
がシリコン基板側壁部に拡散して行き、高濃度のボロン
層(25)が形成される。これにより、IIJ実施例と
同様の効果が得られる。
Another implementation is shown in FIG. 4(a). Figure 3 (a) to (g)
The same steps as in the embodiment are carried out until the shape shown in FIG. 3(e) is obtained. Instead of implanting boron ions here, BSG (
After forming silica glass containing boron (26) 9
When heat treatment is performed at 50° C. for 30 minutes, boron in the BSG diffuses into the side wall of the silicon substrate, forming a highly concentrated boron layer (25). As a result, the same effects as in the IIJ embodiment can be obtained.

このBSGは除去しても良い。除去した場合は新たな絶
縁膜を埋め込む。BSG等の不純物を含む膜は、不純物
を含まない膜よ)もN1(4F等に対して、数倍速くエ
ツチングされる。この拡散法を用いるものでは凹部は必
ずしもテーパーを持つ必要はない。
This BSG may be removed. If removed, a new insulating film is buried. A film containing impurities such as BSG (as opposed to a film containing no impurities) is etched several times faster than N1 (4F, etc.). In a film using this diffusion method, the recesses do not necessarily need to have a taper.

又、第2図、第3図において例えばボロンのドーズ量は
、底部はi x 10”/ad以上で、2回目もI X
 10”/cac上あれば良く、最適値はそれぞれ5〜
30 X 10”/dと1〜30 X 10”/iの範
囲を用いると良い。
In addition, in FIGS. 2 and 3, for example, the dose of boron is more than i x 10"/ad at the bottom, and I x
It is sufficient if it is above 10”/cac, and the optimal value is 5 to 5 for each.
It is preferable to use a range of 30 x 10"/d and 1 to 30 x 10"/i.

加速電圧は第1の被膜のイオンの阻止能力にょシ選べば
良く、例えばSi基基板へ、例えばボロンの特約100
〜20011の範囲が良い。又、他の不純物、例えば、
P 、 As等九ついても同様である。
The accelerating voltage may be selected depending on the ion blocking ability of the first film.
A range of ~20011 is good. Also, other impurities, such as
The same applies to P, As, etc.

ここで基板凹部に選択的にマスク材を形成するのに絶縁
物を用いたが、反転防止の不純物のイオン注のマスクに
なるものであれば何でもよい。たとえばスパッタ法の8
i02 、8iN等である。さらに基板はn型の基板で
も同様の効果が得られ、MOSトランジスタをはじめ、
パイポー5 Tr 、 0MO8。
Here, an insulator was used to selectively form the mask material in the recessed portions of the substrate, but any material may be used as long as it serves as a mask for implanting impurity ions to prevent reversal. For example, sputtering method 8
i02, 8iN, etc. Furthermore, the same effect can be obtained even if the substrate is an n-type substrate, such as MOS transistors, etc.
Paipo 5 Tr, 0MO8.

SOS基板にも応用出来る。It can also be applied to SOS boards.

更に側壁への不純物導入後、凹部の第2の被膜を除去し
、新たに絶縁膜で厚く基板全面を被覆して、上記埋込み
法にょシこの絶縁膜を埋込んで素子分離絶縁膜を形成す
るようにしても良い。
Furthermore, after introducing impurities into the sidewalls, the second film in the recesses is removed, the entire surface of the substrate is thickly covered with a new insulating film, and this insulating film is buried using the above-mentioned embedding method to form an element isolation insulating film. You can do it like this.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)は従来法による反転防止不純物のイオン注
入法を示す断面図、第1図(b)は本発明を説明する為
の断面図、第2図(a)〜(f)は本発明の一実施例の
断面図、第3図fa)〜(g)及び第4図は自己整合法
を用いた一実施例の断面図である。 図において、 1.11・・・シリコン基板、2,12・・・熱酸化膜
、3・・・ポリシリコン、4.4’、9,14.19・
・ルジスト、5,15・・・不純物低濃度領域、6,8
.18− cvD−sio2.7・・・不純物高濃度領
域、16・・・プラズマ5i02.13・・・0 代理人 弁理士 則近憲佑 (他1名)第 1 図 第 3 図 ↓(↓JJJ# s
FIG. 1(a) is a cross-sectional view showing a conventional ion implantation method of anti-inversion impurities, FIG. 1(b) is a cross-sectional view for explaining the present invention, and FIGS. 2(a) to (f) are 3fa) to (g) and FIG. 4 are cross-sectional views of an embodiment of the present invention using the self-alignment method. In the figure, 1.11...Silicon substrate, 2,12...Thermal oxide film, 3...Polysilicon, 4.4', 9,14.19.
・Lugist, 5, 15...Low impurity concentration region, 6, 8
.. 18- cvD-sio2.7... Impurity high concentration region, 16... Plasma 5i02.13...0 Agent Patent attorney Kensuke Norichika (and 1 other person) Figure 1 Figure 3 Figure ↓ (↓JJJ #s

Claims (1)

【特許請求の範囲】[Claims] 半導体基板に第1の被膜を選択的に形成する工程と、こ
の第1の被膜をマスクに半導体基板をエツチングして凹
部を形成する工程と、前記第1の被膜をマスクに基板と
同導電型の不純物をイオン注入する工程と、前記第2の
被膜を基板凹部に、少なくとも側壁上部を残して選択的
に設ける工程と、前記第1及び第2の被膜をマスクにし
て基板と同導電型の不純物を基板凹部側壁に導入する工
程とを具備してなることを特徴とする半導体装置の製造
方法。
a step of selectively forming a first film on a semiconductor substrate; a step of etching the semiconductor substrate using the first film as a mask to form a recess; and a step of etching the semiconductor substrate with the same conductivity type as the substrate using the first film as a mask. ion-implanting an impurity of the same conductivity type as the substrate; a step of selectively providing the second coating in the recessed portion of the substrate, leaving at least the upper part of the sidewall; and using the first and second coatings as masks, 1. A method of manufacturing a semiconductor device, comprising the step of introducing an impurity into a side wall of a recessed portion of a substrate.
JP339584A 1984-01-13 1984-01-13 Manufacture of semiconductor device Pending JPS60148142A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP339584A JPS60148142A (en) 1984-01-13 1984-01-13 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP339584A JPS60148142A (en) 1984-01-13 1984-01-13 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPS60148142A true JPS60148142A (en) 1985-08-05

Family

ID=11556170

Family Applications (1)

Application Number Title Priority Date Filing Date
JP339584A Pending JPS60148142A (en) 1984-01-13 1984-01-13 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS60148142A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100678645B1 (en) 2006-01-13 2007-02-06 삼성전자주식회사 Semiconductor device and fabrication method for the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100678645B1 (en) 2006-01-13 2007-02-06 삼성전자주식회사 Semiconductor device and fabrication method for the same

Similar Documents

Publication Publication Date Title
US4925805A (en) Method of manufacturing a semiconductor device having an SOI structure using selectable etching
US4578128A (en) Process for forming retrograde dopant distributions utilizing simultaneous outdiffusion of dopants
US4385947A (en) Method for fabricating CMOS in P substrate with single guard ring using local oxidation
US4729964A (en) Method of forming twin doped regions of the same depth by high energy implant
US4178191A (en) Process of making a planar MOS silicon-on-insulating substrate device
EP1470582B1 (en) Reduction of negative bias temperature instability in narrow width pmos using f2 implantation
EP0276292B1 (en) Process for fabricating stacked mos structures
US4488348A (en) Method for making a self-aligned vertically stacked gate MOS device
US6774016B2 (en) Silicon-on-insulator (SOI) substrate and method for manufacturing the same
JPS626671B2 (en)
JPH11191597A (en) Semiconductor device
JPS6318346B2 (en)
JPH03152954A (en) Formation of electric field separation construction and gate construction in integrated misfet device
EP0126292A1 (en) Semiconductor device having an element isolation layer and method of manufacturing the same
JPH0298143A (en) Manufacture of ldd structure polysilicon thin film transistor
JPS60148142A (en) Manufacture of semiconductor device
JPS62285468A (en) Manufacture of ldd field-effect transistor
JPH0423329A (en) Manufacture of semiconductor device
JPS59161870A (en) Manufacture of semiconductor device
JPS58200554A (en) Manufacture of semiconductor device
JPS5846648A (en) Manufacture of semiconductor device
EP0453070B1 (en) Method of manufacturing an intelligent power semiconductor device
JPH0472770A (en) Manufacture of semiconductor device
JP2830267B2 (en) Method for manufacturing semiconductor device
JPS6039868A (en) Manufacture of semiconductor device