JPS60148115A - Reducingly projecting exposure device - Google Patents

Reducingly projecting exposure device

Info

Publication number
JPS60148115A
JPS60148115A JP59004317A JP431784A JPS60148115A JP S60148115 A JPS60148115 A JP S60148115A JP 59004317 A JP59004317 A JP 59004317A JP 431784 A JP431784 A JP 431784A JP S60148115 A JPS60148115 A JP S60148115A
Authority
JP
Japan
Prior art keywords
exposure
lens
semiconductor substrate
projection lens
mask
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59004317A
Other languages
Japanese (ja)
Inventor
Hiromi Yamashita
山下 裕已
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP59004317A priority Critical patent/JPS60148115A/en
Publication of JPS60148115A publication Critical patent/JPS60148115A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70241Optical aspects of refractive lens systems, i.e. comprising only refractive elements

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

PURPOSE:To check fluctuation of resolving power of a reducingly projecting exposure device by a method wherein the intervals between a reducingly projecting lens, a semiconductor substrate and an exposure mask are corrected corresponding to the variation of the focal distance of the lens thereof. CONSTITUTION:An exposure device is constructed of an exposure mask 1, a semiconductor substrate 2, a projecting lens 3, an automatically focus detecting mechanism 5, a focal position setting mechanism 6, a piezoelectric device 9, etc. Light transmitted through the mask 1 is projected to the substrate 2 transmitting through the lens 3. At this time, light makes the temperature of the lens 3 itself to rise to change the focal position thereof. A computer 11 drives a lens barrel 4 and the device 9 according to the rate of opening and closing of a shutter, the measured value of an average illuminance measuring instrument 8 and feedback from the mechanism 8 to correct fluctuation of the focal distance.

Description

【発明の詳細な説明】 本発明は、縮小投影露光装置に関する。[Detailed description of the invention] The present invention relates to a reduction projection exposure apparatus.

最近の超尚集積度半導体テバイスにおいては。In recent ultra-high-density semiconductor devices.

デバイス設計より装束される素子パターンの最小寸法及
び再現精度は、極めて厳しいものとなってきており、こ
れを実現し得る路光装置としては。
The minimum dimensions and reproducibility of element patterns required for device design have become extremely strict, and a light path device that can achieve this has become extremely strict.

縮小投影式露光装置が一般的となってきている。Reduction projection type exposure apparatuses are becoming common.

これに対応して縮小投影式露光装置も量産に適応する上
で欠点とされ゛るスループットを改善すべく諸々の対米
が立案され実施されつつある。この対米の主なものとし
ては、投影レンズ系の大口径化による解像力を維持もし
くは同上させつつ、投影稲光し得る面積の拡大化であυ
、ま′fc、 =光照明系の照度の同上による露光時間
の短縮化等である。
In response to this, various plans are being developed and implemented for the reduction projection type exposure apparatus in the United States in order to improve throughput, which is considered to be a drawback in adapting to mass production. The main objective for the US is to increase the area that can be projected by lightning while maintaining or increasing the resolution by increasing the diameter of the projection lens system.
, ma'fc, = shortening of exposure time due to the same illuminance of the optical illumination system.

ところで、投影レンズ系のレンズそのものの透過率は将
来にわたりて飛躍的に改善し得る見通しはたりておらず
、90%前後が限界とされている。
By the way, there is no prospect that the transmittance of the lens itself of a projection lens system will be dramatically improved in the future, and the transmittance is said to be around 90%.

逆に言えば10%前後の露光エネルギーは投影レンズ系
にa収され、熱となってレンズそのもVを変形させる要
因として残り得るとともに、前記高スルーグ、ト化の諸
対束により、この問題は量産使用上益々重要なものとな
ろう・ 本発明は、上述の問題、すなわち、露光エネルギーによ
って及はされる投影レンズに対する熱の影響によシ生ず
る焦点距離の変動に対応して半導体基板への露光を施こ
す際の焦点位置の補正、及び倍率の補正を自動的に為し
得ることにょシ、牛導体集積回路等の良品率を同上させ
るとともに、生産し侍る半導体デバイスの最小寸法tさ
らに微細化し得るといった絞首そのも(/、1(/J実
用性能の同上を計9得る機能を具備する縮小投影式露光
装置を礎供することを目的とする・ 本発明は、前述の如く露光マスクに描かれた像をホトレ
ジストを被覆した半導体基板上に露光転写する縮小投影
式露光装置において%露光マスク、上の素子パターンの
露光の際に照射される路光エネルギーによ)生ずる投影
レンズの焦点距離の変動に対応して、露光マスクと投影
レンズ、投影レンズと半導体基板との各間隔を補正し倍
率及び解像力を維持する機能を具備する縮小投影式露光
装置である。すなわち不発明は1露光マスクとホトレジ
スト全被榎した半導体基板とを位置合わせして露光を施
こす際、該露光マスク上の素子パターン(集積回路等の
パターン)を該半導体基板上へ投影露光する縮小投影レ
ンズの露光用紫外線照射による熱吸収によって生ずる経
済的な焦点距離の変動に対応させて自動的に縮小投影レ
ンズと該半導体基板との間隔及び該縮小投影レンズと該
露光マスクとの間隔を制御することにより、該半4坏奉
板を常に投影される該無光マスク上の素子パターンの投
影像の焦点位置に維持するとともに投影倍率も維持し常
に良好な素子パターン像t−得ることを可能とし、不装
置を用いて生産される半導体集積回路等の良品率全同上
させるとともに、生座し得る半導体集積回路等のパター
ンをさらに微細化し得るといった装置そのものの実用性
能の同上を画シ得る縮小投影式露光装置である。
Conversely, around 10% of the exposure energy is absorbed into the projection lens system, becomes heat, and remains a factor that deforms the lens itself. will become increasingly important for mass production use. The present invention addresses the above-mentioned problem, namely the variation in focal length caused by the thermal influence on the projection lens exerted by the exposure energy. By being able to automatically correct the focal position and magnification during exposure, it not only increases the yield rate of conductor integrated circuits, etc., but also increases the minimum size of semiconductor devices that can be produced. It is an object of the present invention to provide a reduction projection type exposure apparatus having a function of obtaining a total of 9 of the same practical performance as that of the above-mentioned strangles that can be miniaturized. In a reduction projection type exposure device that exposes and transfers a drawn image onto a semiconductor substrate coated with photoresist, the focal length of the projection lens is caused by the path light energy irradiated during exposure of the element pattern on the % exposure mask. This is a reduction projection type exposure apparatus that has a function of correcting the distances between the exposure mask and the projection lens and between the projection lens and the semiconductor substrate in response to fluctuations in the exposure mask and the projection lens and the semiconductor substrate to maintain magnification and resolution. When aligning and exposing the semiconductor substrate on which the entire photoresist has been applied, the exposure ultraviolet rays of the reduction projection lens are used to project and expose the element pattern (pattern of an integrated circuit, etc.) on the exposure mask onto the semiconductor substrate. By automatically controlling the distance between the reduction projection lens and the semiconductor substrate and the distance between the reduction projection lens and the exposure mask in response to changes in the economical focal length caused by heat absorption due to irradiation, 4. It is possible to always maintain the projection plate at the focal position of the projected image of the element pattern on the lightless mask and maintain the projection magnification, thereby making it possible to always obtain a good element pattern image, and using no equipment. This is a reduction projection type exposure device that can improve the practical performance of the device itself by increasing the quality of the semiconductor integrated circuits, etc. produced in the same manner as in production, as well as further miniaturizing the patterns of semiconductor integrated circuits, etc. that can be produced. .

以下1本発明の一実施例を図面を参照して詳細に説明す
る。第1図は、不発明の詳細な説明図である6図中、l
は露光マスク、2は半導体基板。
Hereinafter, one embodiment of the present invention will be described in detail with reference to the drawings. Figure 1 is a detailed explanatory diagram of non-invention in Figure 6.
is an exposure mask, and 2 is a semiconductor substrate.

3は投影レンズ、4は鏡筒、5は自動焦点検出機構、6
は焦点位置設置機構、7はX、Y移動ステージ、8は平
均照度測足器、9はピエゾ素子%10は露光マスク保持
機構、11はコンピュータ、12は端末を各々示すもの
とする。
3 is a projection lens, 4 is a lens barrel, 5 is an automatic focus detection mechanism, 6
7 is a focal position setting mechanism, 7 is an X and Y moving stage, 8 is an average illumination meter, 9 is a piezo element, 10 is an exposure mask holding mechanism, 11 is a computer, and 12 is a terminal.

まず、露光エネルギー照射によって投影レンズに生ずる
熱の影4について説明する。まず露光マスク1を透過し
た光は投影レンズ3を透過して半導体基板に照射される
わけであるが、この光の一部は投影レンズに吸収され投
影レンズ自身の温度を上昇させる。この平衡に達する温
度は単位時間に照射される露光エネルギーに比例し温度
上昇率(時厘数)は投影レンズにより一部である。また
焦点位置の変化量及び倍率の変化量は温度の関数であシ
、これも投影レンズによって実験的にめられるものであ
る0以上、路光マスク1を設置した状態での投影レンズ
に照射される露光光の投影面積当りの平均照度、及び単
位時間に露光光が照射されている割合(シャ、ター開の
時間比)の値及び経済的な変化率を管理することによシ
、上記関数よりその時点における熱の影響による焦点位
置の変化量、及び倍率の変JIS量は推定し得るものと
なる。
First, the heat shadow 4 produced on the projection lens by exposure energy irradiation will be explained. First, the light that has passed through the exposure mask 1 passes through the projection lens 3 and is irradiated onto the semiconductor substrate, but a part of this light is absorbed by the projection lens and increases the temperature of the projection lens itself. The temperature at which this equilibrium is reached is proportional to the exposure energy irradiated per unit time, and the rate of temperature rise (in hours) is partially due to the projection lens. In addition, the amount of change in the focal position and the amount of change in magnification are functions of temperature, and these are also experimentally determined by the projection lens. By managing the average illuminance per projected area of exposure light, the ratio of exposure light per unit time (time ratio of shutter open and shutter open), and the economic rate of change, the above function can be adjusted. Therefore, the amount of change in the focal point position and the JIS amount of change in magnification due to the influence of heat at that point can be estimated.

本縮小投影弐繕光装置における路光の手順は。What is the procedure for the path light in this reduction projection double viewing device?

まず通常の場合と同様露光マスク1を露光マスク保持機
構10にセットする0次にコンビ、−夕11の指示に従
ってX、Y移動ステージ7が移動し。
First, as in the normal case, the exposure mask 1 is set in the exposure mask holding mechanism 10, and the X and Y moving stage 7 is moved according to the instructions from the combination 11.

平均照度測足器8を露光マスク1のパターン像の投影さ
れる位置に移動し、投影像の平均照度を測足しコンピュ
ータに出力される0次に造営の場合と同様半導体基板2
がX、Y$動ステージに供給され露光を開始するわけで
あるが、シャッターの開閉はコンビ、−夕11により認
識されておシ。
The average illuminance meter 8 is moved to the position where the pattern image of the exposure mask 1 is projected, and the average illuminance of the projected image is measured and output to the computer.Similarly to the case of construction of the semiconductor substrate 2
is supplied to the X and Y moving stages to start exposure, but the opening and closing of the shutter is recognized by the combination 11.

単位時間のシャッター開閉の割合及びこの変遷はコンピ
ュータに記憶される。これらのテークにもとづきコンピ
ュータllj実検的に得られた関数よシ倍率の変化量を
算出し、これに相当する投影レンズ3と露光マスク1と
の間隔の変化をピエゾ素子9等を用いて与え、この倍率
変化を補正する。
The ratio of opening and closing of the shutter per unit time and its changes are stored in the computer. Based on these calculations, the amount of change in the magnification is calculated from the function obtained through actual tests on the computer, and the corresponding change in the distance between the projection lens 3 and the exposure mask 1 is given using a piezo element 9, etc. , to compensate for this magnification change.

また同様に焦点位置の変化量も算出され、これに倍率補
正により生じた焦点位置の変化量を加算して、焦点位置
設置機構6に出力される。これにより設置された焦点位
置へ自動焦点検出機構5からのフィード・パックによ仄
鏡筒4が上下し新らたに設置された投影レンズ3と半導
体基板2との間隔全維持する。同様に以上を繰返えすこ
とにより。
Similarly, the amount of change in the focal position is also calculated, the amount of change in the focal position caused by the magnification correction is added to this, and the result is output to the focal position setting mechanism 6. As a result, the lens barrel 4 is moved up and down by the feed pack from the automatic focus detection mechanism 5 to the installed focal position, thereby maintaining the entire distance between the newly installed projection lens 3 and the semiconductor substrate 2. By repeating the above in the same way.

投−欅のfif率を維持するとともに半導体基板を路光
する際常に適正な焦点位置に半導体基板を維持しつつ路
光することが可能となる。
It becomes possible to maintain the fif ratio of the projection and to always maintain the semiconductor substrate at a proper focal position when passing the light through the semiconductor substrate.

以上の様に本発明により量産使用上り皇大な問題である
路光エネルギーの投影レンズにおける吸収によって生ず
る経済的な投影像の倍率の変動や焦点位置の変岬より生
ずる解像力の変wJt−補正することが可能とな9、本
装置を用いて生産される半導体素子の良品率を地固的に
同上させるとともに生産し得る半導体デバイスのパター
ン金さらに微細化しイせる。また本発明により路光照度
同上によるスルー・プツト改善対策を進める上での最も
大きな問題を屏決し得ることが可能となった。従って、
不発明の実用上の効果は極めて大きい。
As described above, according to the present invention, the variation in magnification of the projected image caused by the absorption of path light energy in the projection lens, which is a huge problem in mass production, and the variation in resolution caused by the variation in the focal position wJt-corrected. 9, it is possible to substantially improve the yield rate of semiconductor devices produced using this apparatus, and also to further miniaturize the pattern metal of the semiconductor devices that can be produced. Furthermore, the present invention has made it possible to solve the most serious problem in implementing measures to improve throughput due to path light illuminance. Therefore,
The practical effects of non-invention are extremely large.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の詳細な説明する図である。 尚1図中、1・・・・・・路光マスク、2・・・・・・
半導体基板、3・・・・・・投影レンズ、4・・・・・
・鏡筒、5・・・・・・自動焦点検出機構、6・・・・
・・焦点付lii設定機構、7・・・・・・X、Y移動
ステージ、8・・・・・・平均照度測足器、9・・・・
・ピエゾ素子、10・・・・・・露光マスク保持機構。 11・・・・・・コンピュータ、12・山・・端末、で
ある。
FIG. 1 is a diagram illustrating the present invention in detail. In Figure 1, 1... Path light mask, 2...
Semiconductor substrate, 3... Projection lens, 4...
・Lens barrel, 5... Automatic focus detection mechanism, 6...
・・Lii setting mechanism with focus, 7 ・・・X, Y moving stage, 8 ・・・average illuminance meter, 9 ・・・
・Piezo element, 10... Exposure mask holding mechanism. 11...Computer, 12. Mountain...Terminal.

Claims (1)

【特許請求の範囲】[Claims] 露光マスクとホトレジストを被榎した半導体基板とを位
置合わせして露光を施こす縮小投影式露光装置において
、該無光マスク上の素子パターンを該半導体基板へ投影
する縮小投影レンズの熱吸収による焦点距離の変動に対
応して自動的に該縮小投影レンズと該半4体基板との間
隔及び該縮小投影レンズと該露光マスクとの間隔を補正
BJ能な手段を具備したことを特許とする縮小投影式露
光装置。
In a reduction projection type exposure apparatus that performs exposure by aligning an exposure mask and a semiconductor substrate coated with photoresist, a focus is created by heat absorption of a reduction projection lens that projects the element pattern on the non-light mask onto the semiconductor substrate. A patented reduction device comprising a BJ capable of automatically correcting the distance between the reduction projection lens and the semi-quadram substrate and the distance between the reduction projection lens and the exposure mask in response to changes in distance. Projection exposure equipment.
JP59004317A 1984-01-13 1984-01-13 Reducingly projecting exposure device Pending JPS60148115A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59004317A JPS60148115A (en) 1984-01-13 1984-01-13 Reducingly projecting exposure device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59004317A JPS60148115A (en) 1984-01-13 1984-01-13 Reducingly projecting exposure device

Publications (1)

Publication Number Publication Date
JPS60148115A true JPS60148115A (en) 1985-08-05

Family

ID=11581093

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59004317A Pending JPS60148115A (en) 1984-01-13 1984-01-13 Reducingly projecting exposure device

Country Status (1)

Country Link
JP (1) JPS60148115A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62241329A (en) * 1986-04-11 1987-10-22 Nec Kyushu Ltd Reduction stepper
EP0689099A1 (en) * 1994-06-24 1995-12-27 Canon Kabushiki Kaisha Projection exposure apparatus and device manufacturing method using the same
JP2014511011A (en) * 2011-03-31 2014-05-01 サイマー リミテッド ライアビリティ カンパニー System and method for compensating for the thermal effects of an EUV light source

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62241329A (en) * 1986-04-11 1987-10-22 Nec Kyushu Ltd Reduction stepper
EP0689099A1 (en) * 1994-06-24 1995-12-27 Canon Kabushiki Kaisha Projection exposure apparatus and device manufacturing method using the same
US5925887A (en) * 1994-06-24 1999-07-20 Canon Kabushiki Kaisha Projection exposure apparatus including an optical characteristic detector for detecting a change in optical characteristic of a projection optical system and device manufacturing method using the same
JP2014511011A (en) * 2011-03-31 2014-05-01 サイマー リミテッド ライアビリティ カンパニー System and method for compensating for the thermal effects of an EUV light source

Similar Documents

Publication Publication Date Title
JP2893778B2 (en) Exposure equipment
JP3395280B2 (en) Projection exposure apparatus and method
US4666273A (en) Automatic magnification correcting system in a projection optical apparatus
WO1998059364A1 (en) Projection aligner, method of manufacturing the aligner, method of exposure using the aligner, and method of manufacturing circuit devices by using the aligner
JPH0869963A (en) Projection aligner and device manufacturing method using the same
JPH09148216A (en) Method of exposure control
JP3262039B2 (en) Exposure apparatus and device manufacturing method using the same
JP2765422B2 (en) Exposure apparatus and method for manufacturing semiconductor device using the same
US6124064A (en) Light exposure controlling method
JPS60148115A (en) Reducingly projecting exposure device
JP2503451B2 (en) Projection exposure method and apparatus
JP2828226B2 (en) Projection exposure apparatus and method
JP2705609B2 (en) Exposure apparatus and exposure method
JP2849944B2 (en) Exposure apparatus, energy control apparatus, and semiconductor element manufacturing method
US4982226A (en) Exposure device
JP2001284236A (en) Projection exposure system and exposure method
US4713675A (en) Exposure apparatus
JP3265531B2 (en) Integrated circuit manufacturing method, wafer on which pattern for integrated circuit is formed, and projection exposure apparatus
JPS60188950A (en) Correcting method of light quantity control device
JP2796404B2 (en) Exposure method and apparatus, and thin film production control method and apparatus using the same
JP2550579B2 (en) Projection exposure apparatus and projection exposure method
JP3265533B2 (en) Integrated circuit manufacturing method and projection exposure apparatus
US20090135398A1 (en) Exposure apparatus and device manufacturing method
JP2550658B2 (en) Projection exposure apparatus and projection exposure method
JP2817779B2 (en) Projection exposure equipment