JPS60147817A - Method for controlling exhaust gas temperature of hot stove - Google Patents

Method for controlling exhaust gas temperature of hot stove

Info

Publication number
JPS60147817A
JPS60147817A JP430284A JP430284A JPS60147817A JP S60147817 A JPS60147817 A JP S60147817A JP 430284 A JP430284 A JP 430284A JP 430284 A JP430284 A JP 430284A JP S60147817 A JPS60147817 A JP S60147817A
Authority
JP
Japan
Prior art keywords
exhaust gas
gas temperature
temperature
flow rate
upper limit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP430284A
Other languages
Japanese (ja)
Inventor
Motojirou Miwa
三輪 元治郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Hokushin Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Hokushin Electric Corp filed Critical Yokogawa Hokushin Electric Corp
Priority to JP430284A priority Critical patent/JPS60147817A/en
Publication of JPS60147817A publication Critical patent/JPS60147817A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D23/00Control of temperature
    • G05D23/19Control of temperature characterised by the use of electric means
    • G05D23/1917Control of temperature characterised by the use of electric means using digital means

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Control Of Temperature (AREA)

Abstract

PURPOSE:To improve the temperature controllability of a hot stove in a method for controlling the exhaust gas temperature of the stove, by controlling the set value of a flow rate controller so that the exhaust gas temperature becomes the secondary upper limit at the time of completion of burning. CONSTITUTION:An M gas is supplied to a hot stove 3 from a pipeline 1 and its flow rate is inputted to a flow rate controller 6 as a flow rate signal Q from a flow meter 5. The temperature of exhaust gas is detected by a temperature detector 8 and transmitted to a computer 10 as a temperature signal T. The computer 10 calculates an estimated exhaust gas temperature at an expected burning completing time from the calculated result of a temperature rising speed and calculates a setting value S3 of the flow rate to the controller 6 so that the exhaust gas temperature becomes the secondary upper limit value at the expected burning completing time. The controller 6 performs a PID arithmetic to the deviation between the set value S3 of flow rate and the flow rate signal Q drom the flow meter 5 and controls the valve opening degree of a control valve 7 to bring the exhaust gas temperature at the time of completion of burning to the secondary upper limit value.

Description

【発明の詳細な説明】 く産業上の利用分野〉 本発明線、高炉プラントの熱風炉(ホ、トストープ)の
排ガス温度の制御に係り、特にその排ガス温度の制御性
を改善した制御方法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to the control of the exhaust gas temperature of a hot blast furnace (E, Tostop) in a blast furnace plant, and particularly to a control method that improves the controllability of the exhaust gas temperature.

く従来技術〉 従来の計装における熱風炉の排ガス温度の制御方法では
測定値である排ガス温度と目標とする排ガス温度との偏
差に対、してPID (比例・積分・微分)演算を行な
い、この結果を用いて燃料である高炉から発生する燃料
ガスであるBガスとコークス炉から発生する燃料ガスで
あるCガスとが混合された混合ガス(以下、Mガスとい
う)の警風炉への流量を制御していた。
Prior art: In conventional instrumentation methods for controlling the exhaust gas temperature of a hot air stove, a PID (proportional, integral, differential) calculation is performed on the deviation between the measured value of the exhaust gas temperature and the target exhaust gas temperature. Using this result, the flow rate of the mixed gas (hereinafter referred to as M gas), which is a mixture of B gas, which is the fuel gas generated from the blast furnace, and C gas, which is the fuel gas generated from the coke oven, to the blast furnace can be calculated using this result. was under control.

第1図はこの種の従来の実施例を示すプロ、り図である
。第1図において1はMガスが流れる配管であり、2は
Mガスに対して最適の燃焼条件になる様に所定の流量比
率になる様に制御された空気を送る配管である。3は熱
風炉でラフ、配管1からMガス、配管2がら空気が送ら
れ、熱風炉中でMガスが燃焼されそのときに発生する熱
風炉の蓄熱レンガに熱が蓄熱される構成である。燃焼後
の排ガスは配管4から排出される。配管1には配管1中
のMガスの流量を測定する流量計5が設けられ、ここで
検出された流量信号Qが調節計6に入力される。配管1
にはまた制御弁7が設置され調節計6の出力MによりM
ガスの流量が制御される。配管4には排ガスの温度を測
定するための温度検出器8が設置されており、ここで検
出された温度信号Tが調節計9に入力されている。調節
計9には排ガスの温度を制御する制御目標である設定値
S工が与えられ、設定値S1と温度信号Tとの偏差に対
して調節計9でPID等の演算が施される。
FIG. 1 is a schematic diagram showing a conventional embodiment of this type. In FIG. 1, 1 is a pipe through which M gas flows, and 2 is a pipe that sends air controlled to have a predetermined flow rate so as to provide optimal combustion conditions for M gas. 3 is a hot blast stove, and M gas is sent through pipe 1 and air is sent through piping 2. The M gas is combusted in the hot blast stove, and the heat generated at that time is stored in the heat storage bricks of the hot blast stove. The exhaust gas after combustion is discharged from the pipe 4. The piping 1 is provided with a flow meter 5 that measures the flow rate of M gas in the piping 1, and a flow rate signal Q detected here is input to a controller 6. Piping 1
A control valve 7 is also installed, and M is controlled by the output M of the controller 6.
The gas flow rate is controlled. A temperature detector 8 for measuring the temperature of the exhaust gas is installed in the pipe 4, and a temperature signal T detected here is input to a controller 9. A set value S, which is a control target for controlling the temperature of exhaust gas, is given to the controller 9, and the controller 9 performs calculations such as PID on the deviation between the set value S1 and the temperature signal T.

その演算の結果は流量に換算されて調節計6の設定値s
2として与えられる。設定値s2の初期条件は熱風炉の
設計条件等によって定まる所定のMガスとの偏差が小さ
くなるに従って設定値S2を下げ制御弁7の開度が小さ
くなる様にする。
The result of the calculation is converted into a flow rate and the set value s of the controller 6 is
Given as 2. The initial condition of the set value s2 is such that as the deviation from the predetermined M gas, which is determined by the design conditions of the hot blast stove, becomes smaller, the set value S2 is lowered so that the opening degree of the control valve 7 becomes smaller.

この様にして調節計6と9の制御動作により熱風炉の排
ガス温度があらかじめ与えられた排ガス温度の設定値S
1になる様に制御弁7の開度が制御される。
In this way, the exhaust gas temperature of the hot stove is given in advance by the control operations of the controllers 6 and 9, which is the set value S of the exhaust gas temperature.
The opening degree of the control valve 7 is controlled so that the opening of the control valve 7 becomes 1.

以上の従来の計装においては排ガス温度の設定値と測定
値との偏差にPID演算を行ないMガス流量を制御して
いるので、熱風炉の如く燃料ガスの流量変化から排ガス
温度の変化までの応答の遅れの大きい(30分から60
分)プラントに対しては最適な制御を行なうことができ
ず、このため熱風炉の排ガス温度が設定値を越え熱風炉
の蓄熱レンガを支える金物を破損する場合も生じ保守上
の観点から好ましくなく、また熱効率・省エネルギーの
観点からも問題を生じる。
In the conventional instrumentation described above, the M gas flow rate is controlled by performing PID calculation on the deviation between the set value and the measured value of the exhaust gas temperature, so it is possible to control the M gas flow rate from the change in the flow rate of the fuel gas to the change in the exhaust gas temperature, as in a hot blast furnace. Long response delay (30 minutes to 60 minutes)
) It is not possible to perform optimal control over the plant, and as a result, the exhaust gas temperature of the hot-blast stove may exceed the set value and damage the metal fittings that support the heat-storage bricks of the hot-blast stove, which is undesirable from a maintenance standpoint. Also, problems arise from the viewpoint of thermal efficiency and energy saving.

〈発明の目的〉 本発明は、前記の従来技術に鑑み、温度に対して応答遅
れの大きい熱風炉の温度制御性を向上して省エネルギー
、炉体保護のできる制御方法を提供することを目的とす
る。
<Purpose of the Invention> In view of the above-mentioned prior art, an object of the present invention is to provide a control method that can save energy and protect the furnace body by improving the temperature controllability of a hot air stove that has a large response delay depending on the temperature. do.

く本発明の目的〉 この目的を達成する本発明の構成は、熱風炉の排ガス温
度の制御方法に係り、燃料ガスを供給して加熱される熱
風炉の排ガス温度を所定の周期で測定し、前記排ガス温
度が1次上限を越えた時点(3) から前記排ガス温度の上昇速度を算出し、次いで燃焼終
了予定時刻における予測排ガス温度を推定mKし、この
演算結果が2次上限値を越えるときは前記燃焼終了予定
時刻に前峨排ガス瀉度が前記2次上限値になるような前
記構ガス温度の推定上昇速度を算出してこれを目標値と
し、前記目標値”と前記排ガス温度の上昇速度との偏差
に制御演算を施し、この演算結果によ妙前記燃料ガスの
流量□を制御することを特徴としたものである。
OBJECTS OF THE INVENTION The configuration of the present invention to achieve this object relates to a method for controlling the exhaust gas temperature of a hot air stove, which includes measuring the exhaust gas temperature of a hot air stove heated by supplying fuel gas at a predetermined period, The rate of increase in the exhaust gas temperature is calculated from the time (3) when the exhaust gas temperature exceeds the primary upper limit, and then the predicted exhaust gas temperature at the scheduled combustion end time is estimated in mK, and when this calculation result exceeds the secondary upper limit. calculates an estimated rate of increase in the structure gas temperature such that the pre-exhaust gas temperature reaches the secondary upper limit value at the scheduled combustion end time, sets this as a target value, and calculates the rate of increase in the exhaust gas temperature between the target value and the exhaust gas temperature. A control calculation is performed on the deviation from the speed, and the flow rate □ of the fuel gas is controlled based on the calculation result.

〈実施例〉 □ 以下、本発明の実施例に′)ハ七図面に基づき説明する
。同、従来技術と同一め機能を有する部分には向一番号
を付し、重複する説明は省略する。
<Embodiments> □ Hereinafter, embodiments of the present invention will be described based on the drawings. Similarly, parts having the same functions as those in the prior art are given the same reference numerals, and redundant explanations will be omitted.

第2図は本発明の一実施例を示すプロ、り図であ為□。Figure 2 is a professional diagram showing one embodiment of the present invention.

Mガスは配管1より熱風炉5に撫給され、そのに量は流
量計5で流量信号Qとして調節計に入力される。一方、
排ガスの′温度は温度検出器8で検出され温度信号Tと
しで鼾算−機10に伝送される。計算機では後述する排
ガス麺゛度制御プログラムに従い、所定の演算を行カ佐
、その結果t−―節(4) 計6の設定値S3として調節計6へ与える。調節計6で
は設定値S3と流量信号Qの偏差が零になるように制御
弁7を制御子る。 ・ 第3図は第2図の実施例での排ガス温度制御プログラム
“を示すフi−チャート図である。
M gas is supplied to the hot air stove 5 through the pipe 1, and the amount thereof is inputted to the controller as a flow rate signal Q by the flow meter 5. on the other hand,
The temperature of the exhaust gas is detected by a temperature detector 8 and transmitted as a temperature signal T to a snoring machine 10. The computer performs predetermined calculations according to an exhaust gas degree control program to be described later, and provides the result to the controller 6 as a set value S3 of 6 in total in section t--(4). The controller 6 controls the control valve 7 so that the deviation between the set value S3 and the flow rate signal Q becomes zero. - FIG. 3 is an i-chart showing the exhaust gas temperature control program in the embodiment of FIG. 2.

計算機10は計算−内の入力読込装装置から排ガスの温
度信号Tを定周期”例えば1分ご表に読込本(ステップ
■)、あdかしめ定めた温度の1次上限値を越えたか否
かをステップ■で監視する。そめてい 結果、1次上限値1越?W奇れば1ステップ■モ初期値
として設定した設定値83 、例えば“Mガスの最大流
量値をその11ホールドする・ように□制御弁7の開度
を固宝したままとする。1凍上′限値を越えた時点から
ステ゛、プ■で定周期で排ガスの一度上昇速度(マr)
t−算出する。この温度上昇速度の計算結果から燃焼終
了予定時刻における予測排ガス温度をステップ■で計算
する。□予測排ガス温度があらかじめ定めた2次上限値
を越えるか否かをステップ■で判断Lミ 2次上限値を
越えなければステップ■に移行し初期流量をホールト°
する。2凍上限値を越えるときにはステップのに移行し
、燃焼終了予定時刻に排ガス温度が2次上限値になる様
な排ガス温度の上昇速度Vを計算し、この上弁速度Vを
目標値とする。ステップ■では目標値v8とステップ■
で算出された実測の排ガス温度の上昇速度Vとの偏差を
演算する。この後、ステラプ■でステップ■での演算結
果に対してこれを流量換算し、調節計6への流量の設定
値S3(ステップ[相])とする。調節計6は流量の設
定値S3と流量計5からの流量信号Qとの偏差に対して
PID演算を施して制御弁7の弁開度を制御し、燃焼終
了時に排ガス温度が2次1上限値にざるよう圧する。
The computer 10 reads the temperature signal T of the exhaust gas from the input reading device in the calculation unit at regular intervals, for example, every minute (step ■), and determines whether or not the predetermined primary upper limit of the temperature has been exceeded. is monitored in step ■.As a result, if the primary upper limit value exceeds 1?W, take 1 step. □Keep the opening of control valve 7 fixed. 1) From the point when the frost heave limit is exceeded, the rate of rise of the exhaust gas (mar) is increased at regular intervals in steps and steps.
t-calculate. From the calculation result of this temperature rise rate, the predicted exhaust gas temperature at the scheduled combustion end time is calculated in step (2). □Determine in step ■ whether the predicted exhaust gas temperature exceeds the predetermined secondary upper limit. If it does not exceed the secondary upper limit, proceed to step ■ and halt the initial flow rate.
do. When the secondary freezing upper limit value is exceeded, the process moves to step 2, where the rate of increase in exhaust gas temperature V is calculated so that the exhaust gas temperature reaches the secondary upper limit value at the scheduled combustion end time, and this upper valve speed V is set as the target value. In step ■, target value v8 and step ■
The deviation from the actually measured rate of increase in exhaust gas temperature V calculated in step 1 is calculated. Thereafter, at step (2), the calculation result at step (2) is converted into a flow rate, and the result is set as the flow rate setting value S3 (step [phase]) to the controller 6. The controller 6 performs PID calculation on the deviation between the flow rate set value S3 and the flow rate signal Q from the flow meter 5 to control the valve opening of the control valve 7, so that the exhaust gas temperature reaches the secondary 1 upper limit at the end of combustion. Pressure to maintain the value.

なお、ステップのでの燃焼終了予定時刻において排ガス
湛、度が2次上限値になる温度の上昇速度を推定するに
は、雑音の影!#を避けるため、今回読込値のみをベー
スとして上昇速度を推′定するのではなく前回読込値を
ベースとして算出した上昇速度を今回の上昇速度の推定
に反−させたフィルタリングを施すようにする。
In addition, in order to estimate the rate of increase in temperature at which the temperature reaches the secondary upper limit when the exhaust gas is full at the scheduled combustion end time at the step, it is necessary to calculate the shadow of noise. In order to avoid #, instead of estimating the climbing speed based only on the current reading value, filtering is applied to make the climbing speed calculated based on the previous reading value contrary to the current estimation of the climbing speed. .

第4図は第3図のフローチャートにより排ガス温度を制
御したときの特性図である。横軸は燃焼開始より燃焼終
了までの期間を示し、縦軸はMガス流量と排ガスの温度
とを併せて示している。排ガス温度が1次上限値より低
いときは初期設定量で決まる一定流量を保持しており、
1次上限値を越えた時点よシ排ガス温度制御プログラム
による制御が開始される。ここで、第3図のステップ■
から■の演算が行なわれ、実測温度上昇が燃焼終了時刻
で2次上限値を越えるときは燃焼終了時刻で2次上限値
になるような排ガス温度の上昇速度の曲線が目標値とし
て設定されることが示されている。
FIG. 4 is a characteristic diagram when the exhaust gas temperature is controlled according to the flowchart of FIG. 3. The horizontal axis shows the period from the start of combustion to the end of combustion, and the vertical axis shows both the M gas flow rate and the exhaust gas temperature. When the exhaust gas temperature is lower than the primary upper limit, a constant flow rate determined by the initial setting is maintained.
Once the primary upper limit value is exceeded, control by the exhaust gas temperature control program is started. Here, step ■ in Figure 3
Calculations from to (■) are performed, and if the actually measured temperature rise exceeds the secondary upper limit value at the combustion end time, a curve of the rate of increase in exhaust gas temperature that reaches the secondary upper limit value at the combustion end time is set as the target value. It has been shown that

〈発明の効果〉 以上、実施例とともに具体的に説明した様に1本発明に
よれば、燃焼終了時刻に排ガス温度があらかじめ定めた
2次上限値になるように調節計の設定値を制御するよう
にしだXので、温度に対して応答遅れの大きい熱風炉で
もその温度制御性を向上させることができ、ひいては省
エネルギーへの寄与と熱風炉の炉体保護をすることがで
きる。
<Effects of the Invention> As specifically explained above in conjunction with the embodiments, according to the present invention, the setting value of the controller is controlled so that the exhaust gas temperature reaches a predetermined secondary upper limit value at the combustion end time. As a result, it is possible to improve the temperature controllability even in a hot-blast stove that has a large response delay with respect to temperature, thereby contributing to energy saving and protecting the furnace body of the hot-blast stove.

(7)(7)

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の実施例を示すブロック図、第2図は本発
明の一実施例を示すプロ、り図、第3図は第2図の実施
例で6排ガス温度制御プログラムを示すフローチャート
図、第4図は第3図の70−チャートにより排ガス温度
を制御したときの特性図である。 1.2.4・・・配管、5・・・熱風炉、5・・・流量
計、6.9・・・調節計、7・・・制御弁、8・・・温
度検出器、10・・・計算機、Q・・・流量信号、T・
・・温度□信号、sl。 82、8.・・・設定値。 (8) ぢ 獣 ζ Σ 釦 区 賦
Fig. 1 is a block diagram showing a conventional embodiment, Fig. 2 is a program diagram showing an embodiment of the present invention, and Fig. 3 is a flowchart showing six exhaust gas temperature control programs in the embodiment of Fig. 2. , FIG. 4 is a characteristic diagram when the exhaust gas temperature is controlled by the 70-chart of FIG. 3. 1.2.4... Piping, 5... Hot stove, 5... Flow meter, 6.9... Controller, 7... Control valve, 8... Temperature detector, 10. ...Calculator, Q...Flow rate signal, T...
...Temperature □ signal, sl. 82, 8. ...Setting value. (8) ぢ Beast ζ Σ Button Ward Fee

Claims (1)

【特許請求の範囲】[Claims] 燃料ガスを供給して加熱される熱風炉の排ガ、ス温度を
所定の周期で測定し、前記排ガス温度が1排ガス温度を
推定演算し、この演算結果が2次上限値を越えるときは
前記燃焼終了予定時刻に前記排ガス温度が前記2次上限
値になるような前記排ガス温度の推定上昇速度を算出し
てこれを目標値とし、前記目標値と前記排ガス温度の上
昇速度との偏差に制御演算を施し、この演算結果により
前記燃料ガスの流量を制御することを特徴とした熱風炉
の排ガス温度の制御方法。
The exhaust gas temperature of a hot stove heated by supplying fuel gas is measured at a predetermined period, and the exhaust gas temperature is calculated to estimate the exhaust gas temperature, and if this calculation result exceeds the secondary upper limit value, the above-mentioned Calculate an estimated rate of increase in the exhaust gas temperature such that the exhaust gas temperature reaches the secondary upper limit at the scheduled combustion end time, set this as a target value, and control the deviation between the target value and the rate of increase in the exhaust gas temperature. 1. A method for controlling exhaust gas temperature of a hot blast stove, comprising performing calculation and controlling the flow rate of the fuel gas based on the calculation result.
JP430284A 1984-01-13 1984-01-13 Method for controlling exhaust gas temperature of hot stove Pending JPS60147817A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP430284A JPS60147817A (en) 1984-01-13 1984-01-13 Method for controlling exhaust gas temperature of hot stove

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP430284A JPS60147817A (en) 1984-01-13 1984-01-13 Method for controlling exhaust gas temperature of hot stove

Publications (1)

Publication Number Publication Date
JPS60147817A true JPS60147817A (en) 1985-08-03

Family

ID=11580710

Family Applications (1)

Application Number Title Priority Date Filing Date
JP430284A Pending JPS60147817A (en) 1984-01-13 1984-01-13 Method for controlling exhaust gas temperature of hot stove

Country Status (1)

Country Link
JP (1) JPS60147817A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0295409U (en) * 1989-01-12 1990-07-30
JP2009092243A (en) * 2007-10-11 2009-04-30 Young-Choong Kim Inner cable for push-pull control cable and its manufacturing method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55122811A (en) * 1979-03-12 1980-09-20 Nippon Steel Corp Combustion control method of hot stove

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55122811A (en) * 1979-03-12 1980-09-20 Nippon Steel Corp Combustion control method of hot stove

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0295409U (en) * 1989-01-12 1990-07-30
JP2009092243A (en) * 2007-10-11 2009-04-30 Young-Choong Kim Inner cable for push-pull control cable and its manufacturing method

Similar Documents

Publication Publication Date Title
CN104075584B (en) A kind of waste heat of flue gas of heating furnace recovered temperature controls System and method for
CN107022359A (en) A kind of coke oven combustion chamber temperature control control nitre method and system
CN110566962A (en) Combustion control method of heat accumulating type single-burner aluminum melting furnace with adjustable air-fuel ratio
CN114737003B (en) Automatic control method and system for combustion of blast furnace hot blast stove based on heat storage model
CN114317860A (en) Combustion control method of heat accumulating type hot blast stove
JPS60147817A (en) Method for controlling exhaust gas temperature of hot stove
CN114807590B (en) Billet heating secondary control method and system based on heating furnace
JPS60231790A (en) Automatic operation of dry coke quencher
JPH0577926B2 (en)
JPS5823527B2 (en) Kinnetsuronadoniokeru
JPS55122811A (en) Combustion control method of hot stove
CN110343834A (en) A kind of 6 heat-treatment furnace flue gas waste heat utilization device of aluminum alloy T and method
CN112856383A (en) Reheater heat storage-considered steam temperature control method for double reheating unit
CN111811257A (en) Heating furnace combustion control method and device
JPH0251089B2 (en)
CN108278657A (en) Constant pressure constant-temperature control method for wall-hung boiler heating system
CN116557840A (en) Ultra-supercritical boiler pulling and cracking method and system based on inner wall Wen Yufang of furnace
JPS61141787A (en) Control of oven temperature in coke oven
JPS5848010B2 (en) Heating furnace automatic combustion control method
RU1770951C (en) Device for programmable maintaining of the temperature in autoclave
JP3190552B2 (en) Starting method and apparatus for heating furnace combustion equipment
JP3046467B2 (en) Heating furnace heating control method
JP2552586B2 (en) Inlet water temperature detection method and hot water supply control method in water heater
JPS5914526B2 (en) How to operate a batch heat treatment furnace
CN114838347A (en) Method and device for controlling reheated steam temperature, storage medium and electronic equipment