CN112097244A - Wall temperature prediction-based screen type superheater overtemperature control system and method for coal-fired unit - Google Patents

Wall temperature prediction-based screen type superheater overtemperature control system and method for coal-fired unit Download PDF

Info

Publication number
CN112097244A
CN112097244A CN202011100939.7A CN202011100939A CN112097244A CN 112097244 A CN112097244 A CN 112097244A CN 202011100939 A CN202011100939 A CN 202011100939A CN 112097244 A CN112097244 A CN 112097244A
Authority
CN
China
Prior art keywords
wall temperature
temperature
module
screen
superheater
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202011100939.7A
Other languages
Chinese (zh)
Other versions
CN112097244B (en
Inventor
王明坤
卢彬
高林
周俊波
金国强
王林
郭亦文
侯玉婷
赵章明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xian Thermal Power Research Institute Co Ltd
Xian Xire Control Technology Co Ltd
Original Assignee
Xian Thermal Power Research Institute Co Ltd
Xian Xire Control Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xian Thermal Power Research Institute Co Ltd, Xian Xire Control Technology Co Ltd filed Critical Xian Thermal Power Research Institute Co Ltd
Priority to CN202011100939.7A priority Critical patent/CN112097244B/en
Publication of CN112097244A publication Critical patent/CN112097244A/en
Application granted granted Critical
Publication of CN112097244B publication Critical patent/CN112097244B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22GSUPERHEATING OF STEAM
    • F22G5/00Controlling superheat temperature
    • F22G5/02Applications of combustion-control devices, e.g. tangential-firing burners, tilting burners
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22GSUPERHEATING OF STEAM
    • F22G5/00Controlling superheat temperature
    • F22G5/20Controlling superheat temperature by combined controlling procedures

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Air Supply (AREA)
  • Control Of Steam Boilers And Waste-Gas Boilers (AREA)

Abstract

基于壁温预测的燃煤机组屛式过热器超温控制系统及方法,该系统一方面结合实际测量信号进行屛式过热器壁温最大值预测,并将其与限幅模块、升速率限速模块结合,实现预测值参与超温控制;另一方面,将屛式过热器实测壁温信号也与限幅模块、升速率限速模块结合实现实测值参与控制方案;通过调节燃烬风挡板、一级减温水调节阀等设备,从而形成了基于壁温预测的燃煤机组屛式过热器超温控制系统,实现屏式过热器壁温超温主动抑制调节;本发明同时获得预测壁温及当前壁温的变化趋势,实现超前壁温超温主动抑制,对提高火电厂的运行可靠性,有效降低爆管风险,延长关键设备寿命,降低维护维修成本都具有重要的意义。

Figure 202011100939

A system and method for over-temperature control of a flood-type superheater in a coal-fired unit based on wall temperature prediction. On the one hand, the system combines the actual measurement signal to predict the maximum value of the wall temperature of the flood-type superheater, and compares it with the limiting module, the rate of increase and the speed limit. The combination of modules realizes the predicted value participating in the over-temperature control; on the other hand, the actual measured wall temperature signal of the flood-type superheater is also combined with the amplitude limiting module and the rate-limiting module to realize the participation of the measured value in the control scheme; by adjusting the burner wind baffle , a first-stage desuperheating water regulating valve and other equipment, thus forming a coal-fired unit over-temperature control system for the superheater of the coal-fired unit based on the prediction of the wall temperature, and realizing the active suppression and adjustment of the wall temperature of the screen superheater; the present invention obtains the predicted wall temperature at the same time. It is of great significance to improve the operational reliability of thermal power plants, effectively reduce the risk of pipe burst, prolong the life of key equipment, and reduce maintenance and repair costs.

Figure 202011100939

Description

基于壁温预测的燃煤机组屛式过热器超温控制系统及方法System and method for over-temperature control of flood-type superheater in coal-fired units based on prediction of wall temperature

技术领域technical field

本发明涉及燃煤机组的自动控制领域,具体涉及基于壁温预测的燃煤机组屛式过热器超温控制系统及方法。The invention relates to the field of automatic control of coal-fired units, in particular to a system and method for over-temperature control of a flood-type superheater of a coal-fired unit based on wall temperature prediction.

背景技术Background technique

随着火电机组等级的不断提高,提高蒸汽温度、压力等发电参数是超超临界机组效率提升的重要途径,但蒸汽温度上升对蒸汽管道材料、壁温控制提出了更高要求。受限于材料的蠕变强度及持久强度的制约,温度波动必须在安全裕度以内,由于水冷壁温测量偏差造成不能及时进行参数调整,使水冷壁长时间超温运行势必会增加爆管的风险,另外,目前国内超(超)临界直流锅炉由于对高温过热器金属温度的监控重视不足,容易产生氧化皮脱落堵塞,也极易发生过热器爆管事故。因此对于壁温的实时测量、壁温的提前预测与控制是降低爆管风险的有效途径。With the continuous improvement of the level of thermal power units, improving steam temperature, pressure and other power generation parameters is an important way to improve the efficiency of ultra-supercritical units, but the increase in steam temperature puts forward higher requirements for steam pipeline materials and wall temperature control. Restricted by the creep strength and lasting strength of the material, the temperature fluctuation must be within the safety margin. Due to the deviation of the temperature measurement of the water wall, the parameters cannot be adjusted in time, and the long-term over-temperature operation of the water wall will inevitably increase the risk of pipe bursting. In addition, due to insufficient attention to the monitoring of the metal temperature of the high-temperature superheater, the domestic super (super) critical once-through boiler is prone to oxide skin peeling and blockage, and the superheater tube burst accident is also very likely to occur. Therefore, the real-time measurement of wall temperature and the advance prediction and control of wall temperature are effective ways to reduce the risk of pipe burst.

目前,燃煤机组对于壁温测量和控制方案主要是以下两种:At present, coal-fired units mainly have the following two solutions for wall temperature measurement and control:

1)通过在锅炉过热器、再热器、水冷壁等部位的管壁金属处安装大量的热电偶壁温测点来实现壁温测量,利用单独的监视系统或者直接接入DCS系统直接监视,提高锅炉长期运行的安全行、稳定性;目前该方法对测点周围的环境要求较高,而炉内环境往往较恶劣,对测量的精度和准确性有一定的影响;同时该方法只能够测得当前时刻温度值,由于测点较多,只有测点发生超温现象时才会发出报警,从而运行人员根据实际经验对锅炉参数进行相应的调整。这样会导致运行人员在壁温超温监盘过程中无法对大量的壁温测点进行实时判断、并且当发生超温报警是在进行控制操作处理,不能及时解决超温问题,对锅炉运行安全带来了不利的影响。1) The wall temperature measurement is realized by installing a large number of thermocouple wall temperature measuring points at the tube wall metal of the boiler superheater, reheater, water wall and other parts, using a separate monitoring system or directly connecting to the DCS system for direct monitoring, Improve the safety and stability of the long-term operation of the boiler; at present, this method has higher requirements on the environment around the measuring point, and the environment in the furnace is often harsh, which has a certain impact on the accuracy and accuracy of the measurement; at the same time, this method can only measure To obtain the temperature value at the current moment, due to the large number of measuring points, an alarm will only be issued when the over-temperature phenomenon occurs at the measuring point, so that the operator can adjust the boiler parameters accordingly based on actual experience. In this way, operators cannot make real-time judgments on a large number of wall temperature measurement points during the process of wall temperature over-temperature monitoring, and when an over-temperature alarm occurs, control operations are being performed, and the over-temperature problem cannot be solved in time, which will ensure the safety of boiler operation. adversely affected.

2)通过机理或数理分析方法建立壁温预测模型,从而实现壁温的计算和预测。其中通过水冷壁、过热器等部件的机理建模分析计算壁温,这种方法较为复杂,边界参数较多,电厂实际测点无法给出所有边界参数,且模型不同条件下需要不断修正,因此不符合在线计算的要求,无法实时参与电站壁温闭环控制;基于数理建模分析方法,目前多采用基于人工神经网络的的壁温预测方法,只考虑了外部因素对壁温的影响,采用BP神经网络等静态网络结构对锅炉管壁温度进行预测。对于当前壁温历史数据、上游壁温历史数据以及相关因素的变化速率并未考虑,并未对时序预测神经网络结构、神经网络激活函数等内容进行研究,预测结构较为落后、计算结果较差;并且目前壁温预测仅仅停留在显示阶段,并未使用预测结果参与火电闭环控制。2) The wall temperature prediction model is established by the mechanism or mathematical analysis method, so as to realize the calculation and prediction of the wall temperature. Among them, the wall temperature is calculated by the mechanism modeling analysis of the water-cooled wall, superheater and other components. This method is more complicated and has many boundary parameters. The actual measurement points of the power plant cannot give all boundary parameters, and the model needs to be continuously revised under different conditions. Therefore, It does not meet the requirements of online calculation, and cannot participate in the closed-loop control of the wall temperature of the power station in real time; based on the mathematical modeling analysis method, the wall temperature prediction method based on artificial neural network is mostly used at present, only considering the influence of external factors on the wall temperature, using BP Static network structures such as neural networks can predict boiler tube wall temperature. The current historical data of wall temperature, the historical data of upstream wall temperature and the rate of change of related factors are not considered, and the neural network structure of time series prediction, neural network activation function and other contents have not been studied, and the prediction structure is relatively backward and the calculation results are poor; And the current wall temperature prediction only stays in the display stage, and does not use the prediction results to participate in the closed-loop control of thermal power.

综上所述,现有的壁温超温应对措施和预测手段,仅仅停留在显示报警,从而凭借运行人员经验进行参数更改,并未实现闭环控制。另一方面,壁温预测模型需要优化,从而实现壁温精准预测,实现提前闭环操作避免壁温超温。To sum up, the existing wall temperature over-temperature countermeasures and prediction methods only stay in the display alarm, so that the parameters are changed based on the experience of the operator, and closed-loop control is not realized. On the other hand, the wall temperature prediction model needs to be optimized, so as to achieve accurate prediction of wall temperature and realize early closed-loop operation to avoid over-temperature of wall temperature.

发明内容SUMMARY OF THE INVENTION

为了解决上述现有技术存在的问题,本发明提出了基于壁温预测的燃煤机组屛式过热器超温控制系统及方法,同时获得预测壁温及当前壁温的变化趋势,从而完成壁温超温控制及运行指导,实现超前壁温超温主动抑制,对提高火电厂的运行可靠性,有效降低爆管风险,延长关键设备寿命,降低维护维修成本都具有重要的意义。In order to solve the problems existing in the above-mentioned prior art, the present invention proposes a system and method for over-temperature control of a coal-fired unit superheater based on wall temperature prediction, and simultaneously obtains the change trend of the predicted wall temperature and the current wall temperature, so as to complete the wall temperature Over-temperature control and operation guidance to achieve active suppression of advanced wall temperature and over-temperature are of great significance to improving the operational reliability of thermal power plants, effectively reducing the risk of pipe bursting, extending the life of key equipment, and reducing maintenance and repair costs.

为了达到上述目的,本发明采用如下技术方案:In order to achieve the above object, the present invention adopts the following technical solutions:

基于壁温预测的燃煤机组屛式过热器超温控制系统,锅炉给水流经低温过热器1换热后分为左右两路,左侧经过左侧一级减温水调节阀3和左侧一级减温水流量传感器4与左侧屛式过热器7相连,右侧经过右侧一级减温水调节阀5和右侧一级减温水流量传感器6与右侧屛式过热器9相连;低温过热器1上布置有多个低温过热器壁温温度传感器2,左侧屛式过热器7上布置有多个左侧屛式过热器壁温温度传感器8,右侧屛式过热器9上布置有多个右侧屛式过热器壁温温度传感器10;左侧屛式过热器7和右侧屛式过热器9相应侧分别布置有左侧燃烬风挡板11和右侧燃烬风挡板12;右侧屛式过热器壁温温度传感器10与右侧屛式过热器壁温最大值计算存储模块13的输入端和右侧屛式过热器壁温平均值计算存储模块的输入端14连接,低温过热器壁温温度传感器2与低温过热器壁温平均值计算存储模块15的输入端连接,右侧一级减温水流量传感器6与右侧一级减温水流量微分计算存储模块16的输入端连接;同理,左侧屛式过热器壁温温度传感器8与左侧屛式过热器壁温最大值计算存储模块17的输入端和左侧屛式过热器壁温平均值计算存储模块18的输入端连接,左侧一级减温水流量传感器4与左侧一级减温水流量微分计算存储模块19的输入端连接。Based on the prediction of wall temperature, the over-temperature control system of the superheater of the coal-fired unit, the boiler feed water flows through the low-temperature superheater 1 and is divided into left and right paths after heat exchange. The stage desuperheating water flow sensor 4 is connected to the left-side superheater 7, and the right side is connected to the right-side superheater 9 through the right primary desuperheating water regulating valve 5 and the right primary desuperheating water flow sensor 6; A plurality of low-temperature superheater wall temperature sensors 2 are arranged on the heater 1, a plurality of left-hand chimney-type superheater wall temperature sensors 8 are arranged on the left chimney-type superheater 7, and a right chim-type superheater 9 is arranged with A plurality of right-side chimney-type superheater wall temperature sensors 10; left chimney-type superheater 7 and right chim-type superheater 9 are respectively provided with left-hand chimney-type air baffles 11 and right-hand chimney-type superheater 9 12; the right side wall temperature sensor 10 is connected to the input end of the right side wall temperature maximum value calculation storage module 13 and the input end 14 of the right side wall temperature average calculation storage module , the low temperature superheater wall temperature sensor 2 is connected to the input end of the low temperature superheater wall temperature average calculation storage module 15, the right first stage desuperheating water flow sensor 6 is connected to the input of the right first stage desuperheating water flow differential calculation storage module 16 In the same way, the left side wall temperature sensor 8 and the left side wall temperature maximum value calculation storage module 17 and the left side wall temperature average calculation storage module 18 The input end of the left first stage desuperheating water flow sensor 4 is connected to the input end of the left first stage desuperheating water flow differential calculation and storage module 19 .

右侧屏过壁温最大值计算存储模块13、右侧屏过壁温平均值计算存储模块14、低温过热器壁温平均值计算存储模块15、右侧一级减温水流量微分计算存储模块16和机组负荷数据存储模块20的输出端与右侧屏过壁温预测模型计算模块21的输入端相连,右侧屏过壁温预测模型计算模块21的输出端分别与右侧屏过壁温预测限幅模块23的输入端和温升速率限速模块24的输入端相连,壁温预测限幅模块23的输出端和温升速率限速模块24的输出端与右侧第一或模块25的输入端相连;右侧屛式过热器壁温温度传感器10分别与右侧屏过壁温当前值限幅模块26的输入端和右侧屏过壁温当前值温升速率限速模块27的输入端相连,右侧屏过壁温当前值限幅模块26的输出端和右侧屏过壁温当前值温升速率限速模块27的输出端与右侧第二或模块28的输入端相连;右侧第一或模块25的输出端和右侧第二或模块28的输出端与右侧减温水/燃尽风控制指令偏置模块35的输入端相连生成控制指令,右侧减温水/燃尽风控制指令偏置模块35的输出端连接并控制右侧一级减温水调节阀5和右侧燃烬风挡板12;同理,左侧屏过壁温最大值计算存储模块17、左侧屏过壁温平均值计算存储模块18、低温过热器平均温度计算存储模块15、左侧一级减温水流量微分计算存储模块19和机组负荷数据存储模块20的输出端与左侧屏过壁温预测模型计算模块22的输入端相连;左侧屏过壁温预测模型计算模块22的输出端分别与左侧屏过壁温预测限幅模块29的输入端和左侧屏过壁温预测温升速率限速模块30的输入端相连,左侧屏过壁温预测限幅模块29的输入端和左侧屏过壁温预测温升速率限速模块30的输出端与左侧第一或模块31相连;左侧屛式过热器壁温温度传感器8分别与左侧屏过壁温当前值限幅模块32的输入端和左侧屏过壁温当前值温升速率限速模块33的输入端相连,左侧屏过壁温当前值限幅模块32的输出端和左侧屏过壁温当前值温升速率限速模块33的输出端与左侧第二或模块34相连;左侧第一或模块31的输出端和左侧第二或模块34的输出端与左侧减温水/燃尽风控制指令偏置模块36的输入端相连生成控制指令,左侧减温水/燃尽风控制指令偏置模块36的输出端连接并控制左侧一级减温水调节阀3和左侧燃烬风挡板11;右侧屏过壁温平均值计算存储模块14和左侧屏过壁温平均值计算存储模块18与燃尽风控制指令偏置模块37相连,从而产生燃烬风控制偏置指令进行左侧燃烬风挡板11和右侧燃烬风挡板12的控制。The right screen cross-wall temperature maximum value calculation storage module 13 , the right screen cross-wall temperature average calculation storage module 14 , the low temperature superheater wall temperature average calculation storage module 15 , the right first-level desuperheating water flow differential calculation storage module 16 The output end of the unit load data storage module 20 is connected to the input end of the right screen cross-wall temperature prediction model calculation module 21, and the output end of the right screen cross-wall temperature prediction model calculation module 21 is respectively connected with the right screen cross-wall temperature prediction model. The input end of the limiter module 23 is connected to the input end of the temperature rise rate limiter module 24, and the output end of the wall temperature prediction limiter module 23 and the output end of the temperature rise rate speed limiter module 24 are connected with the first or the right side of the module 25. The input end is connected; the right side wall temperature sensor 10 of the superheater is respectively connected with the input end of the right side screen passing the wall temperature current value limiting module 26 and the input end of the right side screen passing the wall temperature current value temperature rising rate speed limiting module 27 The output end of the current value limiting module 26 of the right screen crosses the wall temperature and the output end of the temperature rise rate limiting module 27 of the current value of the right screen crosses the wall temperature is connected to the input end of the second or module 28 on the right side; The output end of the right first or module 25 and the output end of the right second or module 28 are connected to the input end of the right desuperheating water/burn-out air control command bias module 35 to generate a control command, and the right desuperheating water/burning air The output end of the exhaust air control command bias module 35 is connected to and controls the first-stage desuperheating water regulating valve 5 on the right side and the burner wind baffle 12 on the right side; similarly, the storage module 17 for calculating the maximum value of the wall temperature on the left side screen, the left side The output end of the side screen cross-wall temperature average calculation and storage module 18, the low temperature superheater average temperature calculation and storage module 15, the left first-stage desuperheating water flow differential calculation and storage module 19 and the unit load data storage module 20 are connected to the left screen cross-wall. The input end of the temperature prediction model calculation module 22 is connected; the output end of the left screen cross wall temperature prediction model calculation module 22 is respectively connected with the input end of the left screen cross wall temperature prediction limit module 29 and the left screen cross wall temperature prediction temperature prediction module 29. The input end of the rate limiting module 30 is connected, the input end of the left panel cross-wall temperature prediction limiting module 29 and the output end of the left panel cross-wall temperature prediction temperature rising rate speed limiting module 30 are connected to the left first or module. 31 is connected; the left side wall temperature sensor 8 of the superheater is respectively connected with the input end of the left side screen passing the wall temperature current value limiting module 32 and the input end of the left side screen passing the wall temperature current value temperature rising rate speed limiting module 33 Connected, the output end of the left screen passing wall temperature current value limiting module 32 and the output end of the left screen passing wall temperature current value temperature rising rate speed limiting module 33 are connected with the left second or module 34; The output end of the OR module 31 and the output end of the second left OR module 34 are connected with the input end of the left desuperheating water/burnout air control command bias module 36 to generate a control command, and the left desuperheating water/burnout air control command The output end of the bias module 36 is connected to and controls the left primary desuperheating water regulating valve 3 and the left burner wind baffle 11; The calculation and storage module 18 is connected to the over-burning wind control command biasing module 37, thereby generating a burning wind control bias command to carry out the left burning wind baffle 11 and the burning wind. Control of the right burner wind damper 12.

基于壁温预测的燃煤机组屛式过热器超温控制系统的控制方法为:The control method of the over-temperature control system of the superheater of the coal-fired unit based on the prediction of the wall temperature is as follows:

将右侧屛式过热器壁温温度传感器10采集的多个屛式壁温实时数据送入右侧屏过壁温最大值计算存储模块13中计算获得右侧屏过壁温最大值并将历史数据进行存储,同时通过右侧屏过壁温平均值计算存储模块14获得右侧屏过壁温平均值并将历史数据进行存储;将低温过热器壁温温度传感器2测量的壁温送入低温过热器壁温平均值计算存储模块15进行计算获得实时低温过热器壁温平均值并将历史数据进行存储,右侧一级减温水流量传感器6测量的减温水流量数据通过右侧一级减温水流量微分计算存储模块16计算获得右侧一级减温水变化速率;同理通过左侧屛式过热器壁温温度传感器8测量的壁温送入左侧屏过壁温最大值计算存储模块17计算左侧屏过壁温最大值并将历史数据进行存储,通过左侧屏过壁温平均值计算存储模块18计算左侧屏过壁温平均值并将历史数据进行存储;通过左侧一级减温水流量传感器4测量的减温水流量值送入左侧一级减温水流量微分计算存储模块19计算获得左侧减温水变化速率;随后将计算获得的右侧屏过壁温最大值、右侧屏过壁温平均值、低温过热器壁温平均值、右侧一级减温水变化速率以及机组负荷送入右侧屏过壁温预测模型计算模块21进行计算获得右侧屏过最大值壁温预测值,送入右侧屏过壁温预测限幅模块23和右侧屏过壁温预测温升速率限速模块24进行判断是否超限,通过右侧第一或模块25判断任意一个超限即发送超温信号送入右侧减温水/燃尽风控制指令偏置模块35生成燃烬风偏置指令控制右侧燃烬风挡板12开度,从而提前增加燃烬风实现降低右侧屏过壁温,另一方面利用右侧屛式过热器壁温温度传感器10实测的右侧壁温送入右侧屏过壁温当前值限幅模块26和右侧屏过壁温当前值温升速率限速模块27进行判断,通过右侧第二或模块28判断任意一个超限即发送超温信号送入右侧减温水/燃尽风控制指令偏置模块35生成燃烬风偏置指令和减温水调门开度偏置指令,从而实现右侧一级减温水调节阀5和右侧燃烬风挡板12的实时控制,避免屏过壁温超温;The multiple real-time data of the wall temperature collected by the wall temperature sensor 10 of the right-side superheater are sent to the right-side screen cross-wall temperature maximum value calculation and storage module 13 for calculation to obtain the right-side screen cross-wall temperature maximum value and the historical value. The data is stored, and at the same time, the average value of the right screen cross wall temperature is obtained through the right screen cross wall temperature average calculation storage module 14 and the historical data is stored; the wall temperature measured by the low temperature superheater wall temperature sensor 2 is sent to the low temperature. The superheater wall temperature average calculation and storage module 15 calculates and obtains the real-time low temperature superheater wall temperature average value and stores the historical data. The desuperheating water flow data measured by the right first-stage desuperheating water flow sensor 6 The flow differential calculation storage module 16 calculates and obtains the rate of change of the first-level desuperheating water on the right side; similarly, the wall temperature measured by the wall temperature sensor 8 of the left side superheater is sent to the left screen passing the wall temperature maximum value calculation storage module 17 for calculation The maximum value of the cross-wall temperature of the left screen and the historical data are stored, and the average value of the cross-wall temperature of the left screen is calculated by the storage module 18 of the average value of the cross-wall temperature of the left screen and the historical data is stored; The desuperheating water flow value measured by the warm water flow sensor 4 is sent to the left first-level desuperheating water flow differential calculation and storage module 19 to obtain the left desuperheating water change rate; The average value of the wall temperature, the average value of the wall temperature of the low temperature superheater, the rate of change of the first-stage desuperheating water on the right side, and the unit load are sent to the calculation module 21 of the prediction model of the right screen cross-wall temperature prediction model for calculation to obtain the prediction of the maximum value of the wall temperature of the right screen. The value is sent to the right screen cross-wall temperature prediction limit module 23 and the right screen cross-wall temperature prediction temperature rise rate speed limit module 24 to judge whether it exceeds the limit. Send the over-temperature signal to the right desuperheating water/over-burning wind control command bias module 35 to generate the burning wind bias command to control the opening of the right burning wind damper 12, thereby increasing the burning wind in advance and reducing the right screen On the other hand, the right side wall temperature measured by the right side superheater wall temperature sensor 10 is used to send the current value limiter module 26 of the right screen cross wall temperature and the current value temperature rise of the right screen cross wall temperature. The rate-limiting module 27 makes a judgment, and judges that any one of the over-limits is exceeded by the second or module 28 on the right, that is, sends an over-temperature signal to the right-side desuperheating water/burn-out wind control command bias module 35 to generate a burn-out wind bias command and The desuperheating water regulating door opening offset command, so as to realize the real-time control of the first-level desuperheating water regulating valve 5 on the right side and the burner wind baffle 12 on the right side, so as to avoid the over temperature of the screen passing through the wall;

同理,将计算获得的左侧屏过壁温最大值、左侧屏过壁温平均值、低温过热器壁温平均值、左侧一级减温水变化速率以及机组负荷送入左侧屏过壁温预测模型计算模块22进行计算获得左侧屏过最大值壁温预测值,送入左侧屏过壁温预测限幅模块29和左侧屏过壁温预测温升速率限速模块30进行判断是否超限,通过左侧第一或模块31判断任意一个超限即发送超温信号送入左侧减温水/燃尽风控制指令偏置模块36生成燃烬风偏置指令控制左侧燃烬风挡板11开度,从而提前增加燃烬风实现降低左侧屏过壁温;另一方面利用左侧屛式过热器壁温温度传感器8实测的左侧壁温送入左侧屏过壁温当前值限幅模块32和左侧屏过壁温当前值温升速率限速模块33进行判断,通过左侧第二或模块34判断任意一个超限即发送超温信号送入左侧减温水/燃尽风控制指令偏置模块36生成燃烬风偏置指令和减温水调门开度偏置指令,从而实现左侧一级减温水调节阀3和左侧燃烬风挡板11的实时控制,避免屏过壁温超温;In the same way, the calculated maximum value of the left screen passing wall temperature, the average value of the left screen passing wall temperature, the low temperature superheater wall temperature average value, the left first stage desuperheating water change rate and the unit load are sent to the left screen passing The wall temperature prediction model calculation module 22 performs calculation to obtain the maximum wall temperature prediction value of the left screen passing through, and sends it to the left screen passing wall temperature prediction limiting module 29 and the left screen passing wall temperature prediction temperature rise rate speed limiting module 30 for processing. Judging whether it exceeds the limit, the first or module 31 on the left side judges that any one exceeds the limit, that is, sends an over-temperature signal and sends it to the left desuperheating water/burning air control command bias module 36 to generate a burning ember wind bias command to control the left side combustion. The opening of the ember air baffle is 11 degrees, thereby increasing the combustion air in advance to reduce the wall temperature of the left side screen; on the other hand, the left side wall temperature measured by the wall temperature sensor 8 of the left side superheater is sent to the left side screen. The wall temperature current value limiting module 32 and the left screen pass the wall temperature current value temperature rise rate speed limiting module 33 to judge, and the second or module 34 on the left judges that any one exceeds the limit, that is, sends an over-temperature signal to the left side to reduce the temperature. The warm water/over-burning air control command bias module 36 generates the burning air bias command and the desuperheating water gate opening bias command, so as to realize the real-time monitoring of the left primary desuperheating water regulating valve 3 and the left burning air baffle 11 Control, avoid screen over temperature and over temperature;

最后,将右侧屏过壁温平均值计算存储模块14和左侧屏过壁温平均值计算存储模块18计算的左右侧屏过壁温平均值送入燃尽风控制指令偏置模块37进行判断,当两侧壁温偏差大于保护设定值时,从而产生燃烬风控制偏置指令进行左侧燃烬风挡板11和右侧燃烬风挡板12的控制,开大壁温较高一侧的燃烬风挡板开度、降低温度较低一侧的燃烬风挡板开度,从而实现降低两侧屏过壁温偏差。Finally, the left and right side screen cross-wall temperature average values calculated by the right side screen cross-wall temperature average value calculation storage module 14 and the left side screen cross-wall temperature average value calculation storage module 18 are sent to the overburning wind control command bias module 37 for processing. It is judged that when the temperature deviation of the two side walls is greater than the protection set value, the combustion wind control bias command is generated to control the left combustion wind damper 11 and the right combustion wind damper 12, and the larger the wall temperature is higher. The opening degree of the combustion air baffle on the high side and the opening degree of the combustion air baffle on the lower temperature side are reduced, so as to reduce the temperature deviation of the screen on both sides.

和现有技术相比较,本发明具备如下优点:Compared with the prior art, the present invention has the following advantages:

(1)现有技术只是在锅炉过热器、再热器、水冷壁等部位的管壁金属处安装大量的热电偶壁温测点来实现壁温测量,利用单独的监视系统或者直接接入DCS系统直接监视;该方法只能够测得当前时刻温度值,只有测点发生超温现象时才会发出报警,由于测点较多,无法快速判断超温部位及超温情况。另一方面,运行人员在壁温超温监盘过程中无法对大量的壁温测点进行实时判断、并且当发生超温报警是在进行控制操作处理,不能及时解决超温问题,对锅炉运行安全带来了不利的影响。本发明在现有壁温测点的基础上进行的开发,没有增添壁温测点改造,通过壁温预测和壁温控制即可实现壁温超温预测和超温闭环控制,有效降低屏过壁温超温风险。(1) The existing technology only installs a large number of thermocouple wall temperature measuring points at the tube wall metal of the boiler superheater, reheater, water wall and other parts to realize wall temperature measurement, using a separate monitoring system or directly connecting to DCS The system directly monitors; this method can only measure the temperature value at the current moment, and an alarm will only be issued when the over-temperature phenomenon occurs at the measuring point. On the other hand, the operators cannot make real-time judgments on a large number of wall temperature measurement points during the process of monitoring the wall temperature over-temperature, and when an over-temperature alarm occurs, they are performing control operations and processing, and they cannot solve the over-temperature problem in time. Security has an adverse effect. The invention is developed on the basis of the existing wall temperature measurement points, without adding wall temperature measurement point transformation, and the wall temperature over-temperature prediction and over-temperature closed-loop control can be realized through wall temperature prediction and wall temperature control, which effectively reduces the over-temperature of the screen. Risk of excessive wall temperature.

(2)由于烟道内烟气流动不均匀,极易产生左右屏式过热器壁温差异过大,造成一侧发生超温风险,目前除了燃烧调整也没有较好的控制方法。本发明在判断出现左右壁温差异较大风险时,短时间内借助上层燃烬风挡板的调节作用,实现了辅助调整烟气流动的目的,降低超温的风险,进一步丰富了燃烬风挡板的自动控制功能。(2) Due to the uneven flow of flue gas in the flue, it is easy to cause the wall temperature difference between the left and right screen superheaters to be too large, resulting in the risk of overtemperature on one side. At present, there is no better control method except for combustion adjustment. When it is judged that there is a large risk of the difference between the left and right wall temperatures, the invention realizes the purpose of assisting the adjustment of the flue gas flow by means of the adjustment function of the upper layer of the combustion air baffle in a short period of time, reduces the risk of over-temperature, and further enriches the combustion air. Automatic control function of the shutter.

(3)本发明通过壁温提前预测,预测超温时,通过燃尽风调节作用来实现提前降低壁温超温。同时也根据实际测温数据,进行实时报警防超温控制,通过真实数据实时调整减温水和燃烬风来完成控制,保证两级保护,从而实现屏式过热器的超温自动保护,对燃煤机组面临的屏过壁温超温问题的解决具有重要的意义。(3) In the present invention, the wall temperature is predicted in advance, and when the over-temperature is predicted, the over-temperature of the wall is reduced in advance by adjusting the effect of the burnout wind. At the same time, according to the actual temperature measurement data, real-time alarm and anti-over-temperature control are carried out, and the desuperheating water and burning air are adjusted in real time to complete the control through real data, so as to ensure two-level protection, so as to realize the over-temperature automatic protection of the screen superheater and prevent the combustion It is of great significance to solve the problem of screen over temperature and over temperature faced by coal generating units.

附图说明Description of drawings

图1为本发明基于壁温预测的燃煤机组屛式过热器超温控制系统示意图。FIG. 1 is a schematic diagram of the over-temperature control system of the coal-fired unit superheater based on wall temperature prediction according to the present invention.

图中附图标记与对应的部件名称说明如下:The reference numerals and corresponding component names in the figure are explained as follows:

1 低温过热器1 Low temperature superheater

2 低温过热器壁温温度传感器2 Low temperature superheater wall temperature sensor

3 左侧一级减温水调节阀3 Left first stage desuperheating water regulating valve

4 左侧一级减温水流量传感器4 Left first stage desuperheating water flow sensor

5 右侧一级减温水调节阀5 Right first stage desuperheating water regulating valve

6 右侧一级减温水流量传感器6 Right first stage desuperheating water flow sensor

7 左侧屛式过热器7 Left side superheater

8 左侧屛式过热器壁温温度传感器8 Wall temperature sensor of left side superheater

9 右侧屛式过热器9 Right side superheater

10 右侧屛式过热器壁温温度传感器10 Wall temperature sensor of the right side superheater

11 左侧燃烬风挡板11 Left ember air baffle

12 右侧燃烬风挡板12 Right ember air baffle

13 右侧屛过壁温最大值计算存储模块13 Storage module for calculating the maximum value of the wall temperature on the right

14 右侧屏过壁温平均值计算存储模块14 The storage module for calculating the average value of the wall temperature of the right screen

15 低温过热器壁温平均值计算存储模块15 Storage module for calculating the average value of low temperature superheater wall temperature

16 右侧一级减温水流量微分计算存储模块16 Storage module for differential calculation of the first-level desuperheating water flow on the right

17 左侧屛过壁温最大值计算存储模块17 The storage module for calculating the maximum value of the wall temperature on the left side

18 左侧屏过壁温平均值计算存储模块18 Storage module for calculating the average value of the left screen across the wall temperature

19 左侧一级减温水流量微分计算存储模块19 Storage module for the differential calculation of the first-level desuperheating water flow on the left

20 机组负荷数据存储模块20 Unit load data storage module

21 右侧屏过壁温预测模型计算模块21 Calculation module of the right screen over-wall temperature prediction model

22 左侧屏过壁温预测模型计算模块22. Calculation module of left screen passing wall temperature prediction model

23 右侧屏过壁温预测限幅模块23 Right screen over-wall temperature prediction limiting module

24 右侧屏过壁温预测温升速率限速模块24 Speed-limiting module for predicting the temperature rise rate of the right screen over the wall temperature

25 右侧第一或模块25 Right first or module

26 右侧屏过壁温当前值限幅模块26 Limiting module for the current value of the right screen cross-wall temperature

27 右侧屏过壁温当前值温升速率限速模块27 Speed limiting module of temperature rise rate and current value of wall temperature on the right side of the screen

28 右侧第二或模块28 Right second or module

29 左侧屏过壁温预测限幅模块29 Left-side panel cross-wall temperature prediction limiting module

30 左侧屏过壁温预测温升速率限速模块30 Speed limiting module for predicting the temperature rise rate of the left screen over the wall temperature

31 左侧第一或模块31 Left first or module

32 左侧屏过壁温当前值限幅模块32 Limiting module for the current value of the left screen across the wall temperature

33 左侧屏过壁温当前值温升速率限速模块33 Speed limiting module for the temperature rise rate of the current value of the wall temperature on the left screen

34 左侧第二或模块34 Left second or module

35 右侧减温水/燃尽风控制指令偏置模块35 Right desuperheating water/overburning air control command bias module

36 左侧减温水/燃尽风控制指令偏置模块36 Left desuperheating water/overburning air control command bias module

37 燃尽风控制指令偏置模块。37 Overburn air control command bias module.

具体实施方式Detailed ways

如图1所示,本发明基于壁温预测的燃煤机组屛式过热器超温控制系统,锅炉给水流经低温过热器1换热后分为左右两路,左侧经过左侧一级减温水调节阀3和左侧一级减温水流量传感器4与左侧屛式过热器7相连,右侧经过右侧一级减温水调节阀5和右侧一级减温水流量传感器6与右侧屛式过热器9相连;低温过热器1上布置有多个低温过热器壁温温度传感器2,左侧屛式过热器7上布置有多个左侧屛式过热器壁温温度传感器8,右侧屛式过热器9上布置有多个右侧屛式过热器壁温温度传感器10;左侧屛式过热器7和右侧屛式过热器9相应侧分别布置有左侧燃烬风挡板11和右侧燃烬风挡板12;右侧屛式过热器壁温温度传感器10与右侧屛式过热器壁温最大值计算存储模块13的输入端和右侧屛式过热器壁温平均值计算存储模块的输入端14连接,低温过热器壁温温度传感器2与低温过热器壁温平均值计算存储模块15的输入端连接,右侧一级减温水流量传感器6与右侧一级减温水流量微分计算存储模块16的输入端连接;同理,左侧屛式过热器壁温温度传感器8与左侧屛式过热器壁温最大值计算存储模块17的输入端和左侧屛式过热器壁温平均值计算存储模块18的输入端连接,左侧一级减温水流量传感器4与左侧一级减温水流量微分计算存储模块19的输入端连接。As shown in Figure 1, the present invention is based on the wall temperature prediction of the over-temperature control system for the superheater of the coal-fired unit. The warm water regulating valve 3 and the left first stage desuperheating water flow sensor 4 are connected to the left side superheater 7, and the right side is connected to the right side through the right first stage desuperheating water regulating valve 5 and the right first stage desuperheating water flow sensor 6. A plurality of low temperature superheater wall temperature sensors 2 are arranged on the low temperature superheater 1; A plurality of wall temperature sensors 10 of the right-hand side-type superheater 9 are arranged; the corresponding sides of the left side-type superheater 7 and the right side-type superheater 9 are respectively arranged with a left-side burner wind baffle 11 and the right side burner wind baffle 12; the right side chimney type superheater wall temperature sensor 10 and the right side chimney type superheater wall temperature maximum value calculation storage module 13 The input end and the right side chimney type superheater wall temperature average value The input end 14 of the calculation storage module is connected, the low temperature superheater wall temperature sensor 2 is connected to the input end of the low temperature superheater wall temperature average calculation storage module 15, and the right first stage desuperheating water flow sensor 6 is connected to the right first stage desuperheating water. The input end of the flow differential calculation storage module 16 is connected; in the same way, the left side wall temperature sensor 8 and the left side wall temperature maximum value calculation storage module 17 are connected to the input end of the left side type superheater. The input end of the wall temperature average value calculation storage module 18 is connected, and the left primary desuperheating water flow sensor 4 is connected to the input end of the left primary desuperheated water flow differential calculation storage module 19 .

右侧屏过壁温最大值计算存储模块13、右侧屏过壁温平均值计算存储模块14、低温过热器壁温平均值计算存储模块15、右侧一级减温水流量微分计算存储模块16和机组负荷数据存储模块20的输出端与右侧屏过壁温预测模型计算模块21的输入端相连,右侧屏过壁温预测模型计算模块21的输出端分别与右侧屏过壁温预测限幅模块23的输入端和温升速率限速模块24的输入端相连,壁温预测限幅模块23的输出端和温升速率限速模块24的输出端与右侧第一或模块25的输入端相连;右侧屛式过热器壁温温度传感器10分别与右侧屏过壁温当前值限幅模块26的输入端和右侧屏过壁温当前值温升速率限速模块27的输入端相连,右侧屏过壁温当前值限幅模块26的输出端和右侧屏过壁温当前值温升速率限速模块27的输出端与右侧第二或模块28的输入端相连;右侧第一或模块25的输出端和右侧第二或模块28的输出端与右侧减温水/燃尽风控制指令偏置模块35的输入端相连生成控制指令,右侧减温水/燃尽风控制指令偏置模块35的输出端连接并控制右侧一级减温水调节阀5和右侧燃烬风挡板12;同理,左侧屏过壁温最大值计算存储模块17、左侧屏过壁温平均值计算存储模块18、低温过热器平均温度计算存储模块15、左侧一级减温水流量微分计算存储模块19和机组负荷数据存储模块20的输出端与左侧屏过壁温预测模型计算模块22的输入端相连;左侧屏过壁温预测模型计算模块22的输出端分别与左侧屏过壁温预测限幅模块29的输入端和左侧屏过壁温预测温升速率限速模块30的输入端相连,左侧屏过壁温预测限幅模块29的输入端和左侧屏过壁温预测温升速率限速模块30的输出端与左侧第一或模块31相连;左侧屛式过热器壁温温度传感器8分别与左侧屏过壁温当前值限幅模块32的输入端和左侧屏过壁温当前值温升速率限速模块33的输入端相连,左侧屏过壁温当前值限幅模块32的输出端和左侧屏过壁温当前值温升速率限速模块33的输出端与左侧第二或模块34相连;左侧第一或模块31的输出端和左侧第二或模块34的输出端与左侧减温水/燃尽风控制指令偏置模块36的输入端相连生成控制指令,左侧减温水/燃尽风控制指令偏置模块36的输出端连接并控制左侧一级减温水调节阀3和左侧燃烬风挡板11;右侧屏过壁温平均值计算存储模块14和左侧屏过壁温平均值计算存储模块18与燃尽风控制指令偏置模块37相连,从而产生燃烬风控制偏置指令进行左侧燃烬风挡板11和右侧燃烬风挡板12的控制。The right screen cross-wall temperature maximum value calculation storage module 13 , the right screen cross-wall temperature average calculation storage module 14 , the low temperature superheater wall temperature average calculation storage module 15 , the right first-level desuperheating water flow differential calculation storage module 16 The output end of the unit load data storage module 20 is connected to the input end of the right screen cross-wall temperature prediction model calculation module 21, and the output end of the right screen cross-wall temperature prediction model calculation module 21 is respectively connected with the right screen cross-wall temperature prediction model. The input end of the limiter module 23 is connected to the input end of the temperature rise rate limiter module 24, and the output end of the wall temperature prediction limiter module 23 and the output end of the temperature rise rate speed limiter module 24 are connected with the first or the right side of the module 25. The input end is connected; the right side wall temperature sensor 10 of the superheater is respectively connected with the input end of the right side screen passing the wall temperature current value limiting module 26 and the input end of the right side screen passing the wall temperature current value temperature rising rate speed limiting module 27 The output end of the current value limiting module 26 of the right screen crosses the wall temperature and the output end of the temperature rise rate limiting module 27 of the current value of the right screen crosses the wall temperature is connected to the input end of the second or module 28 on the right side; The output end of the right first or module 25 and the output end of the right second or module 28 are connected to the input end of the right desuperheating water/burn-out air control command bias module 35 to generate a control command, and the right desuperheating water/burning air The output end of the exhaust air control command bias module 35 is connected to and controls the first-stage desuperheating water regulating valve 5 on the right side and the burner wind baffle 12 on the right side; similarly, the storage module 17 for calculating the maximum value of the wall temperature on the left side screen, the left side The output end of the side screen cross-wall temperature average calculation and storage module 18, the low temperature superheater average temperature calculation and storage module 15, the left first-stage desuperheating water flow differential calculation and storage module 19 and the unit load data storage module 20 are connected to the left screen cross-wall. The input end of the temperature prediction model calculation module 22 is connected; the output end of the left screen cross wall temperature prediction model calculation module 22 is respectively connected with the input end of the left screen cross wall temperature prediction limit module 29 and the left screen cross wall temperature prediction temperature prediction module 29. The input end of the rate limiting module 30 is connected, the input end of the left panel cross-wall temperature prediction limiting module 29 and the output end of the left panel cross-wall temperature prediction temperature rising rate speed limiting module 30 are connected to the left first or module. 31 is connected; the left side wall temperature sensor 8 of the superheater is respectively connected with the input end of the left side screen passing the wall temperature current value limiting module 32 and the input end of the left side screen passing the wall temperature current value temperature rising rate speed limiting module 33 Connected, the output end of the left screen passing wall temperature current value limiting module 32 and the output end of the left screen passing wall temperature current value temperature rising rate speed limiting module 33 are connected with the left second or module 34; The output end of the OR module 31 and the output end of the second left OR module 34 are connected with the input end of the left desuperheating water/burnout air control command bias module 36 to generate a control command, and the left desuperheating water/burnout air control command The output end of the bias module 36 is connected to and controls the left primary desuperheating water regulating valve 3 and the left burner wind baffle 11; The calculation and storage module 18 is connected with the over-burning wind control command biasing module 37, so as to generate a burning wind control bias command to carry out the left burning wind baffle 11 and the burning wind. Control of the right burner wind damper 12.

如图1所示,本发明基于壁温预测的燃煤机组屛式过热器超温控制系统的控制方法为:As shown in Figure 1, the present invention is based on the control method of the over-temperature control system of the coal-fired unit's superheater overheating control system based on wall temperature prediction as follows:

将右侧屛式过热器壁温温度传感器10采集的多个屛式壁温实时数据送入右侧屏过壁温最大值计算存储模块13中计算获得右侧屏过壁温最大值并将历史数据进行存储,同时通过右侧屏过壁温平均值计算存储模块14获得右侧屏过壁温平均值并将历史数据进行存储;将低温过热器壁温温度传感器2测量的壁温送入低温过热器壁温平均值计算存储模块15进行计算获得实时低温过热器壁温平均值并将历史数据进行存储,右侧一级减温水流量传感器6测量的减温水流量数据通过右侧一级减温水流量微分计算存储模块16计算获得右侧一级减温水变化速率;同理通过左侧屛式过热器壁温温度传感器8测量的壁温送入左侧屏过壁温最大值计算存储模块17计算左侧屏过壁温最大值并将历史数据进行存储,通过左侧屏过壁温平均值计算存储模块18计算左侧屏过壁温平均值并将历史数据进行存储;通过左侧一级减温水流量传感器4测量的减温水流量值送入左侧一级减温水流量微分计算存储模块19计算获得左侧减温水变化速率;随后将计算获得的右侧屏过壁温最大值、右侧屏过壁温平均值、低温过热器壁温平均值、右侧一级减温水变化速率以及机组负荷送入右侧屏过壁温预测模型计算模块21进行计算获得右侧屏过最大值壁温预测值,送入右侧屏过壁温预测限幅模块23和右侧屏过壁温预测温升速率限速模块24进行判断是否超限,通过右侧第一或模块25判断任意一个超限即发送超温信号送入右侧减温水/燃尽风控制指令偏置模块35生成燃烬风偏置指令控制右侧燃烬风挡板12开度,从而提前增加燃烬风实现降低右侧屏过壁温,另一方面利用右侧屛式过热器壁温温度传感器10实测的右侧壁温送入右侧屏过壁温当前值限幅模块26和右侧屏过壁温当前值温升速率限速模块27进行判断,通过右侧第二或模块28判断任意一个超限即发送超温信号送入右侧减温水/燃尽风控制指令偏置模块35生成燃烬风偏置指令和减温水调门开度偏置指令,从而实现右侧一级减温水调节阀5和右侧燃烬风挡板12的实时控制,避免屏过壁温超温;The multiple real-time data of the wall temperature collected by the wall temperature sensor 10 of the right-side superheater are sent to the right-side screen cross-wall temperature maximum value calculation and storage module 13 for calculation to obtain the right-side screen cross-wall temperature maximum value and the historical value. The data is stored, and at the same time, the average value of the right screen cross wall temperature is obtained through the right screen cross wall temperature average calculation storage module 14 and the historical data is stored; the wall temperature measured by the low temperature superheater wall temperature sensor 2 is sent to the low temperature. The superheater wall temperature average calculation and storage module 15 calculates and obtains the real-time low temperature superheater wall temperature average value and stores the historical data. The desuperheating water flow data measured by the right first-stage desuperheating water flow sensor 6 The flow differential calculation storage module 16 calculates and obtains the rate of change of the first-level desuperheating water on the right side; similarly, the wall temperature measured by the wall temperature sensor 8 of the left side superheater is sent to the left screen passing the wall temperature maximum value calculation storage module 17 for calculation The maximum value of the cross-wall temperature of the left screen and the historical data are stored, and the average value of the cross-wall temperature of the left screen is calculated by the storage module 18 of the average value of the cross-wall temperature of the left screen and the historical data is stored; The desuperheating water flow value measured by the warm water flow sensor 4 is sent to the left first-level desuperheating water flow differential calculation and storage module 19 to obtain the left desuperheating water change rate; The average value of the wall temperature, the average value of the wall temperature of the low temperature superheater, the rate of change of the first-stage desuperheating water on the right side, and the unit load are sent to the calculation module 21 of the prediction model of the right screen cross-wall temperature prediction model for calculation to obtain the prediction of the maximum value of the wall temperature of the right screen. The value is sent to the right screen cross-wall temperature prediction limit module 23 and the right screen cross-wall temperature prediction temperature rise rate speed limit module 24 to judge whether it exceeds the limit. Send the over-temperature signal to the right desuperheating water/over-burning wind control command bias module 35 to generate the burning wind bias command to control the opening of the right burning wind damper 12, thereby increasing the burning wind in advance and reducing the right screen On the other hand, the right side wall temperature measured by the right side superheater wall temperature sensor 10 is used to send the current value limiter module 26 of the right screen cross wall temperature and the current value temperature rise of the right screen cross wall temperature. The rate-limiting module 27 makes a judgment, and judges that any one of the over-limits is exceeded by the second or module 28 on the right, that is, sends an over-temperature signal to the right-side desuperheating water/burn-out wind control command bias module 35 to generate a burn-out wind bias command and The desuperheating water regulating door opening offset command, so as to realize the real-time control of the first-level desuperheating water regulating valve 5 on the right side and the burner wind baffle 12 on the right side, so as to avoid the over temperature of the screen passing through the wall;

同理,将计算获得的左侧屏过壁温最大值、左侧屏过壁温平均值、低温过热器壁温平均值、左侧一级减温水变化速率以及机组负荷送入左侧屏过壁温预测模型计算模块22进行计算获得左侧屏过最大值壁温预测值,送入左侧屏过壁温预测限幅模块29和左侧屏过壁温预测温升速率限速模块30进行判断是否超限,通过左侧第一或模块31判断任意一个超限即发送超温信号送入左侧减温水/燃尽风控制指令偏置模块36生成燃烬风偏置指令控制左侧燃烬风挡板11开度,从而提前增加燃烬风实现降低左侧屏过壁温;另一方面利用左侧屛式过热器壁温温度传感器8实测的左侧壁温送入左侧屏过壁温当前值限幅模块32和左侧屏过壁温当前值温升速率限速模块33进行判断,通过左侧第二或模块34判断任意一个超限即发送超温信号送入左侧减温水/燃尽风控制指令偏置模块36生成燃烬风偏置指令和减温水调门开度偏置指令,从而实现左侧一级减温水调节阀3和左侧燃烬风挡板11的实时控制,避免屏过壁温超温;In the same way, the calculated maximum value of the left screen passing wall temperature, the average value of the left screen passing wall temperature, the low temperature superheater wall temperature average value, the left first stage desuperheating water change rate and the unit load are sent to the left screen passing The wall temperature prediction model calculation module 22 performs calculation to obtain the maximum wall temperature prediction value of the left screen passing through, and sends it to the left screen passing wall temperature prediction limiting module 29 and the left screen passing wall temperature prediction temperature rise rate speed limiting module 30 for processing. Judging whether it exceeds the limit, the first or module 31 on the left side judges that any one exceeds the limit, that is, sends an over-temperature signal and sends it to the left desuperheating water/burning air control command bias module 36 to generate a burning ember wind bias command to control the left side combustion. The opening of the ember air baffle is 11 degrees, thereby increasing the combustion air in advance to reduce the wall temperature of the left side screen; on the other hand, the left side wall temperature measured by the wall temperature sensor 8 of the left side superheater is sent to the left side screen. The wall temperature current value limiting module 32 and the left screen pass the wall temperature current value temperature rise rate speed limiting module 33 to judge, and the second or module 34 on the left judges that any one exceeds the limit, that is, sends an over-temperature signal to the left side to reduce the temperature. The warm water/over-burning air control command bias module 36 generates the burning air bias command and the desuperheating water gate opening bias command, so as to realize the real-time monitoring of the left primary desuperheating water regulating valve 3 and the left burning air baffle 11 Control, avoid screen over temperature and over temperature;

最后,将右侧屏过壁温平均值计算存储模块14和左侧屏过壁温平均值计算存储模块18计算的左右侧屏过壁温平均值送入燃尽风控制指令偏置模块37进行判断,当两侧壁温偏差大于保护设定值时,从而产生燃烬风控制偏置指令进行左侧燃烬风挡板11和右侧燃烬风挡板12的控制,开大壁温较高一侧的燃烬风挡板开度、降低温度较低一侧的燃烬风挡板开度,从而实现降低两侧屏过壁温偏差。Finally, the left and right side screen cross-wall temperature average values calculated by the right side screen cross-wall temperature average value calculation storage module 14 and the left side screen cross-wall temperature average value calculation storage module 18 are sent to the overburning wind control command bias module 37 for processing. It is judged that when the temperature deviation of the two side walls is greater than the protection set value, the combustion wind control bias command is generated to control the left combustion wind damper 11 and the right combustion wind damper 12, and the larger the wall temperature is higher. The opening degree of the combustion air baffle on the high side and the opening degree of the combustion air baffle on the lower temperature side are reduced, so as to reduce the temperature deviation of the screen on both sides.

Claims (4)

1.基于壁温预测的燃煤机组屛式过热器超温控制系统,其特征在于:锅炉给水流经低温过热器(1)换热后分为左右两路,左侧经过左侧一级减温水调节阀(3)和左侧一级减温水流量传感器(4)与左侧屛式过热器(7)相连,右侧经过右侧一级减温水调节阀(5)和右侧一级减温水流量传感器(6)与右侧屛式过热器(9)相连;低温过热器(1)上布置有多个低温过热器壁温温度传感器(2),左侧屛式过热器(7)上布置有多个左侧屛式过热器壁温温度传感器(8),右侧屛式过热器(9)上布置有多个右侧屛式过热器壁温温度传感器(10);左侧屛式过热器(7)和右侧屛式过热器(9)相应侧分别布置有左侧燃烬风挡板(11)和右侧燃烬风挡板(12);右侧屛式过热器壁温温度传感器(10)与右侧屛式过热器壁温最大值计算存储模块(13)的输入端和右侧屛式过热器壁温平均值计算存储模块的输入端(14)连接,低温过热器壁温温度传感器(2)与低温过热器壁温平均值计算存储模块(15)的输入端连接,右侧一级减温水流量传感器(6)与右侧一级减温水流量微分计算存储模块(16)的输入端连接;同理,左侧屛式过热器壁温温度传感器(8)与左侧屛式过热器壁温最大值计算存储模块(17)的输入端和左侧屛式过热器壁温平均值计算存储模块(18)的输入端连接,左侧一级减温水流量传感器(4)与左侧一级减温水流量微分计算存储模块(19)的输入端连接;1. The over-temperature control system of the coal-fired unit's superheater based on the prediction of wall temperature, is characterized in that: the boiler feed water is divided into left and right after heat exchange through the low-temperature superheater (1), and the left side passes through the first-level reduction of the left side. The warm water regulating valve (3) and the left primary desuperheating water flow sensor (4) are connected to the left side superheater (7), and the right passes through the right primary desuperheating water regulating valve (5) and the right primary desuperheater. The warm water flow sensor (6) is connected to the right-side superheater (9); a plurality of low-temperature superheater wall temperature sensors (2) are arranged on the low-temperature superheater (1), and on the left-hand side-type superheater (7) A plurality of wall temperature sensors (8) are arranged on the left-hand side-type superheater, and a plurality of right-side-type superheater wall temperature sensors (10) are arranged on the right side-type superheater (9). Corresponding sides of the superheater (7) and the right-side superheater (9) are respectively provided with a left-hand combustion air baffle (11) and a right-hand combustion air baffle (12); The temperature sensor (10) is connected to the input end (13) of the storage module (13) for calculating the maximum value of the wall temperature of the right-side superheater and the input end (14) of the storage module for calculating the average value of the wall temperature of the right-side type superheater. The wall temperature sensor (2) is connected to the input end of the low temperature superheater wall temperature average value calculation storage module (15), and the right primary desuperheating water flow sensor (6) is connected to the right primary desuperheated water flow differential calculation storage module (15). 16) is connected to the input end; in the same way, the input end of the left-side slug-type superheater wall temperature sensor (8) and the left-side s-type superheater maximum wall temperature calculation storage module (17) and the left-side slug-type superheater The input end of the wall temperature average value calculation storage module (18) is connected, and the left first stage desuperheating water flow sensor (4) is connected with the input end of the left first stage desuperheating water flow differential calculation storage module (19); 右侧屏过壁温最大值计算存储模块(13)、右侧屏过壁温平均值计算存储模块(14)、低温过热器壁温平均值计算存储模块(15)、右侧一级减温水流量微分计算存储模块(16)和机组负荷数据存储模块(20)的输出端与右侧屏过壁温预测模型计算模块(21)的输入端相连,右侧屏过壁温预测模型计算模块(21)的输出端分别与右侧屏过壁温预测限幅模块(23)的输入端和温升速率限速模块(24)的输入端相连,壁温预测限幅模块(23)的输出端和温升速率限速模块(24)的输出端与右侧第一或模块(25)的输入端相连;右侧屛式过热器壁温温度传感器(10)分别与右侧屏过壁温当前值限幅模块(26)的输入端和右侧屏过壁温当前值温升速率限速模块(27)的输入端相连,右侧屏过壁温当前值限幅模块(26)的输出端和右侧屏过壁温当前值温升速率限速模块(27)的输出端与右侧第二或模块(28)的输入端相连;右侧第一或模块(25)的输出端和右侧第二或模块(28)的输出端与右侧减温水/燃尽风控制指令偏置模块(35)的输入端相连生成控制指令,右侧减温水/燃尽风控制指令偏置模块(35)的输出端连接并控制右侧一级减温水调节阀(5)和右侧燃烬风挡板(12);同理,左侧屏过壁温最大值计算存储模块(17)、左侧屏过壁温平均值计算存储模块(18)、低温过热器平均温度计算存储模块(15)、左侧一级减温水流量微分计算存储模块(19)和机组负荷数据存储模块(20)的输出端与左侧屏过壁温预测模型计算模块(22)的输入端相连;左侧屏过壁温预测模型计算模块(22)的输出端分别与左侧屏过壁温预测限幅模块(29)的输入端和左侧屏过壁温预测温升速率限速模块(30)的输入端相连,左侧屏过壁温预测限幅模块(29)的输入端和左侧屏过壁温预测温升速率限速模块(30)的输出端与左侧第一或模块(31)相连;左侧屛式过热器壁温温度传感器(8)分别与左侧屏过壁温当前值限幅模块(32)的输入端和左侧屏过壁温当前值温升速率限速模块(33)的输入端相连,左侧屏过壁温当前值限幅模块(32)的输出端和左侧屏过壁温当前值温升速率限速模块(33)的输出端与左侧第二或模块(34)相连;左侧第一或模块(31)的输出端和左侧第二或模块(34)的输出端与左侧减温水/燃尽风控制指令偏置模块(36)的输入端相连生成控制指令,左侧减温水/燃尽风控制指令偏置模块(36)的输出端连接并控制左侧一级减温水调节阀(3)和左侧燃烬风挡板(11);右侧屏过壁温平均值计算存储模块(14)和左侧屏过壁温平均值计算存储模块(18)与燃尽风控制指令偏置模块(37)相连,从而产生燃烬风控制偏置指令进行左侧燃烬风挡板(11)和右侧燃烬风挡板(12)的控制。A storage module (13) for calculating the maximum value of the cross-wall temperature of the right screen, a storage module for calculating the average value of the cross-wall temperature of the right screen (14), a storage module for calculating the average value of the wall temperature of the low-temperature superheater (15), and the first-grade desuperheating water on the right The output end of the flow differential calculation and storage module (16) and the unit load data storage module (20) are connected to the input end of the right screen passing wall temperature prediction model calculation module (21), and the right screen passing wall temperature prediction model calculation module ( The output end of 21) is respectively connected with the input end of the right screen cross-wall temperature prediction limiting module (23) and the input end of the temperature rise rate speed limiting module (24), and the output end of the wall temperature prediction limiting module (23) The output end of the temperature rise rate limiting module (24) is connected with the input end of the first or module (25) on the right side; The input end of the value limiting module (26) is connected with the input end of the right side screen cross-wall temperature current value temperature rise rate speed limiting module (27), and the output end of the right screen cross-wall temperature current value limiting module (26) and the output terminal of the right side screen temperature rise rate speed limiting module (27) is connected with the input terminal of the second right or module (28); the output terminal of the right first or module (25) is connected to the right side The output end of the side second or module (28) is connected with the input end of the right desuperheating water/burn-out air control command bias module (35) to generate a control command, and the right desuperheating water/over-burn air control command bias module ( The output end of 35) is connected to and controls the first-stage desuperheating water regulating valve (5) on the right and the ember air baffle (12) on the right; similarly, the storage module (17) for calculating the maximum value of the wall temperature on the left A storage module (18) for calculating the average temperature across the wall of the side screen, a storage module for calculating the average temperature of a low temperature superheater (15), a storage module for calculating the differential flow rate of the first-stage desuperheating water on the left side (19), and a unit load data storage module (20). The output end is connected with the input end of the left screen passing-wall temperature prediction model calculation module (22); the output end of the left screen passing-wall temperature prediction model calculation module (22) is respectively connected with the left screen passing-wall temperature prediction limiting module ( The input end of 29) is connected to the input end of the left screen cross-wall temperature prediction temperature rise rate limiting module (30), and the input end of the left screen cross-wall temperature prediction limiting module (29) is connected to the left screen cross-wall temperature prediction limiter module (29). The output end of the predicted temperature rise rate limiting module (30) is connected to the left first or module (31); the left side wall temperature sensor (8) of the superheater is respectively limited to the current value of the left screen passing wall temperature The input end of the module (32) is connected to the input end of the left screen passing wall temperature current value temperature rise rate limiting module (33), and the output end of the left screen passing wall temperature current value limiting module (32) is connected to the left The output end of the temperature rise rate limiting module (33) of the current value of the screen passing wall temperature is connected with the left second or module (34); the output end of the left first or module (31) is connected with the left second or module (34). The output end of 34) is connected to the input end of the left desuperheating water/burn-out air control command bias module (36) to generate a control command, and the output end of the left desuperheating water/over-burn air control command bias module (36) is connected to And control the left first stage desuperheating water The regulating valve (3) and the left burner wind baffle (11); the right side screen passing the wall temperature average temperature calculation storage module (14) and the left side screen passing the wall temperature average temperature calculation storage module (18) and the burnout wind The control command bias module (37) is connected to generate a combustion wind control bias command to control the left combustion wind damper (11) and the right combustion wind damper (12). 2.根据权利要求1所述的基于壁温预测的燃煤机组屛式过热器超温控制系统,其特征在于:所述的基于壁温预测的燃煤机组屛式过热器超温控制系统一方面包含右侧屏过壁温预测模型计算模块(21)、左侧屏过壁温预测模型计算模块(22),并结合其预测温度通过右侧屏过壁温预测限幅模块(23)、右侧屏过壁温预测温升速率限速模块(24)、左侧屏过壁温预测限幅模块(29)、左侧屏过壁温预测温升速率限速模块(30)进行判断是否超限报警;另一方面包含左侧屛式过热器壁温温度传感器8、右侧屛式过热器壁温温度传感器(10),并结合其实测的左、右侧壁温通过右侧屏过壁温当前值限幅模块(26)、右侧屏过壁温当前值温升速率限速模块(27)、左侧屏过壁温当前值限幅模块(32)、左侧屏过壁温当前值温升速率限速模块(33)进行判断是否超限报警。2. the over-temperature control system of the coal-fired unit's flood-type superheater based on wall temperature prediction according to claim 1, is characterized in that: the described coal-fired unit's flood-type superheater over-temperature control system one based on the wall temperature prediction Aspects include a calculation module (21) for the prediction model of the right screen passing through the wall temperature, and a calculation module (22) for the prediction model of the left screen passing through the wall temperature, and combined with the predicted temperature through the right screen passing through the wall temperature prediction limit module (23), The right screen cross-wall temperature prediction temperature rise rate limit module (24), the left screen cross-wall temperature prediction limit module (29), and the left screen cross-wall temperature prediction temperature rise rate speed limit module (30) determine whether Over-limit alarm; on the other hand, it includes the left side-type superheater wall temperature sensor 8 and the right side-type superheater wall temperature sensor (10), combined with the measured left and right side wall temperatures through the right screen Wall temperature current value limiting module (26), right screen passing wall temperature current value temperature rise rate speed limiting module (27), left screen passing wall temperature current value limiting module (32), left screen passing wall temperature The current value temperature rise rate speed limiting module (33) judges whether an over-limit alarm is given. 3.根据权利要求1所述的基于壁温预测的燃煤机组屛式过热器超温控制系统,其特征在于:所述左侧燃烬风挡板(11)和右侧燃烬风挡板(12)属于锅炉二次风系统,布置于锅炉的四周,分别选取位于左侧屛式过热器(7)和右侧屛式过热器(9)的对应侧的燃烬风挡板来控制屛式过热器超温问题以及两侧烟气流动不均匀导致的壁温偏差大的问题。3. the over-temperature control system of the coal-fired unit's superheater based on wall temperature prediction according to claim 1, it is characterized in that: described left side burning ember wind baffle (11) and right burning ember wind baffle (12) It belongs to the secondary air system of the boiler, which is arranged around the boiler, and the combustion air baffles located on the corresponding sides of the left-side superheater (7) and the right-side superheater (9) are selected to control the fire The problem of over-temperature of the superheater and the large deviation of wall temperature caused by the uneven flow of flue gas on both sides. 4.权利要求1至3任一项所述的基于壁温预测的燃煤机组屛式过热器超温控制系统的控制方法为:其特征在于:4. the control method of the over-temperature control system of the coal-fired unit's superheater overheating system based on the prediction of wall temperature according to any one of claims 1 to 3 is: it is characterized in that: 将右侧屛式过热器壁温温度传感器(10)采集的多个屛式壁温实时数据送入右侧屏过壁温最大值计算存储模块(13)中计算获得右侧屏过壁温最大值并将历史数据进行存储,同时通过右侧屏过壁温平均值计算存储模块(14)获得右侧屏过壁温平均值并将历史数据进行存储;将低温过热器壁温温度传感器(2)测量的壁温送入低温过热器壁温平均值计算存储模块(15)进行计算获得实时低温过热器壁温平均值并将历史数据进行存储,右侧一级减温水流量传感器(6)测量的减温水流量数据通过右侧一级减温水流量微分计算存储模块(16)计算获得右侧一级减温水变化速率;同理通过左侧屛式过热器壁温温度传感器(8)测量的壁温送入左侧屏过壁温最大值计算存储模块(17)计算左侧屏过壁温最大值并将历史数据进行存储,通过左侧屏过壁温平均值计算存储模块(18)计算左侧屏过壁温平均值并将历史数据进行存储;通过左侧一级减温水流量传感器(4)测量的减温水流量值送入左侧一级减温水流量微分计算存储模块(19)计算获得左侧减温水变化速率;随后将计算获得的右侧屏过壁温最大值、右侧屏过壁温平均值、低温过热器壁温平均值、右侧一级减温水变化速率以及机组负荷送入右侧屏过壁温预测模型计算模块(21)进行计算获得右侧屏过最大值壁温预测值,送入右侧屏过壁温预测限幅模块(23)和右侧屏过壁温预测温升速率限速模块(24)进行判断是否超限,通过右侧第一或模块(25)判断任意一个超限即发送超温信号送入右侧减温水/燃尽风控制指令偏置模块(35)生成燃烬风偏置指令控制右侧燃烬风挡板(12)开度,从而提前增加燃烬风实现降低右侧屏过壁温,另一方面利用右侧屛式过热器壁温温度传感器(10)实测的右侧壁温送入右侧屏过壁温当前值限幅模块(26)和右侧屏过壁温当前值温升速率限速模块(27)进行判断,通过右侧第二或模块(28)判断任意一个超限即发送超温信号送入右侧减温水/燃尽风控制指令偏置模块(35)生成燃烬风偏置指令和减温水调门开度偏置指令,从而实现右侧一级减温水调节阀(5)和右侧燃烬风挡板(12)的实时控制,避免屏过壁温超温;The multiple real-time data of the wall temperature collected by the wall temperature sensor (10) of the right-side type superheater are sent to the calculation and storage module (13) for calculating the maximum value of the right-side screen passing-wall temperature to obtain the maximum value of the right-side screen passing-wall temperature. value and store the historical data, and at the same time obtain the average value of the right screen cross-wall temperature through the right screen cross-wall temperature average calculation and storage module (14) and store the historical data; store the low-temperature superheater wall temperature sensor (2 ) measured wall temperature is sent to the low temperature superheater wall temperature average calculation storage module (15) for calculation to obtain the real-time low temperature superheater wall temperature average value and the historical data is stored, and the first-level desuperheating water flow sensor (6) on the right side measures The desuperheating water flow rate data on the right is calculated by the first-stage desuperheating water flow differential calculation and storage module (16) on the right to obtain the change rate of the first-stage desuperheating water on the right; The temperature is sent to the left screen cross-wall temperature maximum value calculation and storage module (17) to calculate the left screen cross-wall temperature maximum value and store the historical data, and the left screen cross-wall temperature average value calculation storage module (18) calculates the left screen cross-wall temperature. The average value of the cross-wall temperature of the side screen and the historical data are stored; the desuperheating water flow value measured by the left first-stage desuperheating water flow sensor (4) is sent to the left first-stage desuperheating water flow differential calculation and storage module (19) for calculation to obtain The rate of change of the desuperheating water on the left side; then the calculated maximum value of the right screen passing wall temperature, the average value of the right screen passing wall temperature, the average value of the wall temperature of the low temperature superheater, the change rate of the first stage desuperheating water on the right side, and the unit load are sent to Enter the calculation module (21) for the prediction model of the right screen over-the-wall temperature to obtain the predicted value of the right screen over-the-wall maximum temperature, and send it to the right-side screen over-the-wall temperature prediction limiting module (23) and the right screen over-the-wall temperature The predicted temperature rise rate speed limit module (24) judges whether it exceeds the limit, and the first or module (25) on the right side judges that any one exceeds the limit, that is, an overtemperature signal is sent to the right desuperheating water/burnout air control command bias The module (35) generates a combustion air bias command to control the opening of the right combustion air baffle (12), thereby increasing the combustion air in advance to reduce the temperature of the right panel passing through the wall. The right side wall temperature actually measured by the wall temperature sensor (10) is sent to the right side screen passing wall temperature current value limiting module (26) and the right side screen passing wall temperature current value temperature rising rate speed limiting module (27) for judgment, The second OR module (28) on the right side judges that any one exceeds the limit, that is, an over-temperature signal is sent to the right desuperheating water/over-burning air control command and bias module (35) to generate the burning air bias command and the desuperheating water adjustment door to open. It can realize the real-time control of the first-stage desuperheating water regulating valve (5) on the right side and the ember air baffle (12) on the right side, so as to avoid the over-temperature of the screen passing through the wall; 同理,将计算获得的左侧屏过壁温最大值、左侧屏过壁温平均值、低温过热器壁温平均值、左侧一级减温水变化速率以及机组负荷送入左侧屏过壁温预测模型计算模块(22)进行计算获得左侧屏过最大值壁温预测值,送入左侧屏过壁温预测限幅模块(29)和左侧屏过壁温预测温升速率限速模块(30)进行判断是否超限,通过左侧第一或模块(31)判断任意一个超限即发送超温信号送入左侧减温水/燃尽风控制指令偏置模块(36)生成燃烬风偏置指令控制左侧燃烬风挡板(11)开度,从而提前增加燃烬风实现降低左侧屏过壁温;另一方面利用左侧屛式过热器壁温温度传感器(8)实测的左侧壁温送入左侧屏过壁温当前值限幅模块(32)和左侧屏过壁温当前值温升速率限速模块(33)进行判断,通过左侧第二或模块(34)判断任意一个超限即发送超温信号送入左侧减温水/燃尽风控制指令偏置模块(36)生成燃烬风偏置指令和减温水调门开度偏置指令,从而实现左侧一级减温水调节阀(3)和左侧燃烬风挡板(11)的实时控制,避免屏过壁温超温;In the same way, the calculated maximum value of the left screen passing wall temperature, the average value of the left screen passing wall temperature, the low temperature superheater wall temperature average value, the left first stage desuperheating water change rate and the unit load are sent to the left screen passing The wall temperature prediction model calculation module (22) performs calculation to obtain the predicted value of the maximum wall temperature over the left screen, and sends it to the left screen over the wall temperature prediction limit module (29) and the left screen over the wall temperature prediction temperature rise rate limit. The speed module (30) judges whether it exceeds the limit, and the left first or module (31) judges that any one exceeds the limit, that is, sends an over-temperature signal to the left desuperheating water/burn-out air control command bias module (36) to generate The burner wind bias command controls the opening of the left burner wind baffle (11), thereby increasing the burner wind in advance to reduce the wall temperature of the left screen; on the other hand, the left side wall temperature sensor ( 8) The measured left wall temperature is sent to the current value limiting module (32) of the left screen passing wall temperature and the left screen passing wall temperature current value temperature rising rate speed limiting module (33) for judgment. Or the module (34) judges that any one exceeds the limit and sends the over-temperature signal to the left desuperheating water/over-burning air control command bias module (36) to generate the burning air bias command and the desuperheating water door opening bias command, Thereby, the real-time control of the left first-stage desuperheating water regulating valve (3) and the left burner wind baffle (11) is realized, so as to avoid the over temperature of the screen passing through the wall; 最后,将右侧屏过壁温平均值计算存储模块(14)和左侧屏过壁温平均值计算存储模块(18)计算的左右侧屏过壁温平均值送入燃尽风控制指令偏置模块(37)进行判断,当两侧壁温偏差大于保护设定值时,从而产生燃烬风控制偏置指令进行左侧燃烬风挡板(11)和右侧燃烬风挡板(12)的控制,开大壁温较高一侧的燃烬风挡板开度、降低温度较低一侧的燃烬风挡板开度,从而实现降低两侧屏过壁温偏差。Finally, the average value of the left and right side screen passing wall temperature calculated by the right side screen passing wall temperature average temperature calculation storage module (14) and the left side screen passing wall temperature mean value calculation storage module (18) is sent to the overburning wind control command bias The module (37) is set to judge, and when the temperature deviation of the two side walls is greater than the protection set value, a combustion wind control bias command is generated to execute the left combustion wind damper (11) and the right combustion wind damper ( 12), increase the opening of the air baffle on the side with the higher wall temperature, and reduce the opening of the air baffle on the side with the lower temperature, so as to reduce the deviation of the wall temperature on both sides of the screen.
CN202011100939.7A 2020-10-15 2020-10-15 Over-temperature control system and method for platen superheater of coal-fired unit based on wall temperature prediction Active CN112097244B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011100939.7A CN112097244B (en) 2020-10-15 2020-10-15 Over-temperature control system and method for platen superheater of coal-fired unit based on wall temperature prediction

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011100939.7A CN112097244B (en) 2020-10-15 2020-10-15 Over-temperature control system and method for platen superheater of coal-fired unit based on wall temperature prediction

Publications (2)

Publication Number Publication Date
CN112097244A true CN112097244A (en) 2020-12-18
CN112097244B CN112097244B (en) 2025-01-24

Family

ID=73782770

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011100939.7A Active CN112097244B (en) 2020-10-15 2020-10-15 Over-temperature control system and method for platen superheater of coal-fired unit based on wall temperature prediction

Country Status (1)

Country Link
CN (1) CN112097244B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115355492A (en) * 2022-07-04 2022-11-18 西安热工研究院有限公司 A method for active suppression of boiler wall temperature overheating

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6449802A (en) * 1987-08-19 1989-02-27 Hitachi Ltd Method of controlling temperature of steam of power plant
JPH08121704A (en) * 1994-10-20 1996-05-17 Babcock Hitachi Kk Steam temperature control apparatus for boiler
CN103277784A (en) * 2013-05-23 2013-09-04 国家电网公司 Supercritical coal-fired unit platen superheater metal wall temperature early-warning optimal control method
CN105090932A (en) * 2014-07-08 2015-11-25 辽宁东科电力有限公司 Superheater metal wall temperature control method for thermal power unit
CN106949457A (en) * 2017-05-10 2017-07-14 西安西热控制技术有限公司 A kind of super critical boiler pendant superheater overtemperture control system and method
CN110531797A (en) * 2019-05-31 2019-12-03 华电国际电力股份有限公司技术服务分公司 Extra-supercritical unit high temperature superheater wall temperature prediction technique neural network based
CN111102559A (en) * 2019-11-28 2020-05-05 中国大唐集团科学技术研究院有限公司火力发电技术研究院 Screen type superheater steam temperature control method based on double neural network inverse model
CN213686786U (en) * 2020-10-15 2021-07-13 西安热工研究院有限公司 Coal-fired unit platen superheater overtemperature control system based on wall temperature prediction

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6449802A (en) * 1987-08-19 1989-02-27 Hitachi Ltd Method of controlling temperature of steam of power plant
JPH08121704A (en) * 1994-10-20 1996-05-17 Babcock Hitachi Kk Steam temperature control apparatus for boiler
CN103277784A (en) * 2013-05-23 2013-09-04 国家电网公司 Supercritical coal-fired unit platen superheater metal wall temperature early-warning optimal control method
CN105090932A (en) * 2014-07-08 2015-11-25 辽宁东科电力有限公司 Superheater metal wall temperature control method for thermal power unit
CN106949457A (en) * 2017-05-10 2017-07-14 西安西热控制技术有限公司 A kind of super critical boiler pendant superheater overtemperture control system and method
CN110531797A (en) * 2019-05-31 2019-12-03 华电国际电力股份有限公司技术服务分公司 Extra-supercritical unit high temperature superheater wall temperature prediction technique neural network based
CN111102559A (en) * 2019-11-28 2020-05-05 中国大唐集团科学技术研究院有限公司火力发电技术研究院 Screen type superheater steam temperature control method based on double neural network inverse model
CN213686786U (en) * 2020-10-15 2021-07-13 西安热工研究院有限公司 Coal-fired unit platen superheater overtemperature control system based on wall temperature prediction

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115355492A (en) * 2022-07-04 2022-11-18 西安热工研究院有限公司 A method for active suppression of boiler wall temperature overheating
CN115355492B (en) * 2022-07-04 2024-12-20 西安热工研究院有限公司 A method for actively suppressing overheating of boiler wall temperature

Also Published As

Publication number Publication date
CN112097244B (en) 2025-01-24

Similar Documents

Publication Publication Date Title
CN103759277B (en) Coal-fired power station boiler intelligent ash blowing closed loop control method, device and system
JP4131859B2 (en) Steam temperature control device, steam temperature control method, and power plant using them
CN103674333B (en) A kind of real-time identification method of coal fired power plant as-fired coal net calorific value
CN112859780B (en) Thermal power plant intelligent combustion control method based on cloud data and cloud computing
CN103277784B (en) Supercritical coal-fired units pendant superheater tube wall temperature early warning optimal control method
CN112381210B (en) Coal-fired unit water-cooling wall temperature prediction neural network model
CN103309314B (en) Supercritical coal-fired units high temperature superheater tube wall temperature early warning optimal control method
CN106949457B (en) Supercritical boiler platen superheater overtemperature control system and method
CN106773955A (en) A kind of boiler soot-blowing optimizes system and its optimization method
CN113418207B (en) Power station hearth combustion monitoring and diagnosing device and method
CN213362403U (en) Coal-fired unit water-cooled wall overtemperature control system based on wall temperature prediction
CN112097232A (en) Water-cooled wall over-temperature control system and method for coal-fired units based on wall temperature prediction
CN113358692A (en) Arrangement method for measuring points of outer wall temperature of high-temperature heated surface of boiler and temperature detection system
CN112097243A (en) Overtemperature control system and method for high temperature superheater of coal-fired unit based on wall temperature prediction
CN112097244A (en) Wall temperature prediction-based screen type superheater overtemperature control system and method for coal-fired unit
CN206803122U (en) A kind of super critical boiler pendant superheater overtemperture control system
CN112396162B (en) Neural network model for predicting wall temperature of screen type superheater of coal-fired unit
CN213686786U (en) Coal-fired unit platen superheater overtemperature control system based on wall temperature prediction
CN110298502A (en) Based on the boiler optimum oxygen calculation method that efficiency is optimal
CN109635341A (en) A kind of pressure containing part life-span prediction method of three flue double reheat boiler of tail portion
CN213453601U (en) Coal-fired unit high temperature over-temperature control system based on wall temperature prediction
CN116776770B (en) CFD numerical simulation coupling BP neural network based method for relieving high-temperature corrosion of boiler
CN112381296B (en) Neural network model for predicting wall temperature of high-temperature superheater of coal-fired unit
CN104102842B (en) Nitrogen oxide emission predicting method and device based on economic index parameters
CN116300529A (en) Hearth water-cooled wall semi-physical simulation system based on RT-LAB

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant