CN112097244A - Wall temperature prediction-based screen type superheater overtemperature control system and method for coal-fired unit - Google Patents
Wall temperature prediction-based screen type superheater overtemperature control system and method for coal-fired unit Download PDFInfo
- Publication number
- CN112097244A CN112097244A CN202011100939.7A CN202011100939A CN112097244A CN 112097244 A CN112097244 A CN 112097244A CN 202011100939 A CN202011100939 A CN 202011100939A CN 112097244 A CN112097244 A CN 112097244A
- Authority
- CN
- China
- Prior art keywords
- wall temperature
- temperature
- module
- screen
- superheater
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 17
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 113
- 230000001105 regulatory effect Effects 0.000 claims abstract description 22
- 238000004364 calculation method Methods 0.000 claims description 86
- 238000002485 combustion reaction Methods 0.000 claims description 30
- 238000012821 model calculation Methods 0.000 claims description 15
- 230000008859 change Effects 0.000 claims description 14
- 230000000630 rising effect Effects 0.000 claims description 10
- 238000013500 data storage Methods 0.000 claims description 7
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 claims description 3
- 239000003546 flue gas Substances 0.000 claims description 3
- 238000013021 overheating Methods 0.000 claims description 2
- 238000005259 measurement Methods 0.000 abstract description 4
- 238000012423 maintenance Methods 0.000 abstract description 2
- 230000008439 repair process Effects 0.000 abstract description 2
- 230000001629 suppression Effects 0.000 abstract description 2
- 238000009529 body temperature measurement Methods 0.000 description 9
- 238000012544 monitoring process Methods 0.000 description 8
- 238000012545 processing Methods 0.000 description 5
- 238000013528 artificial neural network Methods 0.000 description 4
- 238000004458 analytical method Methods 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 230000002411 adverse Effects 0.000 description 2
- 230000009172 bursting Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000007774 longterm Effects 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 238000001363 water suppression through gradient tailored excitation Methods 0.000 description 2
- 206010040844 Skin exfoliation Diseases 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 239000003245 coal Substances 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000002045 lasting effect Effects 0.000 description 1
- 238000010248 power generation Methods 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F22—STEAM GENERATION
- F22G—SUPERHEATING OF STEAM
- F22G5/00—Controlling superheat temperature
- F22G5/02—Applications of combustion-control devices, e.g. tangential-firing burners, tilting burners
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F22—STEAM GENERATION
- F22G—SUPERHEATING OF STEAM
- F22G5/00—Controlling superheat temperature
- F22G5/20—Controlling superheat temperature by combined controlling procedures
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Air Supply (AREA)
- Control Of Steam Boilers And Waste-Gas Boilers (AREA)
Abstract
基于壁温预测的燃煤机组屛式过热器超温控制系统及方法,该系统一方面结合实际测量信号进行屛式过热器壁温最大值预测,并将其与限幅模块、升速率限速模块结合,实现预测值参与超温控制;另一方面,将屛式过热器实测壁温信号也与限幅模块、升速率限速模块结合实现实测值参与控制方案;通过调节燃烬风挡板、一级减温水调节阀等设备,从而形成了基于壁温预测的燃煤机组屛式过热器超温控制系统,实现屏式过热器壁温超温主动抑制调节;本发明同时获得预测壁温及当前壁温的变化趋势,实现超前壁温超温主动抑制,对提高火电厂的运行可靠性,有效降低爆管风险,延长关键设备寿命,降低维护维修成本都具有重要的意义。
A system and method for over-temperature control of a flood-type superheater in a coal-fired unit based on wall temperature prediction. On the one hand, the system combines the actual measurement signal to predict the maximum value of the wall temperature of the flood-type superheater, and compares it with the limiting module, the rate of increase and the speed limit. The combination of modules realizes the predicted value participating in the over-temperature control; on the other hand, the actual measured wall temperature signal of the flood-type superheater is also combined with the amplitude limiting module and the rate-limiting module to realize the participation of the measured value in the control scheme; by adjusting the burner wind baffle , a first-stage desuperheating water regulating valve and other equipment, thus forming a coal-fired unit over-temperature control system for the superheater of the coal-fired unit based on the prediction of the wall temperature, and realizing the active suppression and adjustment of the wall temperature of the screen superheater; the present invention obtains the predicted wall temperature at the same time. It is of great significance to improve the operational reliability of thermal power plants, effectively reduce the risk of pipe burst, prolong the life of key equipment, and reduce maintenance and repair costs.
Description
技术领域technical field
本发明涉及燃煤机组的自动控制领域,具体涉及基于壁温预测的燃煤机组屛式过热器超温控制系统及方法。The invention relates to the field of automatic control of coal-fired units, in particular to a system and method for over-temperature control of a flood-type superheater of a coal-fired unit based on wall temperature prediction.
背景技术Background technique
随着火电机组等级的不断提高,提高蒸汽温度、压力等发电参数是超超临界机组效率提升的重要途径,但蒸汽温度上升对蒸汽管道材料、壁温控制提出了更高要求。受限于材料的蠕变强度及持久强度的制约,温度波动必须在安全裕度以内,由于水冷壁温测量偏差造成不能及时进行参数调整,使水冷壁长时间超温运行势必会增加爆管的风险,另外,目前国内超(超)临界直流锅炉由于对高温过热器金属温度的监控重视不足,容易产生氧化皮脱落堵塞,也极易发生过热器爆管事故。因此对于壁温的实时测量、壁温的提前预测与控制是降低爆管风险的有效途径。With the continuous improvement of the level of thermal power units, improving steam temperature, pressure and other power generation parameters is an important way to improve the efficiency of ultra-supercritical units, but the increase in steam temperature puts forward higher requirements for steam pipeline materials and wall temperature control. Restricted by the creep strength and lasting strength of the material, the temperature fluctuation must be within the safety margin. Due to the deviation of the temperature measurement of the water wall, the parameters cannot be adjusted in time, and the long-term over-temperature operation of the water wall will inevitably increase the risk of pipe bursting. In addition, due to insufficient attention to the monitoring of the metal temperature of the high-temperature superheater, the domestic super (super) critical once-through boiler is prone to oxide skin peeling and blockage, and the superheater tube burst accident is also very likely to occur. Therefore, the real-time measurement of wall temperature and the advance prediction and control of wall temperature are effective ways to reduce the risk of pipe burst.
目前,燃煤机组对于壁温测量和控制方案主要是以下两种:At present, coal-fired units mainly have the following two solutions for wall temperature measurement and control:
1)通过在锅炉过热器、再热器、水冷壁等部位的管壁金属处安装大量的热电偶壁温测点来实现壁温测量,利用单独的监视系统或者直接接入DCS系统直接监视,提高锅炉长期运行的安全行、稳定性;目前该方法对测点周围的环境要求较高,而炉内环境往往较恶劣,对测量的精度和准确性有一定的影响;同时该方法只能够测得当前时刻温度值,由于测点较多,只有测点发生超温现象时才会发出报警,从而运行人员根据实际经验对锅炉参数进行相应的调整。这样会导致运行人员在壁温超温监盘过程中无法对大量的壁温测点进行实时判断、并且当发生超温报警是在进行控制操作处理,不能及时解决超温问题,对锅炉运行安全带来了不利的影响。1) The wall temperature measurement is realized by installing a large number of thermocouple wall temperature measuring points at the tube wall metal of the boiler superheater, reheater, water wall and other parts, using a separate monitoring system or directly connecting to the DCS system for direct monitoring, Improve the safety and stability of the long-term operation of the boiler; at present, this method has higher requirements on the environment around the measuring point, and the environment in the furnace is often harsh, which has a certain impact on the accuracy and accuracy of the measurement; at the same time, this method can only measure To obtain the temperature value at the current moment, due to the large number of measuring points, an alarm will only be issued when the over-temperature phenomenon occurs at the measuring point, so that the operator can adjust the boiler parameters accordingly based on actual experience. In this way, operators cannot make real-time judgments on a large number of wall temperature measurement points during the process of wall temperature over-temperature monitoring, and when an over-temperature alarm occurs, control operations are being performed, and the over-temperature problem cannot be solved in time, which will ensure the safety of boiler operation. adversely affected.
2)通过机理或数理分析方法建立壁温预测模型,从而实现壁温的计算和预测。其中通过水冷壁、过热器等部件的机理建模分析计算壁温,这种方法较为复杂,边界参数较多,电厂实际测点无法给出所有边界参数,且模型不同条件下需要不断修正,因此不符合在线计算的要求,无法实时参与电站壁温闭环控制;基于数理建模分析方法,目前多采用基于人工神经网络的的壁温预测方法,只考虑了外部因素对壁温的影响,采用BP神经网络等静态网络结构对锅炉管壁温度进行预测。对于当前壁温历史数据、上游壁温历史数据以及相关因素的变化速率并未考虑,并未对时序预测神经网络结构、神经网络激活函数等内容进行研究,预测结构较为落后、计算结果较差;并且目前壁温预测仅仅停留在显示阶段,并未使用预测结果参与火电闭环控制。2) The wall temperature prediction model is established by the mechanism or mathematical analysis method, so as to realize the calculation and prediction of the wall temperature. Among them, the wall temperature is calculated by the mechanism modeling analysis of the water-cooled wall, superheater and other components. This method is more complicated and has many boundary parameters. The actual measurement points of the power plant cannot give all boundary parameters, and the model needs to be continuously revised under different conditions. Therefore, It does not meet the requirements of online calculation, and cannot participate in the closed-loop control of the wall temperature of the power station in real time; based on the mathematical modeling analysis method, the wall temperature prediction method based on artificial neural network is mostly used at present, only considering the influence of external factors on the wall temperature, using BP Static network structures such as neural networks can predict boiler tube wall temperature. The current historical data of wall temperature, the historical data of upstream wall temperature and the rate of change of related factors are not considered, and the neural network structure of time series prediction, neural network activation function and other contents have not been studied, and the prediction structure is relatively backward and the calculation results are poor; And the current wall temperature prediction only stays in the display stage, and does not use the prediction results to participate in the closed-loop control of thermal power.
综上所述,现有的壁温超温应对措施和预测手段,仅仅停留在显示报警,从而凭借运行人员经验进行参数更改,并未实现闭环控制。另一方面,壁温预测模型需要优化,从而实现壁温精准预测,实现提前闭环操作避免壁温超温。To sum up, the existing wall temperature over-temperature countermeasures and prediction methods only stay in the display alarm, so that the parameters are changed based on the experience of the operator, and closed-loop control is not realized. On the other hand, the wall temperature prediction model needs to be optimized, so as to achieve accurate prediction of wall temperature and realize early closed-loop operation to avoid over-temperature of wall temperature.
发明内容SUMMARY OF THE INVENTION
为了解决上述现有技术存在的问题,本发明提出了基于壁温预测的燃煤机组屛式过热器超温控制系统及方法,同时获得预测壁温及当前壁温的变化趋势,从而完成壁温超温控制及运行指导,实现超前壁温超温主动抑制,对提高火电厂的运行可靠性,有效降低爆管风险,延长关键设备寿命,降低维护维修成本都具有重要的意义。In order to solve the problems existing in the above-mentioned prior art, the present invention proposes a system and method for over-temperature control of a coal-fired unit superheater based on wall temperature prediction, and simultaneously obtains the change trend of the predicted wall temperature and the current wall temperature, so as to complete the wall temperature Over-temperature control and operation guidance to achieve active suppression of advanced wall temperature and over-temperature are of great significance to improving the operational reliability of thermal power plants, effectively reducing the risk of pipe bursting, extending the life of key equipment, and reducing maintenance and repair costs.
为了达到上述目的,本发明采用如下技术方案:In order to achieve the above object, the present invention adopts the following technical solutions:
基于壁温预测的燃煤机组屛式过热器超温控制系统,锅炉给水流经低温过热器1换热后分为左右两路,左侧经过左侧一级减温水调节阀3和左侧一级减温水流量传感器4与左侧屛式过热器7相连,右侧经过右侧一级减温水调节阀5和右侧一级减温水流量传感器6与右侧屛式过热器9相连;低温过热器1上布置有多个低温过热器壁温温度传感器2,左侧屛式过热器7上布置有多个左侧屛式过热器壁温温度传感器8,右侧屛式过热器9上布置有多个右侧屛式过热器壁温温度传感器10;左侧屛式过热器7和右侧屛式过热器9相应侧分别布置有左侧燃烬风挡板11和右侧燃烬风挡板12;右侧屛式过热器壁温温度传感器10与右侧屛式过热器壁温最大值计算存储模块13的输入端和右侧屛式过热器壁温平均值计算存储模块的输入端14连接,低温过热器壁温温度传感器2与低温过热器壁温平均值计算存储模块15的输入端连接,右侧一级减温水流量传感器6与右侧一级减温水流量微分计算存储模块16的输入端连接;同理,左侧屛式过热器壁温温度传感器8与左侧屛式过热器壁温最大值计算存储模块17的输入端和左侧屛式过热器壁温平均值计算存储模块18的输入端连接,左侧一级减温水流量传感器4与左侧一级减温水流量微分计算存储模块19的输入端连接。Based on the prediction of wall temperature, the over-temperature control system of the superheater of the coal-fired unit, the boiler feed water flows through the low-temperature superheater 1 and is divided into left and right paths after heat exchange. The stage desuperheating
右侧屏过壁温最大值计算存储模块13、右侧屏过壁温平均值计算存储模块14、低温过热器壁温平均值计算存储模块15、右侧一级减温水流量微分计算存储模块16和机组负荷数据存储模块20的输出端与右侧屏过壁温预测模型计算模块21的输入端相连,右侧屏过壁温预测模型计算模块21的输出端分别与右侧屏过壁温预测限幅模块23的输入端和温升速率限速模块24的输入端相连,壁温预测限幅模块23的输出端和温升速率限速模块24的输出端与右侧第一或模块25的输入端相连;右侧屛式过热器壁温温度传感器10分别与右侧屏过壁温当前值限幅模块26的输入端和右侧屏过壁温当前值温升速率限速模块27的输入端相连,右侧屏过壁温当前值限幅模块26的输出端和右侧屏过壁温当前值温升速率限速模块27的输出端与右侧第二或模块28的输入端相连;右侧第一或模块25的输出端和右侧第二或模块28的输出端与右侧减温水/燃尽风控制指令偏置模块35的输入端相连生成控制指令,右侧减温水/燃尽风控制指令偏置模块35的输出端连接并控制右侧一级减温水调节阀5和右侧燃烬风挡板12;同理,左侧屏过壁温最大值计算存储模块17、左侧屏过壁温平均值计算存储模块18、低温过热器平均温度计算存储模块15、左侧一级减温水流量微分计算存储模块19和机组负荷数据存储模块20的输出端与左侧屏过壁温预测模型计算模块22的输入端相连;左侧屏过壁温预测模型计算模块22的输出端分别与左侧屏过壁温预测限幅模块29的输入端和左侧屏过壁温预测温升速率限速模块30的输入端相连,左侧屏过壁温预测限幅模块29的输入端和左侧屏过壁温预测温升速率限速模块30的输出端与左侧第一或模块31相连;左侧屛式过热器壁温温度传感器8分别与左侧屏过壁温当前值限幅模块32的输入端和左侧屏过壁温当前值温升速率限速模块33的输入端相连,左侧屏过壁温当前值限幅模块32的输出端和左侧屏过壁温当前值温升速率限速模块33的输出端与左侧第二或模块34相连;左侧第一或模块31的输出端和左侧第二或模块34的输出端与左侧减温水/燃尽风控制指令偏置模块36的输入端相连生成控制指令,左侧减温水/燃尽风控制指令偏置模块36的输出端连接并控制左侧一级减温水调节阀3和左侧燃烬风挡板11;右侧屏过壁温平均值计算存储模块14和左侧屏过壁温平均值计算存储模块18与燃尽风控制指令偏置模块37相连,从而产生燃烬风控制偏置指令进行左侧燃烬风挡板11和右侧燃烬风挡板12的控制。The right screen cross-wall temperature maximum value
基于壁温预测的燃煤机组屛式过热器超温控制系统的控制方法为:The control method of the over-temperature control system of the superheater of the coal-fired unit based on the prediction of the wall temperature is as follows:
将右侧屛式过热器壁温温度传感器10采集的多个屛式壁温实时数据送入右侧屏过壁温最大值计算存储模块13中计算获得右侧屏过壁温最大值并将历史数据进行存储,同时通过右侧屏过壁温平均值计算存储模块14获得右侧屏过壁温平均值并将历史数据进行存储;将低温过热器壁温温度传感器2测量的壁温送入低温过热器壁温平均值计算存储模块15进行计算获得实时低温过热器壁温平均值并将历史数据进行存储,右侧一级减温水流量传感器6测量的减温水流量数据通过右侧一级减温水流量微分计算存储模块16计算获得右侧一级减温水变化速率;同理通过左侧屛式过热器壁温温度传感器8测量的壁温送入左侧屏过壁温最大值计算存储模块17计算左侧屏过壁温最大值并将历史数据进行存储,通过左侧屏过壁温平均值计算存储模块18计算左侧屏过壁温平均值并将历史数据进行存储;通过左侧一级减温水流量传感器4测量的减温水流量值送入左侧一级减温水流量微分计算存储模块19计算获得左侧减温水变化速率;随后将计算获得的右侧屏过壁温最大值、右侧屏过壁温平均值、低温过热器壁温平均值、右侧一级减温水变化速率以及机组负荷送入右侧屏过壁温预测模型计算模块21进行计算获得右侧屏过最大值壁温预测值,送入右侧屏过壁温预测限幅模块23和右侧屏过壁温预测温升速率限速模块24进行判断是否超限,通过右侧第一或模块25判断任意一个超限即发送超温信号送入右侧减温水/燃尽风控制指令偏置模块35生成燃烬风偏置指令控制右侧燃烬风挡板12开度,从而提前增加燃烬风实现降低右侧屏过壁温,另一方面利用右侧屛式过热器壁温温度传感器10实测的右侧壁温送入右侧屏过壁温当前值限幅模块26和右侧屏过壁温当前值温升速率限速模块27进行判断,通过右侧第二或模块28判断任意一个超限即发送超温信号送入右侧减温水/燃尽风控制指令偏置模块35生成燃烬风偏置指令和减温水调门开度偏置指令,从而实现右侧一级减温水调节阀5和右侧燃烬风挡板12的实时控制,避免屏过壁温超温;The multiple real-time data of the wall temperature collected by the wall temperature sensor 10 of the right-side superheater are sent to the right-side screen cross-wall temperature maximum value calculation and
同理,将计算获得的左侧屏过壁温最大值、左侧屏过壁温平均值、低温过热器壁温平均值、左侧一级减温水变化速率以及机组负荷送入左侧屏过壁温预测模型计算模块22进行计算获得左侧屏过最大值壁温预测值,送入左侧屏过壁温预测限幅模块29和左侧屏过壁温预测温升速率限速模块30进行判断是否超限,通过左侧第一或模块31判断任意一个超限即发送超温信号送入左侧减温水/燃尽风控制指令偏置模块36生成燃烬风偏置指令控制左侧燃烬风挡板11开度,从而提前增加燃烬风实现降低左侧屏过壁温;另一方面利用左侧屛式过热器壁温温度传感器8实测的左侧壁温送入左侧屏过壁温当前值限幅模块32和左侧屏过壁温当前值温升速率限速模块33进行判断,通过左侧第二或模块34判断任意一个超限即发送超温信号送入左侧减温水/燃尽风控制指令偏置模块36生成燃烬风偏置指令和减温水调门开度偏置指令,从而实现左侧一级减温水调节阀3和左侧燃烬风挡板11的实时控制,避免屏过壁温超温;In the same way, the calculated maximum value of the left screen passing wall temperature, the average value of the left screen passing wall temperature, the low temperature superheater wall temperature average value, the left first stage desuperheating water change rate and the unit load are sent to the left screen passing The wall temperature prediction
最后,将右侧屏过壁温平均值计算存储模块14和左侧屏过壁温平均值计算存储模块18计算的左右侧屏过壁温平均值送入燃尽风控制指令偏置模块37进行判断,当两侧壁温偏差大于保护设定值时,从而产生燃烬风控制偏置指令进行左侧燃烬风挡板11和右侧燃烬风挡板12的控制,开大壁温较高一侧的燃烬风挡板开度、降低温度较低一侧的燃烬风挡板开度,从而实现降低两侧屏过壁温偏差。Finally, the left and right side screen cross-wall temperature average values calculated by the right side screen cross-wall temperature average value
和现有技术相比较,本发明具备如下优点:Compared with the prior art, the present invention has the following advantages:
(1)现有技术只是在锅炉过热器、再热器、水冷壁等部位的管壁金属处安装大量的热电偶壁温测点来实现壁温测量,利用单独的监视系统或者直接接入DCS系统直接监视;该方法只能够测得当前时刻温度值,只有测点发生超温现象时才会发出报警,由于测点较多,无法快速判断超温部位及超温情况。另一方面,运行人员在壁温超温监盘过程中无法对大量的壁温测点进行实时判断、并且当发生超温报警是在进行控制操作处理,不能及时解决超温问题,对锅炉运行安全带来了不利的影响。本发明在现有壁温测点的基础上进行的开发,没有增添壁温测点改造,通过壁温预测和壁温控制即可实现壁温超温预测和超温闭环控制,有效降低屏过壁温超温风险。(1) The existing technology only installs a large number of thermocouple wall temperature measuring points at the tube wall metal of the boiler superheater, reheater, water wall and other parts to realize wall temperature measurement, using a separate monitoring system or directly connecting to DCS The system directly monitors; this method can only measure the temperature value at the current moment, and an alarm will only be issued when the over-temperature phenomenon occurs at the measuring point. On the other hand, the operators cannot make real-time judgments on a large number of wall temperature measurement points during the process of monitoring the wall temperature over-temperature, and when an over-temperature alarm occurs, they are performing control operations and processing, and they cannot solve the over-temperature problem in time. Security has an adverse effect. The invention is developed on the basis of the existing wall temperature measurement points, without adding wall temperature measurement point transformation, and the wall temperature over-temperature prediction and over-temperature closed-loop control can be realized through wall temperature prediction and wall temperature control, which effectively reduces the over-temperature of the screen. Risk of excessive wall temperature.
(2)由于烟道内烟气流动不均匀,极易产生左右屏式过热器壁温差异过大,造成一侧发生超温风险,目前除了燃烧调整也没有较好的控制方法。本发明在判断出现左右壁温差异较大风险时,短时间内借助上层燃烬风挡板的调节作用,实现了辅助调整烟气流动的目的,降低超温的风险,进一步丰富了燃烬风挡板的自动控制功能。(2) Due to the uneven flow of flue gas in the flue, it is easy to cause the wall temperature difference between the left and right screen superheaters to be too large, resulting in the risk of overtemperature on one side. At present, there is no better control method except for combustion adjustment. When it is judged that there is a large risk of the difference between the left and right wall temperatures, the invention realizes the purpose of assisting the adjustment of the flue gas flow by means of the adjustment function of the upper layer of the combustion air baffle in a short period of time, reduces the risk of over-temperature, and further enriches the combustion air. Automatic control function of the shutter.
(3)本发明通过壁温提前预测,预测超温时,通过燃尽风调节作用来实现提前降低壁温超温。同时也根据实际测温数据,进行实时报警防超温控制,通过真实数据实时调整减温水和燃烬风来完成控制,保证两级保护,从而实现屏式过热器的超温自动保护,对燃煤机组面临的屏过壁温超温问题的解决具有重要的意义。(3) In the present invention, the wall temperature is predicted in advance, and when the over-temperature is predicted, the over-temperature of the wall is reduced in advance by adjusting the effect of the burnout wind. At the same time, according to the actual temperature measurement data, real-time alarm and anti-over-temperature control are carried out, and the desuperheating water and burning air are adjusted in real time to complete the control through real data, so as to ensure two-level protection, so as to realize the over-temperature automatic protection of the screen superheater and prevent the combustion It is of great significance to solve the problem of screen over temperature and over temperature faced by coal generating units.
附图说明Description of drawings
图1为本发明基于壁温预测的燃煤机组屛式过热器超温控制系统示意图。FIG. 1 is a schematic diagram of the over-temperature control system of the coal-fired unit superheater based on wall temperature prediction according to the present invention.
图中附图标记与对应的部件名称说明如下:The reference numerals and corresponding component names in the figure are explained as follows:
1 低温过热器1 Low temperature superheater
2 低温过热器壁温温度传感器2 Low temperature superheater wall temperature sensor
3 左侧一级减温水调节阀3 Left first stage desuperheating water regulating valve
4 左侧一级减温水流量传感器4 Left first stage desuperheating water flow sensor
5 右侧一级减温水调节阀5 Right first stage desuperheating water regulating valve
6 右侧一级减温水流量传感器6 Right first stage desuperheating water flow sensor
7 左侧屛式过热器7 Left side superheater
8 左侧屛式过热器壁温温度传感器8 Wall temperature sensor of left side superheater
9 右侧屛式过热器9 Right side superheater
10 右侧屛式过热器壁温温度传感器10 Wall temperature sensor of the right side superheater
11 左侧燃烬风挡板11 Left ember air baffle
12 右侧燃烬风挡板12 Right ember air baffle
13 右侧屛过壁温最大值计算存储模块13 Storage module for calculating the maximum value of the wall temperature on the right
14 右侧屏过壁温平均值计算存储模块14 The storage module for calculating the average value of the wall temperature of the right screen
15 低温过热器壁温平均值计算存储模块15 Storage module for calculating the average value of low temperature superheater wall temperature
16 右侧一级减温水流量微分计算存储模块16 Storage module for differential calculation of the first-level desuperheating water flow on the right
17 左侧屛过壁温最大值计算存储模块17 The storage module for calculating the maximum value of the wall temperature on the left side
18 左侧屏过壁温平均值计算存储模块18 Storage module for calculating the average value of the left screen across the wall temperature
19 左侧一级减温水流量微分计算存储模块19 Storage module for the differential calculation of the first-level desuperheating water flow on the left
20 机组负荷数据存储模块20 Unit load data storage module
21 右侧屏过壁温预测模型计算模块21 Calculation module of the right screen over-wall temperature prediction model
22 左侧屏过壁温预测模型计算模块22. Calculation module of left screen passing wall temperature prediction model
23 右侧屏过壁温预测限幅模块23 Right screen over-wall temperature prediction limiting module
24 右侧屏过壁温预测温升速率限速模块24 Speed-limiting module for predicting the temperature rise rate of the right screen over the wall temperature
25 右侧第一或模块25 Right first or module
26 右侧屏过壁温当前值限幅模块26 Limiting module for the current value of the right screen cross-wall temperature
27 右侧屏过壁温当前值温升速率限速模块27 Speed limiting module of temperature rise rate and current value of wall temperature on the right side of the screen
28 右侧第二或模块28 Right second or module
29 左侧屏过壁温预测限幅模块29 Left-side panel cross-wall temperature prediction limiting module
30 左侧屏过壁温预测温升速率限速模块30 Speed limiting module for predicting the temperature rise rate of the left screen over the wall temperature
31 左侧第一或模块31 Left first or module
32 左侧屏过壁温当前值限幅模块32 Limiting module for the current value of the left screen across the wall temperature
33 左侧屏过壁温当前值温升速率限速模块33 Speed limiting module for the temperature rise rate of the current value of the wall temperature on the left screen
34 左侧第二或模块34 Left second or module
35 右侧减温水/燃尽风控制指令偏置模块35 Right desuperheating water/overburning air control command bias module
36 左侧减温水/燃尽风控制指令偏置模块36 Left desuperheating water/overburning air control command bias module
37 燃尽风控制指令偏置模块。37 Overburn air control command bias module.
具体实施方式Detailed ways
如图1所示,本发明基于壁温预测的燃煤机组屛式过热器超温控制系统,锅炉给水流经低温过热器1换热后分为左右两路,左侧经过左侧一级减温水调节阀3和左侧一级减温水流量传感器4与左侧屛式过热器7相连,右侧经过右侧一级减温水调节阀5和右侧一级减温水流量传感器6与右侧屛式过热器9相连;低温过热器1上布置有多个低温过热器壁温温度传感器2,左侧屛式过热器7上布置有多个左侧屛式过热器壁温温度传感器8,右侧屛式过热器9上布置有多个右侧屛式过热器壁温温度传感器10;左侧屛式过热器7和右侧屛式过热器9相应侧分别布置有左侧燃烬风挡板11和右侧燃烬风挡板12;右侧屛式过热器壁温温度传感器10与右侧屛式过热器壁温最大值计算存储模块13的输入端和右侧屛式过热器壁温平均值计算存储模块的输入端14连接,低温过热器壁温温度传感器2与低温过热器壁温平均值计算存储模块15的输入端连接,右侧一级减温水流量传感器6与右侧一级减温水流量微分计算存储模块16的输入端连接;同理,左侧屛式过热器壁温温度传感器8与左侧屛式过热器壁温最大值计算存储模块17的输入端和左侧屛式过热器壁温平均值计算存储模块18的输入端连接,左侧一级减温水流量传感器4与左侧一级减温水流量微分计算存储模块19的输入端连接。As shown in Figure 1, the present invention is based on the wall temperature prediction of the over-temperature control system for the superheater of the coal-fired unit. The warm
右侧屏过壁温最大值计算存储模块13、右侧屏过壁温平均值计算存储模块14、低温过热器壁温平均值计算存储模块15、右侧一级减温水流量微分计算存储模块16和机组负荷数据存储模块20的输出端与右侧屏过壁温预测模型计算模块21的输入端相连,右侧屏过壁温预测模型计算模块21的输出端分别与右侧屏过壁温预测限幅模块23的输入端和温升速率限速模块24的输入端相连,壁温预测限幅模块23的输出端和温升速率限速模块24的输出端与右侧第一或模块25的输入端相连;右侧屛式过热器壁温温度传感器10分别与右侧屏过壁温当前值限幅模块26的输入端和右侧屏过壁温当前值温升速率限速模块27的输入端相连,右侧屏过壁温当前值限幅模块26的输出端和右侧屏过壁温当前值温升速率限速模块27的输出端与右侧第二或模块28的输入端相连;右侧第一或模块25的输出端和右侧第二或模块28的输出端与右侧减温水/燃尽风控制指令偏置模块35的输入端相连生成控制指令,右侧减温水/燃尽风控制指令偏置模块35的输出端连接并控制右侧一级减温水调节阀5和右侧燃烬风挡板12;同理,左侧屏过壁温最大值计算存储模块17、左侧屏过壁温平均值计算存储模块18、低温过热器平均温度计算存储模块15、左侧一级减温水流量微分计算存储模块19和机组负荷数据存储模块20的输出端与左侧屏过壁温预测模型计算模块22的输入端相连;左侧屏过壁温预测模型计算模块22的输出端分别与左侧屏过壁温预测限幅模块29的输入端和左侧屏过壁温预测温升速率限速模块30的输入端相连,左侧屏过壁温预测限幅模块29的输入端和左侧屏过壁温预测温升速率限速模块30的输出端与左侧第一或模块31相连;左侧屛式过热器壁温温度传感器8分别与左侧屏过壁温当前值限幅模块32的输入端和左侧屏过壁温当前值温升速率限速模块33的输入端相连,左侧屏过壁温当前值限幅模块32的输出端和左侧屏过壁温当前值温升速率限速模块33的输出端与左侧第二或模块34相连;左侧第一或模块31的输出端和左侧第二或模块34的输出端与左侧减温水/燃尽风控制指令偏置模块36的输入端相连生成控制指令,左侧减温水/燃尽风控制指令偏置模块36的输出端连接并控制左侧一级减温水调节阀3和左侧燃烬风挡板11;右侧屏过壁温平均值计算存储模块14和左侧屏过壁温平均值计算存储模块18与燃尽风控制指令偏置模块37相连,从而产生燃烬风控制偏置指令进行左侧燃烬风挡板11和右侧燃烬风挡板12的控制。The right screen cross-wall temperature maximum value
如图1所示,本发明基于壁温预测的燃煤机组屛式过热器超温控制系统的控制方法为:As shown in Figure 1, the present invention is based on the control method of the over-temperature control system of the coal-fired unit's superheater overheating control system based on wall temperature prediction as follows:
将右侧屛式过热器壁温温度传感器10采集的多个屛式壁温实时数据送入右侧屏过壁温最大值计算存储模块13中计算获得右侧屏过壁温最大值并将历史数据进行存储,同时通过右侧屏过壁温平均值计算存储模块14获得右侧屏过壁温平均值并将历史数据进行存储;将低温过热器壁温温度传感器2测量的壁温送入低温过热器壁温平均值计算存储模块15进行计算获得实时低温过热器壁温平均值并将历史数据进行存储,右侧一级减温水流量传感器6测量的减温水流量数据通过右侧一级减温水流量微分计算存储模块16计算获得右侧一级减温水变化速率;同理通过左侧屛式过热器壁温温度传感器8测量的壁温送入左侧屏过壁温最大值计算存储模块17计算左侧屏过壁温最大值并将历史数据进行存储,通过左侧屏过壁温平均值计算存储模块18计算左侧屏过壁温平均值并将历史数据进行存储;通过左侧一级减温水流量传感器4测量的减温水流量值送入左侧一级减温水流量微分计算存储模块19计算获得左侧减温水变化速率;随后将计算获得的右侧屏过壁温最大值、右侧屏过壁温平均值、低温过热器壁温平均值、右侧一级减温水变化速率以及机组负荷送入右侧屏过壁温预测模型计算模块21进行计算获得右侧屏过最大值壁温预测值,送入右侧屏过壁温预测限幅模块23和右侧屏过壁温预测温升速率限速模块24进行判断是否超限,通过右侧第一或模块25判断任意一个超限即发送超温信号送入右侧减温水/燃尽风控制指令偏置模块35生成燃烬风偏置指令控制右侧燃烬风挡板12开度,从而提前增加燃烬风实现降低右侧屏过壁温,另一方面利用右侧屛式过热器壁温温度传感器10实测的右侧壁温送入右侧屏过壁温当前值限幅模块26和右侧屏过壁温当前值温升速率限速模块27进行判断,通过右侧第二或模块28判断任意一个超限即发送超温信号送入右侧减温水/燃尽风控制指令偏置模块35生成燃烬风偏置指令和减温水调门开度偏置指令,从而实现右侧一级减温水调节阀5和右侧燃烬风挡板12的实时控制,避免屏过壁温超温;The multiple real-time data of the wall temperature collected by the wall temperature sensor 10 of the right-side superheater are sent to the right-side screen cross-wall temperature maximum value calculation and
同理,将计算获得的左侧屏过壁温最大值、左侧屏过壁温平均值、低温过热器壁温平均值、左侧一级减温水变化速率以及机组负荷送入左侧屏过壁温预测模型计算模块22进行计算获得左侧屏过最大值壁温预测值,送入左侧屏过壁温预测限幅模块29和左侧屏过壁温预测温升速率限速模块30进行判断是否超限,通过左侧第一或模块31判断任意一个超限即发送超温信号送入左侧减温水/燃尽风控制指令偏置模块36生成燃烬风偏置指令控制左侧燃烬风挡板11开度,从而提前增加燃烬风实现降低左侧屏过壁温;另一方面利用左侧屛式过热器壁温温度传感器8实测的左侧壁温送入左侧屏过壁温当前值限幅模块32和左侧屏过壁温当前值温升速率限速模块33进行判断,通过左侧第二或模块34判断任意一个超限即发送超温信号送入左侧减温水/燃尽风控制指令偏置模块36生成燃烬风偏置指令和减温水调门开度偏置指令,从而实现左侧一级减温水调节阀3和左侧燃烬风挡板11的实时控制,避免屏过壁温超温;In the same way, the calculated maximum value of the left screen passing wall temperature, the average value of the left screen passing wall temperature, the low temperature superheater wall temperature average value, the left first stage desuperheating water change rate and the unit load are sent to the left screen passing The wall temperature prediction
最后,将右侧屏过壁温平均值计算存储模块14和左侧屏过壁温平均值计算存储模块18计算的左右侧屏过壁温平均值送入燃尽风控制指令偏置模块37进行判断,当两侧壁温偏差大于保护设定值时,从而产生燃烬风控制偏置指令进行左侧燃烬风挡板11和右侧燃烬风挡板12的控制,开大壁温较高一侧的燃烬风挡板开度、降低温度较低一侧的燃烬风挡板开度,从而实现降低两侧屏过壁温偏差。Finally, the left and right side screen cross-wall temperature average values calculated by the right side screen cross-wall temperature average value
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011100939.7A CN112097244B (en) | 2020-10-15 | 2020-10-15 | Over-temperature control system and method for platen superheater of coal-fired unit based on wall temperature prediction |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011100939.7A CN112097244B (en) | 2020-10-15 | 2020-10-15 | Over-temperature control system and method for platen superheater of coal-fired unit based on wall temperature prediction |
Publications (2)
Publication Number | Publication Date |
---|---|
CN112097244A true CN112097244A (en) | 2020-12-18 |
CN112097244B CN112097244B (en) | 2025-01-24 |
Family
ID=73782770
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202011100939.7A Active CN112097244B (en) | 2020-10-15 | 2020-10-15 | Over-temperature control system and method for platen superheater of coal-fired unit based on wall temperature prediction |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN112097244B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115355492A (en) * | 2022-07-04 | 2022-11-18 | 西安热工研究院有限公司 | A method for active suppression of boiler wall temperature overheating |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6449802A (en) * | 1987-08-19 | 1989-02-27 | Hitachi Ltd | Method of controlling temperature of steam of power plant |
JPH08121704A (en) * | 1994-10-20 | 1996-05-17 | Babcock Hitachi Kk | Steam temperature control apparatus for boiler |
CN103277784A (en) * | 2013-05-23 | 2013-09-04 | 国家电网公司 | Supercritical coal-fired unit platen superheater metal wall temperature early-warning optimal control method |
CN105090932A (en) * | 2014-07-08 | 2015-11-25 | 辽宁东科电力有限公司 | Superheater metal wall temperature control method for thermal power unit |
CN106949457A (en) * | 2017-05-10 | 2017-07-14 | 西安西热控制技术有限公司 | A kind of super critical boiler pendant superheater overtemperture control system and method |
CN110531797A (en) * | 2019-05-31 | 2019-12-03 | 华电国际电力股份有限公司技术服务分公司 | Extra-supercritical unit high temperature superheater wall temperature prediction technique neural network based |
CN111102559A (en) * | 2019-11-28 | 2020-05-05 | 中国大唐集团科学技术研究院有限公司火力发电技术研究院 | Screen type superheater steam temperature control method based on double neural network inverse model |
CN213686786U (en) * | 2020-10-15 | 2021-07-13 | 西安热工研究院有限公司 | Coal-fired unit platen superheater overtemperature control system based on wall temperature prediction |
-
2020
- 2020-10-15 CN CN202011100939.7A patent/CN112097244B/en active Active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6449802A (en) * | 1987-08-19 | 1989-02-27 | Hitachi Ltd | Method of controlling temperature of steam of power plant |
JPH08121704A (en) * | 1994-10-20 | 1996-05-17 | Babcock Hitachi Kk | Steam temperature control apparatus for boiler |
CN103277784A (en) * | 2013-05-23 | 2013-09-04 | 国家电网公司 | Supercritical coal-fired unit platen superheater metal wall temperature early-warning optimal control method |
CN105090932A (en) * | 2014-07-08 | 2015-11-25 | 辽宁东科电力有限公司 | Superheater metal wall temperature control method for thermal power unit |
CN106949457A (en) * | 2017-05-10 | 2017-07-14 | 西安西热控制技术有限公司 | A kind of super critical boiler pendant superheater overtemperture control system and method |
CN110531797A (en) * | 2019-05-31 | 2019-12-03 | 华电国际电力股份有限公司技术服务分公司 | Extra-supercritical unit high temperature superheater wall temperature prediction technique neural network based |
CN111102559A (en) * | 2019-11-28 | 2020-05-05 | 中国大唐集团科学技术研究院有限公司火力发电技术研究院 | Screen type superheater steam temperature control method based on double neural network inverse model |
CN213686786U (en) * | 2020-10-15 | 2021-07-13 | 西安热工研究院有限公司 | Coal-fired unit platen superheater overtemperature control system based on wall temperature prediction |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115355492A (en) * | 2022-07-04 | 2022-11-18 | 西安热工研究院有限公司 | A method for active suppression of boiler wall temperature overheating |
CN115355492B (en) * | 2022-07-04 | 2024-12-20 | 西安热工研究院有限公司 | A method for actively suppressing overheating of boiler wall temperature |
Also Published As
Publication number | Publication date |
---|---|
CN112097244B (en) | 2025-01-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103759277B (en) | Coal-fired power station boiler intelligent ash blowing closed loop control method, device and system | |
JP4131859B2 (en) | Steam temperature control device, steam temperature control method, and power plant using them | |
CN103674333B (en) | A kind of real-time identification method of coal fired power plant as-fired coal net calorific value | |
CN112859780B (en) | Thermal power plant intelligent combustion control method based on cloud data and cloud computing | |
CN103277784B (en) | Supercritical coal-fired units pendant superheater tube wall temperature early warning optimal control method | |
CN112381210B (en) | Coal-fired unit water-cooling wall temperature prediction neural network model | |
CN103309314B (en) | Supercritical coal-fired units high temperature superheater tube wall temperature early warning optimal control method | |
CN106949457B (en) | Supercritical boiler platen superheater overtemperature control system and method | |
CN106773955A (en) | A kind of boiler soot-blowing optimizes system and its optimization method | |
CN113418207B (en) | Power station hearth combustion monitoring and diagnosing device and method | |
CN213362403U (en) | Coal-fired unit water-cooled wall overtemperature control system based on wall temperature prediction | |
CN112097232A (en) | Water-cooled wall over-temperature control system and method for coal-fired units based on wall temperature prediction | |
CN113358692A (en) | Arrangement method for measuring points of outer wall temperature of high-temperature heated surface of boiler and temperature detection system | |
CN112097243A (en) | Overtemperature control system and method for high temperature superheater of coal-fired unit based on wall temperature prediction | |
CN112097244A (en) | Wall temperature prediction-based screen type superheater overtemperature control system and method for coal-fired unit | |
CN206803122U (en) | A kind of super critical boiler pendant superheater overtemperture control system | |
CN112396162B (en) | Neural network model for predicting wall temperature of screen type superheater of coal-fired unit | |
CN213686786U (en) | Coal-fired unit platen superheater overtemperature control system based on wall temperature prediction | |
CN110298502A (en) | Based on the boiler optimum oxygen calculation method that efficiency is optimal | |
CN109635341A (en) | A kind of pressure containing part life-span prediction method of three flue double reheat boiler of tail portion | |
CN213453601U (en) | Coal-fired unit high temperature over-temperature control system based on wall temperature prediction | |
CN116776770B (en) | CFD numerical simulation coupling BP neural network based method for relieving high-temperature corrosion of boiler | |
CN112381296B (en) | Neural network model for predicting wall temperature of high-temperature superheater of coal-fired unit | |
CN104102842B (en) | Nitrogen oxide emission predicting method and device based on economic index parameters | |
CN116300529A (en) | Hearth water-cooled wall semi-physical simulation system based on RT-LAB |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |