JPS6014578A - Infrared ray image pickup device - Google Patents

Infrared ray image pickup device

Info

Publication number
JPS6014578A
JPS6014578A JP58122904A JP12290483A JPS6014578A JP S6014578 A JPS6014578 A JP S6014578A JP 58122904 A JP58122904 A JP 58122904A JP 12290483 A JP12290483 A JP 12290483A JP S6014578 A JPS6014578 A JP S6014578A
Authority
JP
Japan
Prior art keywords
infrared
infrared ray
signal
solid
image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58122904A
Other languages
Japanese (ja)
Inventor
Naoki Yuya
直毅 油谷
Masahiko Denda
伝田 匡彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP58122904A priority Critical patent/JPS6014578A/en
Publication of JPS6014578A publication Critical patent/JPS6014578A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/30Transforming light or analogous information into electric information
    • H04N5/33Transforming infrared radiation

Abstract

PURPOSE:To attain a small-sized, lightweight device at low power consumption and to improve the reliability by using plural infrared ray solidstate image pickup elements having different infrared ray spectral sensitivity characteristic so as to image pickup the same thermal ray image of an object thereby obtaining the temperature distribution and absolute temperature value of the object from a picture signal. CONSTITUTION:The infrared ray solid-state image pickup elements 10, 11 and 12 have different infrared ray spectral sensitivity characteristic from each other by infrared ray band pass filters 13, 14 and 15. Then a picture signal I1 of an infrared ray image having lambda1+ or -DELTAlambda1/2 is outputted to a signal processing circuit 16 from the infrared ray solid-state image pickup element 10, a picture signal I2 of the infrared ray image having lambda2+ or -DELTAlambda2 is outputted to the signal processing circuit 16 from the element 11 and a picture signal I3 of the infrared ray image having lambda3+ or -DELTAlambda3 is outputted to the signal processing circuit 16 from the element 12. The signal processing circuit 16 converts the picture signals I1, I2 and I3 outputted from the infrared ray solid-state image pickup elements 10, 11 and 12 into a picture signal I representing the temperature distribution of the object 50, a signal representing the absolute temperature T of the object 50 and a signal representing the radiation factor epsilon of the object 50 and outputs them.

Description

【発明の詳細な説明】 〔発明の技術分野〕 この発明は赤外線固体撮1象尿子を用いて被写物体の温
度分布のみならす被写物イtの絶対温度fififrも
検出用能にした新規な赤外線(最1′スソ装置f’7+
τ関するものである。
[Detailed Description of the Invention] [Technical Field of the Invention] This invention is a novel system that uses an infrared solid-state camera to detect not only the temperature distribution of an object but also the absolute temperature of the object. Infrared rays (up to 1' infrared device f'7+
It is related to τ.

〔従来技術〕[Prior art]

近年、半導体基板上るで2次元(て配r(′J、さ〕1
−赤外線の照射光機に対応する・信号全出力する赤外イ
゛φlに変換部とこれらの赤外線光+[& 4M部が出
力する14号を(1凪吹読み出して出力する信号読出し
it外樽と榮備えた赤外線面木撮像君子が開発さ〕1て
いる。持に、ショットキ接合全赤外線光ル変換部にした
赤外線固体撮像素子が、半・、1体集積回路装置の製造
技術の進歩によって、被写物体の熱線保全とらえるのに
十分な絵素数をもっているので、この赤外線41S(象
素子ケ1吏用した赤外線撮1象装:αが環境監視、暗視
監視、資源探素、τ晶度分布11i測などの多方面の用
途に実用化されて込る。
In recent years, two-dimensional layouts (r('J, s)1
- Compatible with the infrared irradiation device - A converter unit that outputs all signals into an infrared φl and a signal readout unit that reads out the signal No. 14 output by the infrared light + [& 4M unit An infrared solid-state imaging device with a Schottky junction all-infrared optical conversion unit was developed by Taru and Sakae.In particular, an infrared solid-state imaging device with a Schottky junction all-infrared light conversion unit was developed due to advances in manufacturing technology for semi-integrated circuit devices. This infrared 41S (infrared photography using one element: α is environmental monitoring, night vision monitoring, resource exploration element, τ It has been put into practical use in a variety of applications, such as crystallinity distribution 11i measurements.

特に、工業の分野や医学の分野では、物体または人体の
温度分布を非接触で得らhる赤外線撮像装置が強く要求
されてい2)、。
In particular, in the industrial and medical fields, there is a strong demand for an infrared imaging device that can obtain the temperature distribution of an object or a human body without contact2).

このような要求に応するためUて、従来、赤外線検出素
子を用いて構成さ−JIだ赤外線撮[象装置uが使用さ
ねていた。
In order to meet such demands, conventional infrared imaging devices have been constructed using infrared detection elements.

第1図は従来の赤外]埠掃1象装置の一例の主要構成要
素全模式的に示す図である。
FIG. 1 is a diagram schematically showing all the main components of an example of a conventional infrared trench sweeping device.

図において、(1)は従来の赤外線撮1象装置、(2)
は被写物体に)の熱線像を撮像するだめの赤外線41S
束用の赤外線レンズ、(3)は赤外線レンズ(2)奮進
して検出される被写物体−の表面の赤外線検出点からの
熱線を水平方向VCIfiA向する水平走査ミラー、(
4)は赤外線レンズ(2)全通して検出され水平走置ミ
ラー(3)で偏向され1こ被写物体Qの爽(hlの赤外
イザ検出点からのハ鞭を垂直方向に11Iil向−4−
る垂直走をミラー、t5) ’d 赤外線レンズ(2)
ケ11ハ(7て検出され水平走査ミラー(3)お、[び
垂直走査ミラー(4)で偏向され1ξ被写物体−の表面
の赤外線検出点からの熱線奮チョッピングするチョッパ
ーミラー、(6)ニ赤外線レンズ(2)全通して検出さ
れ水平短杆ミラー(3)および垂直走査ミラー14)で
偏向されチョッパ−ミラー(5)でチヨツピングされた
被写物体(7)の表面の赤外線検出素子・らの熱線全検
出してこの熱線に対応した電気信号ヶ出力する赤外線検
出素子、(7)は被写物体Qβの絶対温度値をめる7こ
めの基準7品度界体である。
In the figure, (1) is a conventional infrared imaging device, (2)
is an infrared ray 41S that is used to capture a heat ray image of
An infrared lens for the bundle, (3) an infrared lens (2) a horizontal scanning mirror that directs the heat rays from the infrared detection point on the surface of the object to be detected in the horizontal direction VCIfiA;
4) is detected through the entire infrared lens (2) and deflected by the horizontal mirror (3), and the image of the object Q is vertically directed from the infrared laser detection point (HL) to 11Iil. 4-
Mirror the vertical movement, t5) 'd Infrared lens (2)
(7) A chopper mirror that chops the heat rays from the infrared detection point on the surface of the object, which is detected by the horizontal scanning mirror (3) and deflected by the vertical scanning mirror (4). (d) An infrared detection element on the surface of the object (7) that is detected through the entire infrared lens (2), deflected by the horizontal short rod mirror (3) and vertical scanning mirror (14), and chopped by the chopper mirror (5). The infrared detection element (7) detects all of the hot rays and outputs electrical signals corresponding to the hot rays, and (7) is a 7-point standard 7-grade field that calculates the absolute temperature value of the object Qβ.

この従来の赤外線撮像装置(1)では、赤外線レンズL
2+ (1−通して検出される被写物体りの表面のうt
外線検出点を水平短面ミラー(3)と垂直走査ミラー鳴
)とで規則正しく偏向して被写1?ワ昨(7)の楔面を
一点鎖線の矢印で示す走査線のよう(・ζ走査させると
、赤外線検出素子(6)から順次出力さtする[0気1
a号から被写物体−の温度分布を示す熱線像を得ること
ができる。また、走査線の帰線期間中に、赤外線検出素
子(6)が、被写物体−からの熱+1ljH!−検出し
て出力し1こ電気信号と、膚!5準jli&度黒体(7
)からの熱線をチョッパーミラー(5)ヲ用いて検出し
て出力する電気信号とを比較することによって、被写物
体−の絶対温度値ケ求めることができる。ただし、被写
物体−の絶対温度値を正確にめるためVCは、被写物体
(7)の環境の温度と被写物体■の放射率と全設定する
必要がある。
In this conventional infrared imaging device (1), the infrared lens L
2+ (1-) of the surface of the object detected through
The external line detection point is regularly deflected using a horizontal short mirror (3) and a vertical scanning mirror (scanning mirror) to photograph subject 1? When the wedge surface (7) is scanned as shown by the dot-dash arrow (・ζ), the infrared detection element (6) sequentially outputs [0 1
A heat ray image showing the temperature distribution of the photographed object can be obtained from No. a. Also, during the retrace period of the scanning line, the infrared detection element (6) detects the heat from the object -+1ljH! -Detects and outputs an electrical signal and skin! 5 quasi jli & degree black body (7
) can be detected using a chopper mirror (5) and compared with the output electrical signal, the absolute temperature value of the object to be photographed can be determined. However, in order to accurately determine the absolute temperature value of the object (7), it is necessary to set the VC in accordance with the temperature of the environment of the object (7) and the emissivity of the object (7).

しかしながら、この従来の赤外線撮像装置tl+では、
水平走査ミラー(3)、垂直走査ミラー(1ンおよびチ
ョッパーミラー(6)が機械的に駆動されるので、被写
物体−の熱線像の一画面に得るのに長時間を要し、消費
電力も大きく、信頼性も悪く、しかも装置の形状が大き
くなるとい5欠点がある。
However, with this conventional infrared imaging device tl+,
Since the horizontal scanning mirror (3), vertical scanning mirror (1), and chopper mirror (6) are mechanically driven, it takes a long time to obtain a single screen of a thermal image of the object, and the power consumption is low. It has five drawbacks: it is large, its reliability is poor, and the shape of the device becomes large.

これに対して、赤外Ill!固体撮像素子全使用した上
述の赤外線撮像装置では、機械的な走査機構が不必要で
あるので、装置の構成が簡単になり、小形軽量になる上
に、被写物体の温度分布を示す熱線像の一画面が1時に
得られ、低111買電力で、1ば頼性も制い。しかし、
被写物体の温度分布だけではなく、被写物体の絶対温度
値をもめられるようにするためには、基準温度魚体が必
要である。
On the other hand, infrared Ill! The above-mentioned infrared imaging device that uses all solid-state image sensors does not require a mechanical scanning mechanism, so the device configuration is simple, compact and lightweight, and it is possible to capture thermal images that show the temperature distribution of the object. 1 screen can be obtained at 1 o'clock, low power consumption is 111 hours, and reliability is also controlled at 1 o'clock. but,
In order to be able to examine not only the temperature distribution of the object but also the absolute temperature value of the object, a reference temperature fish body is required.

この基準γ精度黒体の存在は、装置の小形化を阻み、消
費電力が大きくなり、しかも、“市#l投入しても、甚
準温度黒体の温度が所定j@vcなる外では使用できな
いなどの欠点があり、赤外線固体撮像素子を使用した効
用が著しくそこなわれる。
The existence of this reference γ-accuracy blackbody hinders the miniaturization of the device, increases power consumption, and furthermore, even if the “city #l” is input, it cannot be used unless the temperature of the extremely sub-temperature blackbody is within a specified value. However, the effectiveness of using an infrared solid-state image sensor is significantly impaired.

〔発明の概要〕[Summary of the invention]

この発明は、かかる欠点を除去する目的でなされ1こも
ので、赤外線分光感度特性が互いに異なる複数個の赤外
線固体撮像素子ケ用いて被写物体の同一の熱轢像を撮像
することによって、上記被写物体の温度分布をめ得ると
ともに、上記被写物体の絶対幅度値をも、基準温度魚体
によることなく、上記複数個の赤外線固体撮像索子がそ
れぞれ出力する上記被写物体の画像信号からめることが
でき、小形軽量、低消費電力で、信頼性の高い赤外線撮
像装置を提供するものである2第2図はこの発明の一実
施例の赤外線撮像装置の主要構成要素全模式的に示す図
で、ちる。
The present invention was made for the purpose of eliminating such drawbacks, and the present invention captures the same thermal track image of the object using a plurality of infrared solid-state imaging devices having different infrared spectral sensitivity characteristics. In addition to determining the temperature distribution of the photographic object, the absolute width value of the photographic object can also be determined from the image signals of the photographic object output by the plurality of infrared solid-state imaging probes, without depending on the reference temperature fish body. The present invention provides an infrared imaging device that is compact, lightweight, low power consumption, and highly reliable.2 Fig. 2 is a diagram schematically showing all the main components of an infrared imaging device according to an embodiment of the present invention. , chiru.

図において、第1図Vcボした従来例の符号と同一符号
は同等部分?示す。(8)は被写物体…から放射され赤
外線レンズ(2)全辿った熱線の一部分全透過させ他の
部分を反射する赤外線ビームスプリッタ、(9)ハ被写
物体印から放射され赤外線レンズ(2)および赤外線ビ
ームスプリッタ(8)を通った熱線の一部分を透過させ
他の部分を反射する赤外線ビームスプリッタ、(101
は禎写物体艶から放射され赤外線レンズ(2)ヲ通り赤
外線ビームスプリンタ(8)で反射された熱@によって
被写物体…の熱線像が主面上に結はれるように設けられ
被写物体軸の画像信号工□を出力する赤外線固体撮像粘
子、(11)は被写物体軸から放射され赤外線レンズ(
2)および赤外線ビームスグリツタ(8)全通り赤外線
ヒームスフリツタ(9)で反射された熱線VcLつて被
写物体軸の熱線像が主面上に結はれるように設けられ被
写物体軸の熱線像の画像信号I21−出力する赤外線固
体撮像素子、+12)は被写物体Φから放射され赤外線
レンズ(2)。
In the figure, the same symbols as those of the conventional example shown in Figure 1 (Vc) are equivalent parts. show. (8) is emitted from the subject object...infrared lens (2) an infrared beam splitter that completely transmits part of the heat rays that have been traced and reflects the other part, (9) is emitted from the subject object mark (2) ) and an infrared beam splitter (101) that transmits a part of the heat rays passing through the infrared beam splitter (8) and reflects the other part.
The image is set so that the heat ray image of the object is focused on the main surface of the object by the heat emitted from the infrared lens (2) and reflected by the infrared beam splinter (8). The infrared solid-state imaging element (11) outputs the image signal beam of the axis, and the infrared lens (11) is emitted from the object axis.
2) and the infrared beam frizzer (8) are provided so that the heat ray image of the object axis is focused on the main surface by the heat rays VcL reflected by the infrared beam fritter (9). An infrared solid-state imaging device outputting an image signal I21-+12) is emitted from the object Φ and sent to an infrared lens (2).

赤外線ビームスプリッタ(8)および赤外線ビームスグ
リツタ(9)を通った熱線によって被写物体(7)の熱
線像が主面上に結ばれる工うに設けられ被写物体(7)
の熱線像の画像信号工、會出力する赤外線固体撮像索子
、Qal 、 (14)および(I5)はそれぞれ赤外
線固体撮像素子−,赤外線固体撮像子(II)および赤
外線固体撮像素子(121の主面の上に設けられ透過赤
外線の波長がλ□、λ2お工びλ3でバンド幅がΔλl
、Δλ2およびΔλ3である赤外線バンドパスフィルタ
、(+6)U赤外線固体撮像素子t+01 、 :Il
l 、 021が出力する画像信号工1 + b l 
工3 k計算処理して祖写物体叫の温度分布を示す熱線
像の画像信号工と、被写物体−の絶対温度値T(r−示
す信号と、被写物体(7)の放射率εを示す信号とを出
力する信号処理回路である。
The object (7) is provided in such a way that a thermal image of the object (7) is formed on the main surface by the heat rays passing through the infrared beam splitter (8) and the infrared beam sinter (9).
(14) and (I5) are the infrared solid-state image sensor (14), the infrared solid-state image sensor (II), and the infrared solid-state image sensor (121), respectively. The wavelength of transmitted infrared rays provided on the surface is λ□, and the bandwidth is Δλl at λ2 and λ3.
, Δλ2 and Δλ3, (+6)U infrared solid-state image sensor t+01 , :Il
Image signal processing 1 + b l output by l, 021
Step 3 Calculate the image signal of the heat ray image showing the temperature distribution of the photographed object, the signal indicating the absolute temperature T (r) of the photographed object, and the emissivity ε of the photographed object (7). This is a signal processing circuit that outputs a signal indicating .

次に、この実施例の作用について説明する。Next, the operation of this embodiment will be explained.

被写物体−から赤外線レンズ(2)ヲ通った熱線が、赤
外線ビームスグリツタ+8+ 、 191 Kよって三
方向に分けられて、赤外線固体撮像素子(101Kは、
赤外線バンドパスフィルタ0311Cよって、被写物体
軸のλ1士Δλ1/2 の波長の赤外線像が結はれ、赤
外線固体撮像素子1111 K ハ、赤外線バンドパス
フィルタ(1→KLつて、被写物体軸のλ2±λ2/2
の波長の赤外線像が結ばれ、赤外線固体撮像素子[12
1Kは、赤外線バンドパスフィルタt+51 K jっ
て、被写物体Wのλ3±Δλ3/2の波長の赤外線像が
結ばれる。要するに、これらの赤外線固体撮像素子1d
ol 、 (ol 、 (121n、赤外線バンドパス
フィルタ(13] 、 (141、(151によって、
互いに異なる赤外線分光感度特性を持ったことになる。
The heat rays that passed through the infrared lens (2) from the object to be photographed are divided into three directions by the infrared beam sliver +8+, 191K, and the infrared solid-state image sensor (101K is
The infrared band-pass filter 0311C forms an infrared image with a wavelength of λ1 to Δλ1/2 of the object axis, and the infrared solid-state image sensor 1111K λ2±λ2/2
An infrared image with a wavelength of
1K is an infrared band pass filter t+51 K j, which forms an infrared image of the object W at a wavelength of λ3±Δλ3/2. In short, these infrared solid-state image sensors 1d
ol, (ol, (121n, infrared bandpass filter (13), (141, (by 151,
This means that they have different infrared spectral sensitivity characteristics.

そして、赤外線固体撮像素子(10)からλl±Δλ□
/2の波長の赤外線像の画像信号■1が信号処理回路0
Qへ出力され、赤外線固体撮像索子(I1)からλ2±
Δλ2の波長の赤外線像の画像信号12が信号処理回路
061へ出力され、赤外線固体撮像索子(12)からλ
S±Δλ3の波長の赤外線像の画像信号工3が信号処理
回路061へ出力される。信号処理回路(16)では、
赤外線固体撮像索子(10) 、 tll) 、 (+
21から出力された画像48 号工l+ I21 丁3
 k、次に述べる原理に基づいて、被写物体■の温度分
布を示す画像信号工と、被写物体…の絶対温度値Tを示
す信号と、被写物体−の放射率εを示す信号とに変換し
て出力する。
Then, from the infrared solid-state image sensor (10), λl±Δλ□
/2 wavelength infrared image image signal ■1 is signal processing circuit 0
λ2± from the infrared solid-state imaging probe (I1)
The image signal 12 of the infrared image with a wavelength of Δλ2 is output to the signal processing circuit 061, and the infrared solid-state imaging probe (12)
An image signal generator 3 of an infrared image with a wavelength of S±Δλ3 is output to a signal processing circuit 061. In the signal processing circuit (16),
Infrared solid-state imaging probe (10), tll), (+
Image output from 21 No. 48 No. 1 + I21 No. 3
k. Based on the principle described below, an image signal generator that indicates the temperature distribution of the object to be photographed, a signal that indicates the absolute temperature value T of the object to be photographed, and a signal that indicates the emissivity ε of the object to be photographed. Convert and output.

次に、被写物体ωの画像信号工と絶対温度値Tと放射率
εとをめる原理について述べる−ここで、絶対rPA 
l1J−値がTで放射率がεである被写物体■の置かれ
ている環境の温度?Taとすると、被写物体ωから赤外
緋レンズ(2)K投射さハる赤外線のエネルギーR(λ
、T、Ta)y;f(′に式で衣わされる。
Next, we will discuss the principle of combining the image signal function of the object ω, the absolute temperature value T, and the emissivity ε. Here, the absolute rPA
l1J - Temperature of the environment in which object ■ whose value is T and emissivity is ε is placed? If Ta, then the energy of infrared rays R(λ
, T, Ta)y;f(' is given by the formula.

R(λ、T、Ta1=εW(Tl+ (1−ε) W 
(Ta ) 、lrI’]上記〔19式の右辺の第1項
は被写物体(1)自体から放射される赤外線のエネルギ
ーであり、第2項は温度’raの環境からの被写物体ω
の反射による赤外線のエネルギーである。上記@1項の
w(TIH1温度Tの黒体が放射する赤外線のエネルギ
ーで、周知の下記プラックの式に従う。
R(λ, T, Ta1=εW(Tl+ (1-ε) W
(Ta), lrI'] The first term on the right side of Equation 19 above is the infrared energy radiated from the object (1) itself, and the second term is the energy of the object ω from the environment at temperature 'ra.
This is infrared energy due to reflection. W in the above @1 term (TIH1 is the infrared energy emitted by a black body at temperature T, and follows the well-known Plack equation below.

%式% 上記〔旧式の01およびC2I″j定数である。%formula% The above [old style 01 and C2I''j constants.

一方、赤外線固体撮像素子の赤外線光電変換部の赤外線
分光感度特性2A−y(λ)とすると、赤外線固体撮像
素子が出力する画像信号1(T、Ta)i’j次式で表
わされる。
On the other hand, if the infrared spectral sensitivity characteristic of the infrared photoelectric conversion section of the infrared solid-state image sensor is 2A-y(λ), the image signal output from the infrared solid-state image sensor 1(T, Ta)i'j is expressed by the following equation.

I (T、Ta)−A f y(λ)R(λ、T、Ta
)4λ ・・・〔■〕上記〔1llE式のY(λ)は赤
外線固体撮像素子の赤外線光電変換部の赤外線分光感度
特性によって決まり、この赤外線光電変換部がショット
キ接合である場合Vtd下記下記表わされる。
I (T, Ta) - A f y (λ) R (λ, T, Ta
)4λ... [■] Y(λ) in the [1llE formula above] is determined by the infrared spectral sensitivity characteristics of the infrared photoelectric conversion section of the infrared solid-state image sensor, and when this infrared photoelectric conversion section is a Schottky junction, Vtd is expressed as below. It will be done.

Y(λ)=(l−λ/2゜。)2 ・・・J〕ここで、
λCOUショットキ接合の障壁の高さで決まる光ル変換
可能な赤外線の最大波長である。
Y(λ)=(l-λ/2°.)2...J] Here,
λCOU is the maximum wavelength of infrared light that can be converted into light, determined by the height of the barrier of the Schottky junction.

例えば、ケイ化白金とP形シリコン基板との間に形成さ
れるショットキ接合(以下「Pt5i−psiノョット
キ接合」と呼ぶ)では、λco −5/Im程度である
For example, in a Schottky junction formed between platinum silicide and a P-type silicon substrate (hereinafter referred to as "Pt5i-psi Schottky junction"), the value is about λco -5/Im.

また、上記13式の八は、赤外線固体撮像素子の赤外線
光電変換部に投射される赤外線の波長λに依存しない係
数で、赤外線撮像装置の光学系の透過率と赤外線固体撮
像素子の光電変換係数および光信号増幅部の利得とによ
って決まる。
Furthermore, 8 in Equation 13 above is a coefficient that does not depend on the wavelength λ of the infrared rays projected onto the infrared photoelectric conversion section of the infrared solid-state image sensor, and is the transmittance of the optical system of the infrared image sensor and the photoelectric conversion coefficient of the infrared solid-state image sensor. and the gain of the optical signal amplification section.

例えば、赤外線光電変換部がショットキ接合である赤外
線固体撮像素子の、被写物体nが放射する相異なる三つ
の波長λ1.λ2.λ3の赤外線によって出力される画
像信号工1.工2.工3がわかれば、被写物体−の環境
の温度Taミラ定すると、これら(D 画像(g 号I
I 、 I2 、 I3f用いて、L記〔I) −Qv
E式から、被写物体(7)の温度分布を示す画像信号工
と絶対温度値Tと放射率εと係数Aとがめられる。
For example, in an infrared solid-state image sensor whose infrared photoelectric conversion section is a Schottky junction, three different wavelengths λ1. λ2. Image signal output by infrared light of λ3 1. Engineering 2. Once we know the process 3, we can determine the temperature Ta of the environment of the object to be photographed, then these (D images (g)
Using I, I2, I3f, Book L [I) -Qv
From equation E, it can be determined that the image signal representing the temperature distribution of the object (7), the absolute temperature value T, the emissivity ε, and the coefficient A are determined.

この実施例では、赤外線周体撮像素子+101 、 t
ll 。
In this example, the infrared circumferential image sensor +101, t
ll.

(121の赤外線光電変換部がショットキ接合である場
合には、赤外線固体撮像素子101 、 (Ill 、
 ++21が、赤外線バンドパスフィルタt+31 、
 ++4) 、 ++51 K L ツて、相異なる波
長λ1.λ2.λ3の赤外線に対してのみ光電変換可能
であるので、信号処理回路06)が、赤外線固体撮像素
子tIO+ 、 !I11 、021から出力される被
写物体■の画像信号工l、 I?、 I3 k用いて、
上記〔■〕〜〔lV’:1式の計算を、被写物体−の環
境の温度Taのみ?設定して行うことによって、被写物
体−の温度分布を示す画像信号工と絶対温度値Tと放射
率εと全出力することができる。
(If the infrared photoelectric conversion unit 121 is a Schottky junction, the infrared solid-state image sensor 101, (Ill,
++21 is an infrared band pass filter t+31,
++4), ++51 K L Therefore, different wavelengths λ1. λ2. Since photoelectric conversion is possible only for infrared light of λ3, the signal processing circuit 06) uses the infrared solid-state image sensor tIO+, ! Image signal processing of object ■ output from I11, 021, I? , using I3k,
Can you calculate the above [■] ~ [lV': 1 equation only for the temperature Ta of the environment of the object to be photographed? By setting and carrying out the process, it is possible to output all the image signals indicating the temperature distribution of the photographed object, the absolute temperature value T, and the emissivity ε.

例えば、赤外線固体撮像素子tlol 、 Ill 、
 ++21の赤外線光tヒ変換部がPt5i−psiシ
ョットキ接合である場合Kfl、Pt5i−psiショ
ットキ接合が主に大気の窓と呼ばれる3〜5/1m帯域
に赤外線分光感度特性を有するので、赤外線)(ンドノ
くスフイルり03)。
For example, infrared solid-state image sensors tlol, Ill,
If the infrared light conversion part of ++21 is a Pt5i-psi Schottky junction, the Pt5i-psi Schottky junction has infrared spectral sensitivity characteristics mainly in the 3-5/1 m band, which is called the atmospheric window. Dononokusufiluri03).

(141、(151として、λ1=3,5μm、λg=
4.0.l1m、λ3−4.5/1mの波長の赤外線を
透過させ得る干渉フィルりなどを用いればよい。
(141, (151, λ1=3,5μm, λg=
4.0. An interference filter that can transmit infrared rays with wavelengths of 1 m and λ3-4.5/1 m may be used.

なお、この実施例では、赤外線固体撮像素子[01。Note that in this example, the infrared solid-state image sensor [01.

(11、H〕赤外線光if換部がPt5i−psi シ
ョットキ接合である場合を例にとり説明したが、この発
明はこれに限らず、Pd5i−psiショットキ接合。
(11, H) Although the case where the infrared light IF converter is a Pt5i-psi Schottky junction has been described as an example, the present invention is not limited to this, and a Pd5i-psi Schottky junction is used.

■rsi −psiショットキ接合などのその他のショ
ットキ接合である場合にも、またはショットキ接合以外
の赤外線の照射光量に対応する信号を出力する赤外線検
出素子である場合にも適用することができる。
(2) It can be applied to other Schottky junctions such as rsi-psi Schottky junctions, or to infrared detection elements other than Schottky junctions that output signals corresponding to the amount of infrared irradiation.

また、この実施例では、赤外線固体撮像素子(IQ) 
rill 、 (121の赤外線分光感度特性が互いに
異なるようにするために、互いに異なる赤外線分光透過
特性を有する赤外線バンドパスフィルタH、(+41 
、 (151k用い定場合について述べたが、この発明
はこれに限らず、赤外線バンドパスフィルタ++31 
、 (14) 、 +151のうちの少なくとも一つの
赤外線ノくンド/くスフイルりを赤外線の長波長力ット
フイルりや短波長力゛ントフイルタなどのその他の赤外
線分光透過性を有する赤外線フィルタにした場合にも適
用することができる。
In addition, in this embodiment, an infrared solid-state image sensor (IQ)
rill, (121), infrared bandpass filters H, (+41
, (Although the case where 151k is used has been described, the present invention is not limited to this.
, (14), +151, when at least one of the infrared filters is replaced with another infrared filter having infrared spectral transparency, such as an infrared long-wavelength filter or a short-wavelength filter. Can be applied.

1友、この発明は、赤外線固体撮像素子tIO+ 、 
1lll 。
1 friend, this invention is an infrared solid-state image sensor tIO+,
1llll.

Q21の赤外線光電変換部を互いに異なる障壁の1島さ
を有するPtSi −psiショットキ接合とPdSi
 −psiショットキ接合とIrSi −psiショ゛
ントキ接合とにした場合にも適用することができる。
The infrared photoelectric conversion section of Q21 is made of a PtSi-psi Schottky junction with different wall thicknesses and a PdSi
The present invention can also be applied to a -psi Schottky junction and an IrSi -psi Schottky junction.

更に、上記の実施例では、互いに異なる赤夕1線分光感
度特性を有する三つの赤外線固体撮像素子を用いる場合
について述べたが、この発明はこれに限らず、互いに異
なる赤外線分光透過性1生を有する二つの赤外線固体撮
像素子を用いる場合にも適用することができる。この場
合KH1破写物体の環境の温度’raとこの被写物体の
放射率εとを設定すればよい。
Further, in the above embodiment, a case is described in which three infrared solid-state image sensors having mutually different infrared ray spectral sensitivity characteristics are used, but the present invention is not limited to this. The present invention can also be applied to the case of using two infrared solid-state imaging devices having the same structure. In this case, it is sufficient to set the temperature 'ra of the environment of the KH1 torn object and the emissivity ε of this object.

〔発明の効果〕〔Effect of the invention〕

以上、説明したように、この発明の赤りF線撮像装置で
は、赤外線光電変換部の赤外線分光感度特性が互いに異
なるようにした複数個の赤外線固体撮像素子と、これら
の複数個の赤外線固体撮像素子で被写物体の同−熱線像
を撮像し上記各赤外線固体撮像素子がそれぞれ出力する
上記被写物体の画像信号を計算処理して上記被写物体の
温度分布を示す熱線像の画像信号と上記被写物体の絶対
温度値を示す信号とを出力する信号処理回路とを備えて
いるので、基準温度黒体を設ける必要がなく、” 小形
軽量、低消費電力で、信頼性ケ高くすることがで弯る。
As described above, the red F-ray imaging device of the present invention includes a plurality of infrared solid-state imaging devices whose infrared photoelectric conversion sections have different infrared spectral sensitivity characteristics, and a plurality of infrared solid-state imaging devices having different infrared spectral sensitivity characteristics. A thermal ray image of the subject object is captured by the element, and image signals of the subject object outputted by each of the infrared solid-state imaging devices are computationally processed to produce an image signal of the thermal ray image indicating the temperature distribution of the subject object. Since it is equipped with a signal indicating the absolute temperature value of the object mentioned above and a signal processing circuit that outputs the signal, there is no need to provide a reference temperature black body, and the camera is compact, lightweight, has low power consumption, and has high reliability. I lean back.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の赤外線撮像装置の一例の主要構成要素を
模式的に示す図、第2図はこの発明の一実施例の赤外線
撮像装置の主要構成要素を模式的に示す図である。 図において、lol 、 fll)および021け赤外
線固体撮像素子、H、04)および0ωは互いに異なる
赤外線分光透過特性を有するバンドパスフィルタ(赤外
線フィルタ)l1611”j信号処理回路、−は被写物
体である。 なお、図中同一符号はそれぞれ同一または相当部分を示
す。 代理人 大 岩 増 雄 第1図 第2図 ■1 44 手続補正書(自発) 昭困15霜ミ12月26 日 ν 特許庁長官殿 、舊 1、事件の表示 特願昭 58−448904号2発明
の名称 赤外線撮像装置 3、補正をする者 代表者片山仁へ部 5、補正の対象 明細書の発明の詳細な説明の欄 6、補正の内容 (1)明細書の第3頁第7行に「実用化されている」と
あるのを「実用化されつつある。」と訂正する。 以 上 44
FIG. 1 is a diagram schematically showing the main components of an example of a conventional infrared imaging device, and FIG. 2 is a diagram schematically showing the main components of an infrared imaging device according to an embodiment of the present invention. In the figure, lol, flll) and 021 infrared solid-state image sensor, H, 04) and 0ω are band-pass filters (infrared filters) with different infrared spectral transmission characteristics, l1611"j signal processing circuit, - is the object to be photographed. In addition, the same reference numerals in the figures indicate the same or equivalent parts. Agent Masuo Oiwa Figure 1 Figure 2 ■1 44 Procedural amendment (voluntary) December 26, 1939 ν Patent Office Dear Director, 1. Indication of the case: Japanese Patent Application No. 58-448904 2. Name of the invention: Infrared imaging device 3. Part 5: Detailed explanation of the invention in the specification to be amended. 6. Contents of the amendment (1) In the 7th line of page 3 of the specification, the words "being put into practical use" will be corrected to "being put into practical use." Above 44

Claims (3)

【特許請求の範囲】[Claims] (1) 半導体基板上VC2次元に配置され赤外線の照
射光p4VC対応する信号を出力する赤外線光1に変換
部とこれらの赤外線光′N、変換部が出力する信号を順
次読み出して出力する信号読出し4a溝と?有し上記赤
外線光電変換部の赤外線分光感度特性が互いに異なるよ
うにした国数個の赤外線1「11体撮像素子、および上
記複奴個の赤外線固体撮1宏素子で被写物体の同一熱M
l象を(11)像し上記各赤外線固体撮像系子がそれぞ
れ出力する上記被写物体の画像信号をSt W処理して
上記被写物体の温度分布を示す熱線像の画像信号と−に
記岐写物体の絶対イ晶度値を示す信号とを出力する信号
処理口1俗を備えた赤外線撮像装置。
(1) A converting unit to infrared light 1 which is arranged two-dimensionally on the semiconductor substrate and outputs a signal corresponding to the infrared irradiation light p4VC, and a signal readout unit which sequentially reads and outputs these infrared lights 'N and the signals output by the converting unit. 4a groove? The infrared ray photoelectric converters have different infrared spectral sensitivity characteristics, and the multiple infrared solid-state imaging elements are used to capture the same heat M of the object.
The image signals of the object which are imaged (11) and output by the respective infrared solid-state imaging systems are subjected to StW processing, and the image signals of the heat ray image indicating the temperature distribution of the object are recorded as -. An infrared imaging device comprising a signal processing port for outputting a signal indicating an absolute crystallinity value of a photographic object.
(2) 複数個の赤外線1^1fト(前像素子の赤外1
光d変換部の赤外線分光感度特性を、互いに異なる赤外
線分光透過特性ヲf1する赤外線フィルタVCLつて互
いに異なるようにし7ζことを特徴とする特J1請求の
範囲第1項記載の赤外縄撮1象装置。
(2) Multiple infrared rays 1^1f (front image element infrared 1
Infrared rope photography according to claim 1, characterized in that the infrared spectral sensitivity characteristics of the optical d-conversion section are made to be different from each other with the infrared filters VCL having mutually different infrared spectral transmission characteristics. Device.
(3) 複数個の赤外線固体j最1象素子の赤外線ブC
電変換部の赤外線分光感度特性を、上記各赤外線光准変
換部を互いVcP¥なる障壁の品さケ有するショットキ
接合にすることによって互いVC異なるようにしたこと
を特徴とする特、i′l−請求のφ[)囲11τ1項記
載の赤外線撮像装置R。
(3) Infrared beam C of multiple infrared solid state elements
A special feature characterized in that the infrared spectral sensitivity characteristics of the electrical conversion parts are made to differ by VC by making each of the above-mentioned infrared light quasi-conversion parts a Schottky junction having a barrier quality of VcP. - An infrared imaging device R according to claim φ[), item 11τ1.
JP58122904A 1983-07-04 1983-07-04 Infrared ray image pickup device Pending JPS6014578A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58122904A JPS6014578A (en) 1983-07-04 1983-07-04 Infrared ray image pickup device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58122904A JPS6014578A (en) 1983-07-04 1983-07-04 Infrared ray image pickup device

Publications (1)

Publication Number Publication Date
JPS6014578A true JPS6014578A (en) 1985-01-25

Family

ID=14847484

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58122904A Pending JPS6014578A (en) 1983-07-04 1983-07-04 Infrared ray image pickup device

Country Status (1)

Country Link
JP (1) JPS6014578A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0354066A2 (en) * 1988-08-04 1990-02-07 Gec Avionics, Inc. Infrared spectral difference detector
US5589876A (en) * 1993-09-28 1996-12-31 Nec Corporation Infrared imaging device readily removing optical system contributory component

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0354066A2 (en) * 1988-08-04 1990-02-07 Gec Avionics, Inc. Infrared spectral difference detector
US5589876A (en) * 1993-09-28 1996-12-31 Nec Corporation Infrared imaging device readily removing optical system contributory component

Similar Documents

Publication Publication Date Title
JP2011080976A (en) Single-axis lens module for thermal imaging camera
US20110115919A1 (en) Solid-state imaging element and imaging device
US7491935B2 (en) Thermally-directed optical processing
JPS6014578A (en) Infrared ray image pickup device
US4873442A (en) Method and apparatus for scanning thermal images
US11609338B2 (en) Method and device for detecting incident laser radiation on a spacecraft
JP4150506B2 (en) Image capturing apparatus and distance measuring method
KR100331736B1 (en) Thermal imaging system
CN107152971B (en) A method of improving linear array infrared exoelectron enlarged drawing level detail resolution ratio
GB2096427A (en) Infrared imaging and tracking means
JPS62208784A (en) Infrared image pickup device
JPH11132860A (en) Solid imaging device
JPH11297973A (en) Infrared imaging device
JP2001272278A (en) Imaging system and method for measuring temperature using the same
JP2011199570A (en) Camera
JPH0544611B2 (en)
JPS6251381A (en) Infrared ray image pickup device
JP2003166880A (en) Imaging device having temperature measuring means
JP3063347B2 (en) Shape measuring device
JPH03274971A (en) Infrared ray image pickup device
JP2000258154A (en) Image pickup device
JPH0483132A (en) Three-dimensional scanner
Adiyan et al. MEMS bimaterial IR sensor array with AC-coupled optical readout
JPH11144031A (en) Image reader
JPH0843211A (en) Method for measuring temperature and emissivity