JPH11132860A - Solid imaging device - Google Patents

Solid imaging device

Info

Publication number
JPH11132860A
JPH11132860A JP9295122A JP29512297A JPH11132860A JP H11132860 A JPH11132860 A JP H11132860A JP 9295122 A JP9295122 A JP 9295122A JP 29512297 A JP29512297 A JP 29512297A JP H11132860 A JPH11132860 A JP H11132860A
Authority
JP
Japan
Prior art keywords
imaging device
solid
state imaging
invisible
pixel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9295122A
Other languages
Japanese (ja)
Inventor
Takahiro Yamada
隆博 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP9295122A priority Critical patent/JPH11132860A/en
Publication of JPH11132860A publication Critical patent/JPH11132860A/en
Pending legal-status Critical Current

Links

Landscapes

  • Radiation Pyrometers (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Abstract

PROBLEM TO BE SOLVED: To simultaneously obtain image signals of a visible light and an invisible light by setting a differential amplifier for detection of only a temperature change component at an invisible light-detecting part. SOLUTION: Invisible light detection part 430 and visible light detection part 440 constitute a unit pixel 403. The unit pixel 403 are arranged in two dimensions. When the pixel 403 is selected, a signal charge of a visible light stored in a photodiode 414 is read out to a vertical visible signal line 422 through a first vertical MOS switch 424, read out to a horizontal visible signal line 423 through a first horizontal MOS switch 425 and then taken out as a visible image signal from a first output amplifier 420. Similarly, a current flows from a bias power source 408 through a second vertical MOS switch 404, a bolometer 402, a vertical invisible signal line 412, a second horizontal MOS switch 405 and a horizontal invisible signal line 413 to a load resistor 409, and is taken out as an invisible image signal from a second output amplifier 410.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、可視光と不可視光
といった複数の波長帯を同時に撮像するイメージセンサ
に関するものである。
[0001] 1. Field of the Invention [0002] The present invention relates to an image sensor for simultaneously imaging a plurality of wavelength bands such as visible light and invisible light.

【0002】[0002]

【従来の技術】不可視光の中でも赤外線撮像分野(以下
では、赤外線をIRと略記する)では1988年に電子
走査方式のIRカメラが実用化されてから、監視カメラ
の分野を中心に応用が拡大してきている。特に、入射I
Rのエネルギーを検出器上で熱に変換し、検出器の温度
変化を計測してIRイメージを撮像するタイプのIR−
FPA(可視光の分野で用いられるイメージセンサに対
して、赤外線のような不可視光の分野では一般に Focal
Plane Array 、略してFPAと呼び、以下でも不可視
光の撮像だけに限定する場合はこの略称を用いる)は冷
却が不要である特徴を有しており、小型化に向いてい
る。
2. Description of the Related Art Among infrared rays, in the field of infrared imaging (hereinafter, IR is abbreviated as IR), since an electronic scanning IR camera was put into practical use in 1988, the application has been expanded mainly in the field of surveillance cameras. Have been doing. In particular, the incident I
An IR-type in which the energy of R is converted into heat on a detector, the temperature change of the detector is measured, and an IR image is captured.
In contrast to FPA (image sensors used in the field of visible light, Focal is generally used in the field of invisible light such as infrared light.
A Plane Array (abbreviated as FPA, which will be used below when limited to invisible light imaging only) has a feature that cooling is unnecessary, and is suitable for miniaturization.

【0003】非冷却のIR検出器には、多結晶Si( P
oly-Si)やTi等の材料が温度によって抵抗値が変わる
特性を利用するボロメータ(Bolometer)方式とBST
( Baruim-Strontium-Titanate)やPZT( Lead Scan
dium Titanate )等の焦電材料が温度によって生じる焦
電効果と誘電率の変化とを同時に用いるフェロエレクト
リック(Ferroelectric)方式があり、検出波長は8〜
12μmである。以下では、ボロメータ方式をB方式、
フェロエレクトリック方式をF方式と略記する。
[0003] Uncooled IR detectors include polycrystalline Si (P
Bolometer method and BST that use the property that the resistance value of materials such as oly-Si) and Ti change with temperature
(Baruim-Strontium-Titanate) and PZT (Lead Scan)
There is a ferroelectric method in which a pyroelectric material such as dium titanate) simultaneously uses a pyroelectric effect caused by temperature and a change in dielectric constant.
12 μm. In the following, the bolometer method is B method,
The ferroelectric method is abbreviated as F method.

【0004】図1にB方式の非冷却FPAの構成を示
す。ダイオード101とボロメータ102とで単位画素
103が構成され、この単位画素が2次元に配列され
る。
FIG. 1 shows the configuration of a B-type uncooled FPA. A unit pixel 103 is constituted by the diode 101 and the bolometer 102, and the unit pixels are two-dimensionally arranged.

【0005】ボロメータの画素103の二次元走査は、
垂直シフトレジスタ106の出力パルスが印加される垂
直MOSスイッチ104と水平シフトレジスタ107の
出力パルスが印加される水平MOSスイッチ105によ
り、画素を順次選択することで行われる。
The two-dimensional scanning of the bolometer pixel 103 is as follows:
This is performed by sequentially selecting pixels by the vertical MOS switch 104 to which the output pulse of the vertical shift register 106 is applied and the horizontal MOS switch 105 to which the output pulse of the horizontal shift register 107 is applied.

【0006】画素103が選択されると、バイアス電源
108から水平入力線111から画素103を経由し
て、垂直信号線112および水平出力線113を通っ
て、負荷抵抗109へ電流が流れる。ボロメータ102
の両端の電圧降下をアンプ110で計ることにより画像
信号が得られる。
When the pixel 103 is selected, a current flows from the bias power supply 108 to the load resistor 109 via the horizontal input line 111, the pixel 103, the vertical signal line 112 and the horizontal output line 113. Bolometer 102
An image signal can be obtained by measuring the voltage drop across the terminals by the amplifier 110.

【0007】図2にF方式の非冷却FPAの構成を示
す。一端がバイアス電源208に接続された焦電材料の
検出器201とオペアンプ209を利用した信号変換回
路202とで単位画素203が構成され、この単位画素
が2次元に配列される。画素203の二次元走査は、垂
直マルチプレクサ206の出力パルスが印加されるリー
ドスイッチ204と水平マルチプレクサ207により、
画素を順次選択することで行われる。
FIG. 2 shows the configuration of an F-type uncooled FPA. A unit pixel 203 is constituted by a pyroelectric material detector 201 having one end connected to a bias power supply 208 and a signal conversion circuit 202 using an operational amplifier 209, and the unit pixels are arranged two-dimensionally. The two-dimensional scanning of the pixel 203 is performed by the reed switch 204 to which the output pulse of the vertical multiplexer 206 is applied and the horizontal multiplexer 207.
This is performed by sequentially selecting pixels.

【0008】画素203が選択されると、焦電材料の検
出器201で発生する電荷(自発分極と検出器の静電容
量の変化に従って流れ込む電荷)は単位画素203の中
で信号変換回路202により電圧に変換され、リードス
イッチ204を経由して、垂直信号線212の終端に設
けられたアンプ205を通して外部のアンプ210に出
力される。
When the pixel 203 is selected, the electric charge generated by the pyroelectric material detector 201 (the electric charge flowing in accordance with the spontaneous polarization and the change in the capacitance of the detector) is converted by the signal conversion circuit 202 in the unit pixel 203. The voltage is converted to a voltage, and is output to an external amplifier 210 via a reed switch 204 and an amplifier 205 provided at the end of the vertical signal line 212.

【0009】[0009]

【発明が解決しようとする課題】防犯監視用のIRカメ
ラや安全運転支援の立場から最近要望が高まりつつある
車載用のIRカメラは人体や動物の体温を検出できるこ
とが求められるが、実用上は、可視光のカメラで観測さ
れる景色の上にIRカメラで検出した人体や動物などを
表示することが望ましい。
SUMMARY OF THE INVENTION IR cameras for monitoring crime prevention and in-vehicle IR cameras, which have been increasing in demand recently from the standpoint of safe driving support, are required to be able to detect the body temperature of humans and animals. It is desirable to display a human body or an animal detected by an IR camera on a scene observed by a visible light camera.

【0010】ところが、これまでの技術でこのニーズに
応えようとすると、可視光用カメラと不可視光用カメラ
の2台を用意する必要があり、しかも2台のカメラでは
それぞれの光軸が異なるため、2つの画像を重ねても完
全に一致させることは不可能であった。
However, in order to meet this need with conventional techniques, it is necessary to prepare two cameras, one for visible light and the other for invisible light, and the two cameras have different optical axes. However, it was impossible to completely match the two images even when they were superimposed.

【0011】それならば、最初から一つの撮像素子が可
視光と不可視光の両方の検出器を備えれば良いのだが、
可視光と不可視光とを同時に通す単一のレンズ光学系の
実現がこれまでは原理的に不可能なため、可視光と不可
視光を同時に撮像するイメージセンサという発想そのも
のが出てこなかった。
In that case, it is sufficient that one imaging device has both visible light and invisible light detectors from the beginning.
Until now, it has been impossible in principle to realize a single lens optical system that transmits visible light and invisible light at the same time, and the idea of an image sensor that simultaneously captures visible light and invisible light has not emerged.

【0012】さらに、B方式のIR検出器は抵抗変化を
検出するために電流を流し、F方式のIR検出器は自発
分極と静電容量の変化を検出するために電流を流す、と
いう方法を用いるため、信号電荷だけを検出することで
低雑音という特徴を有し現在最も普及しているCCDイ
メージセンサに、電流検出型の非冷却IR検出器を搭載
して成功した例はまだない。
Further, there is a method in which a B-type IR detector supplies a current to detect a change in resistance, and an F-type IR detector supplies a current to detect spontaneous polarization and a change in capacitance. Because of its use, there has been no successful example of mounting a current detection type uncooled IR detector on a CCD image sensor that is currently most widespread and has the characteristic of low noise by detecting only signal charges.

【0013】[0013]

【課題を解決するための手段】本発明は、自由曲面反射
光学系と固体撮像素子とからなり、前記固体撮像素子は
m行n列(m、nともに自然数)に配列された画素と走
査手段を有し、前記各画素が可視光の検出部と不可視光
の検出部を有し、前記不可視光の検出部がボロメータ方
式もしくはフェロエレクトリック方式の材料で構成され
ており、前記走査手段が走査回路と信号線を利用したも
のか電荷転送装置を利用したものであり、前記不可視光
の検出部が温度変化分だけを検出するための差動増幅器
を有していることを特徴とする固体撮像装置である。
The present invention comprises a free-form surface reflection optical system and a solid-state image sensor, wherein the solid-state image sensor has pixels arranged in m rows and n columns (m and n are natural numbers) and scanning means. Wherein each of the pixels has a visible light detecting section and an invisible light detecting section, the invisible light detecting section is made of a bolometer or ferroelectric material, and the scanning means is a scanning circuit. And a signal transfer device or a charge transfer device, wherein the invisible light detection unit has a differential amplifier for detecting only a temperature change. It is.

【0014】本発明の撮像素子の各画素は可視光の検出
部と不可視光の検出部を備えているので、可視光の映像
と不可視光の映像の一致度合いが高いので、監視用カメ
ラとか車載用カメラだけにとどまらず、人物を特定した
り切り出したりするような画像認識にも極めて有用であ
る。
Since each pixel of the image pickup device of the present invention has a visible light detecting section and an invisible light detecting section, the degree of coincidence between the visible light image and the invisible light image is high. The present invention is extremely useful not only for a camera for image recognition but also for image recognition for specifying or cutting out a person.

【0015】さらに、各画素の不可視光の検出部に導入
した差動増幅器は不可視光の感度を高めるため、可視光
用の検出部に比べて1桁以上も大きい現状の不可視光
(つまり赤外光)の検出部の面積を低減することが可能
になる。
Further, the differential amplifier introduced into the invisible light detecting section of each pixel enhances the sensitivity of the invisible light, so that the current invisible light (that is, infrared light) which is at least one digit larger than that of the visible light detecting section. It is possible to reduce the area of the light (light) detection unit.

【0016】また、本発明の構成要素である自由曲面反
射光学系は従来のレンズ光学系と同等の画角を実現する
ことが可能な上、紫外線から赤外線の全てのスペクトル
に対する光学系であり、光学系樹脂成形の反射鏡で実用
的な性能を実現できるので、製作時間やコスト面で大幅
な低減が可能である。
The free-form surface reflection optical system, which is a component of the present invention, can realize the same angle of view as the conventional lens optical system, and is an optical system for all the spectrum from ultraviolet to infrared. Practical performance can be realized with the optical resin molded reflecting mirror, so that the manufacturing time and cost can be significantly reduced.

【0017】[0017]

【発明の実施の形態】以下、本発明の実施例を図面に基
づいて説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0018】図3は、本発明の主要な構成要素である自
由曲面反射光学系であり、301、302、303とい
う広い画角からの入射光線が303と304の反射面で
反射した結果、R1の位置での入射光線の関係が305
の位置で再現される。そうなるように、反射鏡303と
304を設計するのである。
FIG. 3 shows a free-form surface reflection optical system which is a main component of the present invention. As a result of reflection of incident light rays from a wide angle of view 301, 302 and 303 on reflection surfaces 303 and 304, R1 Is 305,
It is reproduced at the position. The reflecting mirrors 303 and 304 are designed to be so.

【0019】図4は、本発明の主要な構成要素である撮
像素子の走査手段をMOS方式の走査回路と信号線で構
成し、不可視光の検出部をB方式としたものである。
FIG. 4 shows a configuration in which the scanning means of the image pickup device, which is a main component of the present invention, is constituted by a scanning circuit of the MOS type and a signal line, and the invisible light detecting unit is of the B type.

【0020】ダイオード401とボロメータ402と第
2の垂直MOSスイッチ404とでB方式の赤外光の検
出画素430が構成され、フォトダイオード414と第
1のMOSスイッチ424とで可視光の検出画素440
が構成され、検出画素430と440とで本発明の撮像
素子の単位画素403が構成され、この単位画素403
が2次元に配列される。
The diode 401, the bolometer 402, and the second vertical MOS switch 404 constitute a B type infrared light detection pixel 430. The photodiode 414 and the first MOS switch 424 form a visible light detection pixel 440.
And the detection pixels 430 and 440 constitute a unit pixel 403 of the image sensor of the present invention.
Are arranged two-dimensionally.

【0021】単位画素403の2次元走査は、垂直シフ
トレジスタ406の出力パルスが印加される垂直伝送線
411と接続された第1の垂直MOSスイッチ424お
よび第2の垂直MOSスイッチ404と水平シフトレジ
スタ407の出力パルスが印加される第1の水平MOS
スイッチ425および第2の水平MOSスイッチ405
により、画素を順次選択することで行われる。
The two-dimensional scanning of the unit pixel 403 is performed by the first vertical MOS switch 424 and the second vertical MOS switch 404 connected to the vertical transmission line 411 to which the output pulse of the vertical shift register 406 is applied, and the horizontal shift register. The first horizontal MOS to which the output pulse of 407 is applied
Switch 425 and second horizontal MOS switch 405
Is performed by sequentially selecting pixels.

【0022】画素403が選択されると、フォトダイオ
ード414に蓄積された可視光の信号電荷は第1の垂直
MOSスイッチ424を経由して垂直可視信号線422
に読み出され、第1の水平MOSスイッチ425を経由
して水平可視信号線423に読み出されたあと、第1の
出力アンプ420から可視画像信号として取り出され
る。同様に、バイアス電源408から第2の垂直MOS
スイッチ404、ボロメータ402、垂直不可視信号線
412、第2の水平MOSスイッチ405、水平不可視
信号線413を通って負荷抵抗409に電流が流れ、第
2の出力アンプ410から不可視画像信号として取り出
される。
When the pixel 403 is selected, the visible light signal charges stored in the photodiode 414 are transferred to the vertical visible signal line 422 via the first vertical MOS switch 424.
, And read out to the horizontal visible signal line 423 via the first horizontal MOS switch 425, and then taken out from the first output amplifier 420 as a visible image signal. Similarly, the second vertical MOS is supplied from the bias power supply 408 to the second vertical MOS.
A current flows to the load resistor 409 through the switch 404, the bolometer 402, the vertical invisible signal line 412, the second horizontal MOS switch 405, and the horizontal invisible signal line 413, and is extracted from the second output amplifier 410 as an invisible image signal.

【0023】図5は、本発明の主要な構成要素である撮
像素子の走査手段をMOS方式の走査回路と信号線で構
成し、B方式の不可視光の検出部に差動増幅器を導入し
たものである。
FIG. 5 is a diagram in which the scanning means of the image sensor, which is a main component of the present invention, is constituted by a MOS scanning circuit and a signal line, and a differential amplifier is introduced into a B-system invisible light detecting section. It is.

【0024】ダイオード501とボロメータ502と第
2の垂直MOSスイッチ504とでB方式の赤外光の検
出画素530が構成され、フォトダイオード514と第
1のMOSスイッチ524とで可視光の検出画素540
が構成され、検出画素530と540とで本発明の撮像
素子の単位画素503が構成され、この単位画素503
が2次元に配列される。
The diode 501, the bolometer 502, and the second vertical MOS switch 504 constitute a B-type infrared light detection pixel 530, and the photodiode 514 and the first MOS switch 524 detect visible light detection pixels 540.
And the detection pixels 530 and 540 constitute a unit pixel 503 of the image sensor of the present invention.
Are arranged two-dimensionally.

【0025】単位画素503の2次元走査は、垂直シフ
トレジスタ506の出力パルスが印加される垂直伝送線
511と接続された第1の垂直MOSスイッチ524お
よび第2の垂直MOSスイッチ504と水平シフトレジ
スタ507の出力パルスが印加される第1の水平MOS
スイッチ525および第2の水平MOSスイッチ505
により、画素を順次選択することで行われる。
The two-dimensional scanning of the unit pixel 503 is performed by the first vertical MOS switch 524 and the second vertical MOS switch 504 connected to the vertical transmission line 511 to which the output pulse of the vertical shift register 506 is applied, and the horizontal shift register. The first horizontal MOS to which the output pulse of 507 is applied
Switch 525 and second horizontal MOS switch 505
Is performed by sequentially selecting pixels.

【0026】画素503が選択されると、フォトダイオ
ード514に蓄積された可視光の信号電荷は第1の垂直
MOSスイッチ524を経由して垂直可視信号線522
に読み出され、第1の水平MOSスイッチ525を経由
して水平可視信号線523に読み出されたあと、第1の
出力アンプ520から可視画像信号として取り出され
る。
When the pixel 503 is selected, the visible light signal charge stored in the photodiode 514 is transferred to the vertical visible signal line 522 via the first vertical MOS switch 524.
After being read out to the horizontal visible signal line 523 via the first horizontal MOS switch 525, it is extracted from the first output amplifier 520 as a visible image signal.

【0027】同様に画素503が選択されると、バイア
ス電源508から第2の垂直MOSスイッチ504、ボ
ロメータ502へ流れた電流が発生する電圧と、分割抵
抗517で発生させた基準電圧とを画素内の差動アンプ
515に入力し、差動アンプ515から得られる出力電
圧で不可視信号制御用MOSゲート516を駆動し、不
可視信号電荷をバイアス電源516から垂直不可視信号
線512に注入する。垂直不可視信号線512に注入さ
れた電荷は、第2の水平MOSスイッチ505、水平不
可視信号線513を通って負荷抵抗509に流れ、第2
の出力アンプ510から不可視画像信号として取り出さ
れる。
Similarly, when the pixel 503 is selected, the voltage generated by the current flowing from the bias power supply 508 to the second vertical MOS switch 504 and the bolometer 502 and the reference voltage generated by the dividing resistor 517 are stored in the pixel. And drives the invisible signal control MOS gate 516 with the output voltage obtained from the differential amplifier 515 to inject the invisible signal charge from the bias power supply 516 to the vertical invisible signal line 512. The electric charge injected into the vertical invisible signal line 512 flows to the load resistor 509 through the second horizontal MOS switch 505 and the horizontal invisible signal line 513, and
From the output amplifier 510 as an invisible image signal.

【0028】図6は、本発明の主要な構成要素である撮
像素子の走査手段をCCDとし、B方式の不可視光の検
出部に差動増幅器を導入したものである。
FIG. 6 shows an embodiment in which a CCD is used as a scanning means of an image sensor, which is a main component of the present invention, and a differential amplifier is introduced in a B type invisible light detecting section.

【0029】ダイオード601とボロメータ602と第
2の垂直MOSスイッチ604とでB方式の赤外光の検
出画素630が構成され、フォトダイオード614と第
1のMOSスイッチ624とで可視光の検出画素640
が構成され、検出画素630と640とで本発明の撮像
素子の単位画素603が構成され、この単位画素603
が2次元に配列される。
The diode 601, the bolometer 602, and the second vertical MOS switch 604 form a B-type infrared light detection pixel 630, and the photodiode 614 and the first MOS switch 624 form a visible light detection pixel 640.
And the detection pixels 630 and 640 constitute a unit pixel 603 of the image sensor of the present invention.
Are arranged two-dimensionally.

【0030】単位画素603の2次元走査は、垂直CC
D654と水平CCD655とで行われる。
The two-dimensional scanning of the unit pixel 603 is performed in the vertical CC
D654 and the horizontal CCD 655.

【0031】垂直読み出しパルス651(ΦVR)が全て
の第1の垂直MOSスイッチ624と第2の垂直MOS
スイッチ604に印加されると、可視光の信号電荷も不
可視光の信号電荷も一斉に垂直CCD654に読み出さ
れる。
The vertical read pulse 651 (ΦVR) is applied to all the first vertical MOS switches 624 and the second vertical MOS switches 624.
When applied to the switch 604, both visible light signal charges and invisible light signal charges are simultaneously read out to the vertical CCD 654.

【0032】可視光の信号電荷は、フォトダイオード6
14から第1の垂直もSスイッチ624を経由して垂直
CCD654に読み出される。
The signal charge of the visible light is
From 14, the first vertical is also read out to the vertical CCD 654 via the S switch 624.

【0033】不可視光の信号電荷は、バイアス電源60
8から第2の垂直MOSスイッチ604、ボロメータ6
02へ流れた電流が発生する電圧と、分割抵抗617で
発生させた基準電圧とを画素内の差動アンプ615に入
力し、差動アンプ615から得られる出力電圧で不可視
信号制御用MOSゲート616を駆動し、不可視信号電
荷をバイアス電源516から垂直CCD654に注入す
る。
The signal charge of the invisible light is supplied to the bias power supply 60
8 to the second vertical MOS switch 604, the bolometer 6
02 and the reference voltage generated by the dividing resistor 617 are input to the differential amplifier 615 in the pixel, and the output voltage obtained from the differential amplifier 615 is used to control the invisible signal control MOS gate 616. To inject an invisible signal charge from the bias power supply 516 into the vertical CCD 654.

【0034】垂直CCDに読み込まれた可視光の信号電
荷と不可視光の信号電荷は水平MOSスイッチ653を
経由して水平CCDに読み込まれ、出力部で可視光の信
号電荷と不可視光の信号電荷は振り分けられ、可視光用
のアンプ620と不可視光用のアンプ610から画像信
号として取り出される。
The visible light signal charges and the invisible light signal charges read into the vertical CCD are read into the horizontal CCD via the horizontal MOS switch 653, and the visible light signal charges and the invisible light signal charges are output at the output unit. The signals are sorted and extracted as image signals from the amplifier 620 for visible light and the amplifier 610 for invisible light.

【0035】図6の垂直CCDおよび水平CCDは可視
光の信号電荷と不可視光の信号電荷を同時に転送するた
め、従来のCCDイメージセンサに用いられている垂直
CCDや水平CCDに比べ倍密度にする必要がある。
Since the vertical CCD and the horizontal CCD shown in FIG. 6 simultaneously transfer the visible light signal charges and the invisible light signal charges, the density is doubled as compared with the vertical CCD and the horizontal CCD used in the conventional CCD image sensor. There is a need.

【0036】図7は、図6の単位画素603の具体的な
構造の一例である。n基板701上のpエピ領域702
表面に形成されたn領域703が可視光のフォトダイオ
ード614に対応し、電荷転送部707が垂直CCD6
54に対応する。対赤外光光電変換部704がボロメー
タ602であり、対赤外光読み出し電極706が不可視
信号制御用MOSゲート616に対応し、n+領域70
5にバイアス電源616が印加される。
FIG. 7 shows an example of a specific structure of the unit pixel 603 in FIG. p epi region 702 on n substrate 701
The n region 703 formed on the surface corresponds to the visible light photodiode 614, and the charge transfer unit 707 is
Corresponding to 54. The infrared light photoelectric conversion unit 704 is the bolometer 602, the infrared light readout electrode 706 corresponds to the invisible signal control MOS gate 616, and the n + region 70.
5, a bias power supply 616 is applied.

【0037】図8は、図7のボロメータの代わりに焦電
材料を対赤外光光電変換部804に用いたもので、赤外
光読み出し電極706と共に不可視信号制御用MOSゲ
ート616のゲートの一部を構成する構造となってい
る。
FIG. 8 shows an example in which a pyroelectric material is used for the infrared light photoelectric conversion unit 804 in place of the bolometer of FIG. 7, and one of the gates of the invisible signal control MOS gate 616 together with the infrared light readout electrode 706. It has a structure that constitutes a part.

【0038】[0038]

【発明の効果】以上説明したことから明らかなように、
本発明によれば可視光と不可視光の画像信号を同時に得
ることが可能な撮像装置を実現でき、しかも走査手段や
不可視光の検出部として利用できる材料等に左右されな
い素子構成が提供できる。よって本発明がもたらす実用
的な効果は極めて大きい。
As is apparent from the above description,
According to the present invention, it is possible to realize an imaging device capable of simultaneously obtaining image signals of visible light and invisible light, and to provide an element configuration that is not affected by materials and the like that can be used as a scanning unit and a detection unit of invisible light. Therefore, the practical effect provided by the present invention is extremely large.

【図面の簡単な説明】[Brief description of the drawings]

【図1】従来のボロメータ方式のFPAの回路構成を示
す図
FIG. 1 is a diagram showing a circuit configuration of a conventional bolometer type FPA.

【図2】従来のフェロエレクトリック方式のFPAの回
路構成を示す図
FIG. 2 is a diagram showing a circuit configuration of a conventional ferroelectric FPA;

【図3】本発明の撮像装置の構成要素である自由曲面反
射光学系を示す図
FIG. 3 is a diagram showing a free-form surface reflection optical system which is a component of the imaging apparatus of the present invention.

【図4】MOS方式の走査手段を用い、可視光フォトダ
イードとボロメータ方式の不可視光検出部を備えたた本
発明の第1の実施例を示す図
FIG. 4 is a diagram showing a first embodiment of the present invention provided with a visible light photodiode and a bolometer type invisible light detector using a MOS type scanning means.

【図5】MOS方式の走査手段を用い、ボロメータ方式
の不可視光検出画素部に差動増幅器を用いた本発明の第
2の実施例を示す図
FIG. 5 is a diagram showing a second embodiment of the present invention using a MOS type scanning means and a differential amplifier in a bolometer type invisible light detection pixel section.

【図6】CCD方式の走査手段を用い、可視光フォトダ
イオードとボロメータ方式の不可視光検出部を備えた本
発明の第3の実施例を示す図
FIG. 6 is a diagram showing a third embodiment of the present invention using a CCD type scanning unit and provided with a visible light photodiode and a bolometer type invisible light detection unit.

【図7】本発明の第3の実施例の単位画素の素子構造図FIG. 7 is an element structure diagram of a unit pixel according to a third embodiment of the present invention.

【図8】本発明の第3の実施例の不可視光検出部をフェ
ロエレクトリック方式の焦電材料で構成した場合の単位
画素の素子構造図
FIG. 8 is an element structure diagram of a unit pixel in a case where an invisible light detection unit according to a third embodiment of the present invention is made of a ferroelectric type pyroelectric material.

【符号の説明】[Explanation of symbols]

401 ダイオード 402 ボロメータ 403 画素 404 フォトトランジスタ 405 水平モススイッチ 406 垂直走査回路 407 水平走査回路 401 Diode 402 Bolometer 403 Pixel 404 Phototransistor 405 Horizontal Moss switch 406 Vertical scanning circuit 407 Horizontal scanning circuit

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 光学的に認識される像を電気信号に変換
する固体撮像素子と、前記固体撮像素子へ受光すべき光
を導く光学系とを備え、前記固体撮像素子はm行n列
(m、nともに自然数)に配列された画素と走査手段を
有し、前記各画素が可視光の検出部と不可視光の検出部
を有することを特徴とする固体撮像装置。
1. A solid-state imaging device for converting an optically recognized image into an electric signal, and an optical system for guiding light to be received to the solid-state imaging device, wherein the solid-state imaging device has m rows and n columns ( A solid-state imaging device comprising: pixels arranged in a matrix (m and n are natural numbers) and a scanning unit, wherein each pixel has a visible light detecting unit and an invisible light detecting unit.
【請求項2】 光学的に認識される像を電気信号に変換
する固体撮像素子と、前記固体撮像素子へ受光すべき光
を導く光学系とを備え、前記固体撮像素子はm行n列
(m、nともに自然数)に配列された画素と走査手段を
有し、前記各画素が可視光の検出部と不可視光の検出部
を有し、前記不可視光の検出部がボロメータ方式の材料
で構成されていることを特徴とする固体撮像装置。
2. A solid-state imaging device for converting an optically recognized image into an electric signal, and an optical system for guiding light to be received to the solid-state imaging device, wherein the solid-state imaging device has m rows and n columns ( m and n are natural numbers), each pixel has a scanning unit, and each pixel has a visible light detecting unit and an invisible light detecting unit, and the invisible light detecting unit is made of a bolometer type material. A solid-state imaging device characterized in that:
【請求項3】 光学的に認識される像を電気信号に変換
する固体撮像素子と、前記固体撮像素子へ受光すべき光
を導く光学系とを備え、前記固体撮像素子はm行n列
(m、nともに自然数)に配列された画素と走査手段を
有し、前記各画素が可視光の検出部と不可視光の検出部
を有し、前記不可視光の検出部がフェロエレクトリック
方式の材料で構成されていることを特徴とする固体撮像
装置。
3. A solid-state imaging device for converting an optically recognized image into an electric signal, and an optical system for guiding light to be received to the solid-state imaging device, wherein the solid-state imaging device has m rows and n columns ( m and n are natural numbers), each pixel has a scanning unit, and each pixel has a visible light detection unit and an invisible light detection unit, and the invisible light detection unit is made of a ferroelectric material. A solid-state imaging device, comprising:
【請求項4】 光学的に認識される像を電気信号に変換
する固体撮像素子と、前記固体撮像素子へ受光すべき光
を導く光学系とを備え、前記固体撮像素子はm行n列
(m、nともに自然数)に配列された画素と走査手段を
有し、前記各画素が可視光の検出部と不可視光の検出部
を有し、前記走査手段が走査回路と信号線とで構成され
ていることを特徴とする固体撮像装置。
4. A solid-state imaging device for converting an optically recognized image into an electric signal, and an optical system for guiding light to be received to the solid-state imaging device, wherein the solid-state imaging device has m rows and n columns ( m and n are natural numbers), and each pixel has a visible light detecting unit and an invisible light detecting unit, and the scanning unit includes a scanning circuit and a signal line. A solid-state imaging device.
【請求項5】 光学的に認識される像を電気信号に変換
する固体撮像素子と、前記固体撮像素子へ受光すべき光
を導く光学系とを備え、前記固体撮像素子はm行n列
(m、nともに自然数)に配列された画素と走査手段を
有し、前記各画素が可視光の検出部と不可視光の検出部
を有し、前記走査手段が電荷転送装置であることを特徴
とする固体撮像装置。
5. A solid-state imaging device for converting an optically recognized image into an electric signal, and an optical system for guiding light to be received to the solid-state imaging device, wherein the solid-state imaging device has m rows and n columns ( m and n are natural numbers) and each pixel has a visible light detection unit and an invisible light detection unit, and the scanning unit is a charge transfer device. Solid-state imaging device.
【請求項6】 光学的に認識される像を電気信号に変換
する固体撮像素子と、前記固体撮像素子へ受光すべき光
を導く光学系とを備え、前記固体撮像素子はm行n列
(m、nともに自然数)に配列された画素と走査手段を
有し、前記各画素が可視光の検出部と不可視光の検出部
を有し、前記不可視光の検出部が温度変化分だけを検出
するための差動増幅器を有していることを特徴とする固
体撮像装置。
6. A solid-state imaging device for converting an optically recognized image into an electric signal, and an optical system for guiding light to be received to the solid-state imaging device, wherein the solid-state imaging device has m rows and n columns ( pixels having both m and n are natural numbers) and scanning means, each of the pixels has a visible light detecting section and an invisible light detecting section, and the invisible light detecting section detects only a temperature change. A solid-state imaging device having a differential amplifier for performing the operation.
【請求項7】 光学系が自由曲面反射を用いたことを特
徴とする請求項1〜6のいずれかに記載の固体撮像素
子。
7. The solid-state imaging device according to claim 1, wherein the optical system uses free-form surface reflection.
JP9295122A 1997-10-28 1997-10-28 Solid imaging device Pending JPH11132860A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9295122A JPH11132860A (en) 1997-10-28 1997-10-28 Solid imaging device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9295122A JPH11132860A (en) 1997-10-28 1997-10-28 Solid imaging device

Publications (1)

Publication Number Publication Date
JPH11132860A true JPH11132860A (en) 1999-05-21

Family

ID=17816581

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9295122A Pending JPH11132860A (en) 1997-10-28 1997-10-28 Solid imaging device

Country Status (1)

Country Link
JP (1) JPH11132860A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000048033A1 (en) * 1999-02-10 2000-08-17 Matsushita Electric Industrial Co., Ltd. Reflection optical device, reflection solid-state optical device, imaging device comprising this, multiwavelength imaging device, video camera, and monitoring device mounted on vehicle
US6548879B2 (en) 1999-11-01 2003-04-15 Hiroyoshi Komobuchi Semiconductor device having heat detecting element and insulating cavity and method of manufacturing the same
JP2005217629A (en) * 2004-01-28 2005-08-11 Toshiba Corp Solid-state imaging apparatus, imaging circuit, and imaging data output method
US6929373B2 (en) 2001-04-11 2005-08-16 Matsushita Electric Industrial Co., Ltd. Reflection optical device and imaging apparatus comprising it, multi-wavelength imaging apparatus, and vehicle mounted monitor
JP2006145214A (en) * 2004-11-16 2006-06-08 Nissan Motor Co Ltd Apparatus for detecting infrared radiation
WO2009044544A1 (en) * 2007-10-01 2009-04-09 Panasonic Corporation Imaging device
WO2013038815A1 (en) * 2011-09-13 2013-03-21 コニカミノルタホールディングス株式会社 Image sensor and radiography device

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000048033A1 (en) * 1999-02-10 2000-08-17 Matsushita Electric Industrial Co., Ltd. Reflection optical device, reflection solid-state optical device, imaging device comprising this, multiwavelength imaging device, video camera, and monitoring device mounted on vehicle
US6896382B2 (en) 1999-02-10 2005-05-24 Matsushita Electric Industrial Co., Ltd. Reflective optical device, and reflective solid-state optical device, and imaging device, multi-wavelength imaging device, video camera device, and vehicle-mounted monitor utilizing the same
US6908200B1 (en) 1999-02-10 2005-06-21 Matsushita Electric Industrial Co., Ltd. Reflection optical device, and reflection solid-state optical device, imaging device comprising this, multiwavelength imaging device, video camera, and monitoring device mounted on vehicle
US6548879B2 (en) 1999-11-01 2003-04-15 Hiroyoshi Komobuchi Semiconductor device having heat detecting element and insulating cavity and method of manufacturing the same
US6617659B2 (en) 1999-11-01 2003-09-09 Matsushita Electric Industrial Co., Ltd. Semiconductor device having heat detecting element and insulating cavity and method of manufacturing thereof
US6929373B2 (en) 2001-04-11 2005-08-16 Matsushita Electric Industrial Co., Ltd. Reflection optical device and imaging apparatus comprising it, multi-wavelength imaging apparatus, and vehicle mounted monitor
JP2005217629A (en) * 2004-01-28 2005-08-11 Toshiba Corp Solid-state imaging apparatus, imaging circuit, and imaging data output method
JP2006145214A (en) * 2004-11-16 2006-06-08 Nissan Motor Co Ltd Apparatus for detecting infrared radiation
JP4501644B2 (en) * 2004-11-16 2010-07-14 日産自動車株式会社 Infrared detector
WO2009044544A1 (en) * 2007-10-01 2009-04-09 Panasonic Corporation Imaging device
WO2013038815A1 (en) * 2011-09-13 2013-03-21 コニカミノルタホールディングス株式会社 Image sensor and radiography device

Similar Documents

Publication Publication Date Title
US5512748A (en) Thermal imaging system with a monolithic focal plane array and method
US8288702B2 (en) Response-enhanced monolithic-hybrid pixel
US7569414B2 (en) CMOS imager with integrated non-volatile memory
JP3839487B2 (en) Dual-band multilevel microbridge detector
US4679068A (en) Composite visible/thermal-infrared imaging system
US7847253B2 (en) Wideband semiconducting light detector
US6137407A (en) Humanoid detector and method that senses infrared radiation and subject size
US5486698A (en) Thermal imaging system with integrated thermal chopper
US6888141B2 (en) Radiation sensor with photo-thermal gain
US4806761A (en) Thermal imager incorporating electronics module having focal plane sensor mosaic
EP0474480B1 (en) A display arrangement
JPH06197279A (en) System and process for reading out arrangement of infrared detector
JP2009505577A (en) Applicable solid state image sensor
US5929441A (en) Low mass optical coating for thin film detectors
US20100084556A1 (en) Optical-infrared composite sensor and method of fabricating the same
US5559332A (en) Thermal detector and method
US4596930A (en) Arrangement for multispectal imaging of objects, preferably targets
JPH11132860A (en) Solid imaging device
US6037590A (en) Polarization-tunable antenna-coupled infrared detector
US4737642A (en) Arrangement for multispectral imaging of objects, preferably targets
US6040577A (en) Chopperless operation of a thermal infrared radiation sensor system by application of heat pulses to thermally isolated pixel sensor elements
US5708269A (en) Thermal detector and method
Marshall et al. Quantitative and imaging performance of uncooled microbolometer sensors
US11374050B2 (en) Focal plane array detectors with selectable polarization
US20230160751A1 (en) Vacuum health detection for imaging systems and methods

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040826

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040826

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20040914

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050624

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051107

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051115

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060314