JPS60145606A - Vapor growth method and device thereof - Google Patents

Vapor growth method and device thereof

Info

Publication number
JPS60145606A
JPS60145606A JP218584A JP218584A JPS60145606A JP S60145606 A JPS60145606 A JP S60145606A JP 218584 A JP218584 A JP 218584A JP 218584 A JP218584 A JP 218584A JP S60145606 A JPS60145606 A JP S60145606A
Authority
JP
Japan
Prior art keywords
gas
substrate
composition
vapor phase
flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP218584A
Other languages
Japanese (ja)
Inventor
Masaaki Nidou
正明 仁道
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP218584A priority Critical patent/JPS60145606A/en
Publication of JPS60145606A publication Critical patent/JPS60145606A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/02546Arsenides

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)

Abstract

PURPOSE:To obtain a multilayer structure which has almost no crystalline composition transition layer in a boundary of epitaxial layers by providing the step of breaking a substrate form a stock gas in the meantime immediately before the composition of the gas is altered until the alteration is completed. CONSTITUTION:Stock gas is thermally decomposed on the surface of a high temperature GaAs substrate 5, and precipitated on the substrate 5 as a crystal. At this time, the gas is not introduced from a gas inlet tube 6, and hydrogen 9 is flowed at the flow rate of the degree which does not affect the large influence to the flow 8 of the gas. In order to grow an A GaAs layers of the following different compositions, hydrogen diluted with a large amount of arsine from the tube 6 is flowed and sprayed to the substrate 6. This gas flow 11 coats the substrate 5 to intertupt from the flow 10 of the gas. The gas of the composition at the previous epitaxial growth time remaining in the gas tube and a reaction chamber 3 is passed through the substrate 5 at the gas composition altering time, and this state remains until the composition of the gas becomes the normal state to perform the next epitaxial growth.

Description

【発明の詳細な説明】 本発明は、エピタキシャル層界面の結晶組成のだれを低
減することのできる気相成長方法及び気相成長装置に関
する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a vapor phase growth method and a vapor phase growth apparatus that can reduce drooping of the crystal composition at the interface of an epitaxial layer.

1−V族化合物半導体を用いた半導体レーザ等の半導体
素子の結晶のエピタキシャル成長において、近来、気相
成長法が脚光を浴びるよりになってきた。気相成長法は
、従来から用いられている液相成長法に比べて、エピタ
キシャル層の層厚の均一性にすぐれ、結晶成長速度をお
そくすることが可能なため、数十A程度層厚の超薄膜の
形成も可能である。また、大面積の基板結晶に成長がで
きるため、量産性もすぐれている。
In epitaxial growth of crystals of semiconductor devices such as semiconductor lasers using 1-V group compound semiconductors, vapor phase growth methods have recently been in the spotlight. Compared to the conventionally used liquid phase growth method, the vapor phase growth method has superior uniformity in the thickness of the epitaxial layer and can slow down the crystal growth rate. It is also possible to form ultra-thin films. Furthermore, since the crystal can be grown on a large-area substrate, mass productivity is also excellent.

エピタキシャル層界面での組成の遷移領域の厚さは数十
A以下であ少、液相成長法の数百AK比べて優れている
が、エピタキシャル層の組成を変えるために1原料ガス
の組成を変えるときに、ガス配管や反応室中に残留する
ガスによる結晶析出のためにエピタキシャル層界面に組
成の遷移領域ができるのがさけがたい。通常はガス配管
を短くしたシ、原料ガスの流速を大きくして残留ガスの
量と滞在時間をできるだけ小さくしている。しかし、基
板より上流側の反応室の容積の残留ガスはさけられず、
流速を大きくするKも限度がある。
The thickness of the composition transition region at the interface of the epitaxial layer is less than a few tens of amps, which is superior to the several hundred amps of liquid phase growth, but it is necessary to change the composition of one source gas to change the composition of the epitaxial layer. When changing the epitaxial layer, it is unavoidable that a compositional transition region is formed at the epitaxial layer interface due to crystal precipitation due to gas remaining in the gas piping or reaction chamber. Normally, the gas piping is shortened and the flow rate of the raw material gas is increased to minimize the amount of residual gas and the residence time. However, residual gas in the volume of the reaction chamber upstream of the substrate cannot be avoided.
K, which increases the flow velocity, also has a limit.

本発明は、従来の気相成長方法における上記欠点を除去
し、エピタキシャル層の界面における結晶組成遷移領域
をほぼ完全になくすことのできる気相成長方法及びそれ
を実現する気相成長装置を提供するものである。
The present invention provides a vapor phase growth method that eliminates the above-mentioned drawbacks of conventional vapor phase growth methods and can almost completely eliminate the crystal composition transition region at the interface of an epitaxial layer, and a vapor phase growth apparatus that realizes the method. It is something.

本発明は、原料ガスの化学反応又は熱分解によシ基板上
に結晶を成長させる気相成長方法において、前記原料ガ
スの組成を変更する直前から、変更が終了するまでの間
、前記基板の熱分解を防ぐガスを含み、かつ前記基板に
結晶が成長しない組成のガスを充分な流量で前記基板に
吹きつけ、前記基板を前記原料ガスからしゃ断する工程
を具備していることを特徴とする。
The present invention provides a vapor phase growth method for growing crystals on a substrate by chemical reaction or thermal decomposition of a source gas, in which the composition of the substrate is grown from immediately before changing the composition of the source gas until the end of the change. The method is characterized by comprising a step of blowing a gas containing a gas that prevents thermal decomposition and having a composition that does not cause crystal growth on the substrate at a sufficient flow rate to cut off the substrate from the source gas. .

本発明の気相成長装置は、原料ガス導入管を備えている
反応管と、反応管内に設置されたサセプタと、少くとも
基板を加熱する加熱手段と、基板の熱分解を防ぐガスを
含み、かつ前記基板に結晶が成長しない組成のガスを充
分な流量で前記基板に吹きつけ、前記基板を前記原料ガ
スからしゃ断することのできるガス導入管とを、少くと
も具備している構成となっている。
The vapor phase growth apparatus of the present invention includes a reaction tube equipped with a raw material gas introduction tube, a susceptor installed in the reaction tube, a heating means for heating at least a substrate, and a gas that prevents thermal decomposition of the substrate. and at least a gas inlet pipe capable of spraying a gas having a composition that does not cause crystal growth on the substrate at a sufficient flow rate to isolate the substrate from the source gas. There is.

以下に、図面を用いて、本発明の気相成長方法及び気相
成長装置の実施例を詳細に説明する。以下の詳細な説明
は、気相成長法のうち特にメタル・オーガニック・クミ
カルペーパー・デポジション法(MO−OVD法を略称
する)を用いたAlGaAsの成長を例にとって行う。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Examples of the vapor phase growth method and vapor phase growth apparatus of the present invention will be described in detail below with reference to the drawings. The following detailed explanation will be given by taking as an example the growth of AlGaAs using a metal organic chemical paper deposition method (abbreviated as MO-OVD method) among vapor phase growth methods.

第1図はエピタキシャル成長中のMO−OVD装置の反
応室周辺及びガスの流れの略図、第2図は原料ガス組成
切シ替え時の気相成長装置の反応室周辺及びガスの流れ
の略図を示す。エピタキシャル成長中には、(第1図)
原料ガスは、キャリアガスである水素に希釈されて原料
ガス導入管lよシ反応管2の内部の反応室3に導入され
、矢印8に示すように流れている。GaA s基板5は
カーボンサセプタ4上に設置され、高周波コイル7によ
シ加熱され、原料ガスは高温のGaAs基板5表面で熱
分解され、結晶としてG a A s基板5上に析出す
る。
Figure 1 shows a schematic diagram of the vicinity of the reaction chamber and gas flow of the MO-OVD apparatus during epitaxial growth, and Figure 2 shows a schematic diagram of the vicinity of the reaction chamber and gas flow of the vapor phase growth apparatus when switching the source gas composition. . During epitaxial growth, (Fig. 1)
The raw material gas is diluted with hydrogen, which is a carrier gas, and is introduced into the reaction chamber 3 inside the reaction tube 2 through the raw material gas introduction pipe 1, and flows as shown by an arrow 8. The GaAs substrate 5 is placed on the carbon susceptor 4 and heated by the high-frequency coil 7, and the raw material gas is thermally decomposed on the surface of the high-temperature GaAs substrate 5, and is deposited on the GaAs substrate 5 as crystals.

このとき、ガス導入管6からは、原料ガスがガス導入W
6に流入せず、かつ原料ガスの流れ8JC大きな影響を
与えない程度の流量で水素またはアルシンを希釈した水
素を流しておく(流れ9)。そして、次の組成の異なる
AlGaAs層の成長を行うために原料ガス組成を切シ
替える直前に、ガス導入管6よシ大流量のアルシンを希
釈した水素を流し、G aA s基板5に吹きつける(
第2図)。ガス導入管6より流入したガスは流れIIK
示すようKGaAs基板5を被い、原料ガスの流れ10
よりしゃ断する。そして、ガス組成の切シ替え時にガス
配管及び反応室3に残留した前回のエピタキシャル成長
時の組成の原料ガスが基板5−を通過し、かつ次回のエ
ピタキシャル成長のために原料ガスの組成が定常状態に
なるまで、第2図に示す状態を保持する。こののち、ガ
ス導入管6からの流入ガスの流量を第1図の状態にもど
し、次回のエピタキシャル成長をおこなう。
At this time, the raw material gas is introduced from the gas introduction pipe 6
Hydrogen or hydrogen diluted with arsine is allowed to flow at a flow rate that does not flow into Flow 8JC and does not significantly affect the flow 8JC of raw material gas (Flow 9). Immediately before switching the source gas composition to grow the next AlGaAs layer with a different composition, a large flow of hydrogen diluted with arsine is flowed through the gas introduction pipe 6 and sprayed onto the GaAs substrate 5. (
Figure 2). The gas flowing in from the gas introduction pipe 6 flows into the flow IIK.
As shown, the KGaAs substrate 5 is covered, and the source gas flow 10 is
Be more insulated. Then, when the gas composition is switched, the raw material gas with the composition used in the previous epitaxial growth remaining in the gas pipe and the reaction chamber 3 passes through the substrate 5-, and the composition of the raw material gas is brought to a steady state for the next epitaxial growth. The state shown in FIG. 2 is maintained until the state shown in FIG. Thereafter, the flow rate of the gas flowing in from the gas introduction pipe 6 is returned to the state shown in FIG. 1, and the next epitaxial growth is performed.

上記の方法によれば、エピタキシャル層界面において、
原料ガス組成の切シ替え時の残留ガスの熱分解、析出に
よる結晶組成遷移層を11は完全になくすことができる
。また、ガス導入管6からはG a A s基板の熱分
解を防止するアルシンが流入してくるので、第2図の状
態におけるG a A s基板の熱劣化をおさえること
ができる。
According to the above method, at the epitaxial layer interface,
11 can completely eliminate the crystal composition transition layer caused by thermal decomposition and precipitation of residual gas when switching the raw material gas composition. Further, since arsine, which prevents thermal decomposition of the GaAs substrate, flows in from the gas introduction pipe 6, thermal deterioration of the GaAs substrate in the state shown in FIG. 2 can be suppressed.

以上、詳細に述べたように本発明の気相成長方法及び気
相成長装置を用いればエピタキシャル層界面における結
晶組成遷移層のほとんどない多層構造結晶を得ることが
できる。このような気相成長方法及び気相成長装置は、
数十A以下、さらには数原子層の超薄膜の製作にきわめ
て有用である。
As described in detail above, by using the vapor phase growth method and vapor phase growth apparatus of the present invention, it is possible to obtain a multilayer structure crystal with almost no crystal composition transition layer at the epitaxial layer interface. Such a vapor phase growth method and vapor phase growth apparatus are:
It is extremely useful for producing ultra-thin films of several tens of amperes or less, and even of several atomic layers.

なお、上の詳細説明においてはMO−OVD法を用い九
G a A s基板上のA I GaA+s成長を例に
とりたが、本発明が他の気相成長法を用いた他の基板上
の他の材料の結晶成長に適用できることは言うまでもな
い。
In the above detailed explanation, the MO-OVD method was used to take AI GaA+s growth on a nine Ga As substrate as an example, but the present invention can also be applied to other substrates using other vapor phase epitaxy methods. Needless to say, this method can be applied to crystal growth of materials such as

第1図及び第2図は本発明に係るMO−OVD法を用い
た気相成長方法に用いた気相成長装置の一例を示す図で
、第1図はエピタキシャル成長中、第2図は原料ガス組
成切シ替え時を示している。
1 and 2 are diagrams showing an example of a vapor phase growth apparatus used in the vapor phase growth method using the MO-OVD method according to the present invention. This shows the time of composition switching.

l・・・原料ガス導入管、2・・・反応管、 3・・・
反応室、4・・・カーボンサセプタ、5・・・G a 
A s基板、6・・・ガス導入管、7・・・高周波コイ
ル、8.10・・・原料ガスの流れ、 9.11・・・
ガス導入管よシ流入するガスの流れ。
l... Raw material gas introduction pipe, 2... Reaction tube, 3...
Reaction chamber, 4... carbon susceptor, 5... Ga
A s substrate, 6... Gas introduction pipe, 7... High frequency coil, 8.10... Flow of raw material gas, 9.11...
The flow of gas flowing through the gas introduction pipe.

第1図 第2図Figure 1 Figure 2

Claims (2)

【特許請求の範囲】[Claims] (1) 原料ガスの化学反応あるいは熱分解により基板
上に所望の結晶を成長させる気相成長方法において、前
記原料ガスの組成を変更する直前から、変更が終了する
までの間前記基板の熱分解を防ぐガスを含み、かつ前記
基板に結晶が成長しない組成のガスを充分な流量で前記
基板に吹きつけ、前記基板を前記原料ガスからしゃ断す
る工程を有することを特徴とする気相成長方法。
(1) In a vapor phase growth method in which a desired crystal is grown on a substrate by chemical reaction or thermal decomposition of a raw material gas, the substrate is thermally decomposed from immediately before changing the composition of the raw material gas until the change is completed. A vapor phase growth method comprising the step of: spraying a gas at a sufficient flow rate onto the substrate, including a gas that prevents the growth of crystals on the substrate, and cutting off the substrate from the source gas.
(2)原料ガス導入管を備えた反応管と、この反応管内
に設置されたサセプタと、少くともサセプタ上に設置さ
れた基板を加熱する加熱手段とを少なくとも備えている
気相成長装置において、基板の熱分解を防ぐガスを含み
、かつ前記基板に結晶が成長しない組成のガスを充分な
流量で前記基板に吹きつけ、前記基板を前記原料ガスか
らし中断することのできるガス導入管がその管口を前記
基板に近接して設置されてることを特徴とする気相成長
装置。
(2) A vapor phase growth apparatus comprising at least a reaction tube equipped with a raw material gas introduction tube, a susceptor installed in the reaction tube, and a heating means for heating at least a substrate installed on the susceptor, A gas inlet pipe is provided that is capable of discharging the substrate from the source gas by spraying a gas containing a gas that prevents thermal decomposition of the substrate and having a composition that does not cause crystal growth on the substrate to the substrate at a sufficient flow rate. A vapor phase growth apparatus characterized in that a pipe port is installed close to the substrate.
JP218584A 1984-01-10 1984-01-10 Vapor growth method and device thereof Pending JPS60145606A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP218584A JPS60145606A (en) 1984-01-10 1984-01-10 Vapor growth method and device thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP218584A JPS60145606A (en) 1984-01-10 1984-01-10 Vapor growth method and device thereof

Publications (1)

Publication Number Publication Date
JPS60145606A true JPS60145606A (en) 1985-08-01

Family

ID=11522300

Family Applications (1)

Application Number Title Priority Date Filing Date
JP218584A Pending JPS60145606A (en) 1984-01-10 1984-01-10 Vapor growth method and device thereof

Country Status (1)

Country Link
JP (1) JPS60145606A (en)

Similar Documents

Publication Publication Date Title
EP0200766B1 (en) Method of growing crystalline layers by vapour phase epitaxy
JP3542009B2 (en) Molecular beam epitaxy method and apparatus
JPS60145606A (en) Vapor growth method and device thereof
JPH06132236A (en) Manufacture of semiconductor device
US4238252A (en) Process for growing indium phosphide of controlled purity
JPH01290221A (en) Semiconductor vapor growth method
JP3052269B2 (en) Vapor phase growth apparatus and growth method thereof
JPH0547668A (en) Crystal growth method for compound semiconductor
JPS63188933A (en) Method for vapor growth of gallium nitride compound semiconductor
JPS6143413A (en) Formation of compound semiconductor single crystal thin film
JPS63182299A (en) Vapor growth method for iii-v compound semiconductor
JP3006776B2 (en) Vapor growth method
JPS6060715A (en) Vapor growth method
JP2753832B2 (en) III-V Vapor Phase Growth of Group V Compound Semiconductor
JPH01292811A (en) Method and apparatus for vapor growth
JPH06151339A (en) Apparatus and method for growth of semiconductor crystal
JPS59232993A (en) Method and device for vapor phase crystal growth
JPH0788276B2 (en) Vapor phase epitaxial growth method
JPS62230693A (en) Vapor growth apparatus
JPS61155291A (en) Vapor growth process
JPH03236220A (en) Vapor growth method for semiconductor
JPS6131393A (en) Vapor phase growth device
JPS63287015A (en) Vapor growth apparatus for compound semiconductor thin film
JPH097951A (en) Semiconductor vapor growing method
JPS6390833A (en) Manufacture of compound thin film of group ii and vi elements