JPS60144704A - Thin film type optical element and its manufacture - Google Patents

Thin film type optical element and its manufacture

Info

Publication number
JPS60144704A
JPS60144704A JP59000837A JP83784A JPS60144704A JP S60144704 A JPS60144704 A JP S60144704A JP 59000837 A JP59000837 A JP 59000837A JP 83784 A JP83784 A JP 83784A JP S60144704 A JPS60144704 A JP S60144704A
Authority
JP
Japan
Prior art keywords
layer
optical waveguide
plane
crystal substrate
thermally diffused
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59000837A
Other languages
Japanese (ja)
Inventor
Mamoru Miyawaki
守 宮脇
Jun Tokumitsu
徳光 純
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP59000837A priority Critical patent/JPS60144704A/en
Publication of JPS60144704A publication Critical patent/JPS60144704A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/13Integrated optical circuits characterised by the manufacturing method
    • G02B6/134Integrated optical circuits characterised by the manufacturing method by substitution by dopant atoms
    • G02B6/1342Integrated optical circuits characterised by the manufacturing method by substitution by dopant atoms using diffusion

Abstract

PURPOSE:To obtain high diffracting efficiency with large interaction between a surface acoustic wave and guided light and small RF power by forming a thermally diffused metal layer on the surface of a substrate consisting of a waveguide crystal and implanting proton into the diffused layer thereby forming an optical waveguide layer. CONSTITUTION:The (y) plane or (x) plane of an LiNbO3 crystal substrate 1 which is a (y) plate or (x) plate is polished to the degree of flatness within several Newton rings and is then ultrasonically cleaned by using acetone then pure water. Said plate is dried by the gaseous nitrogen blown thereto. A thin Ti film is deposited by electron beam evaporation on the (y) plane or (x) plane and is thermally diffused in an oxygen a atmosphere to form a thermally diffused Ti layer 8. V, Ni, Au, Ag, Co, Nb, Ge, etc. may be used as the metal to be thermally diffused. Benzoic acid and lithium benzoate are then uniformly mixed and are put into a crucible consisting of alumina. The LiNbO3 crystal substrate having the layer 8 is put into the crucible contg. the benzoic acid and lithium benzoate and is thereafter put into a heating furnace. A proton exchange layer 9 is formed in the layer 8 as a result of an ion exchange treatment.

Description

【発明の詳細な説明】 〔技術分野〕 本発明は71ヒ膜型光学素子に関するものである。[Detailed description of the invention] 〔Technical field〕 The present invention relates to a 71 film type optical element.

〔従来技術〕[Prior art]

ie Ifg型即型光導波路型の電気光学(EO)素子
或いは音響光学(AO)素子は、光偏同器、光変調器ス
ペクトラムアナライザー、相関器等に用いられている。
An electro-optic (EO) device or an acousto-optic (AO) device of the ie Ifg type optical waveguide type is used in an optical polarizer, an optical modulator, a spectrum analyzer, a correlator, and the like.

上記KO素子或いはAO素子の光導波路基板としては、
圧電性、音響光学効果及び電気光学効果に優れ且つ光伝
播損失が少ないニオブ酸リチウム(以下LiNbO3と
記す)結晶及びタンタル酸リチウム(以下L i T 
p O5と記す)結晶が広く用いられている。この様な
結晶基、1反を用いて薄膜光導波路を作製する代表的な
方法として、チタン(以下Tiと記す)を前記結晶基板
の表面に高温で熱拡散することによシ、該結晶基板表面
に基板の屈折率よりわずかに大きな屈折率をMする光導
波路j■′i全形成する方法がある。
As the optical waveguide substrate of the above KO element or AO element,
Lithium niobate (hereinafter referred to as LiNbO3) crystal and lithium tantalate (hereinafter referred to as LiT
pO5) crystals are widely used. A typical method for manufacturing a thin film optical waveguide using one such crystal group is to thermally diffuse titanium (hereinafter referred to as Ti) onto the surface of the crystal substrate at a high temperature. There is a method of completely forming an optical waveguide having a refractive index M slightly larger than the refractive index of the substrate on the surface.

一方、光導波路上に励起された弾性表面波もしくは光導
波路上の電界と光導波路中を伝播する導波光との相互作
用は、導波光のエネルギー分布が基板表面近傍に閉じ込
められるほど増大することが仰られている[ C,S、
T8ml、IgEg TRANSACTIONSON 
CIRCUITS AND SYSTEMS、VOL 
CAS−26,12,1979]。
On the other hand, the interaction between the surface acoustic wave excited on the optical waveguide or the electric field on the optical waveguide and the guided light propagating in the optical waveguide increases as the energy distribution of the guided light is confined near the substrate surface. It is said [C,S,
T8ml, IgEg TRANSACTIONSON
CIRCUITS AND SYSTEMS, VOL
CAS-26, 12, 1979].

そこで、弾性表面波もしくに垣1昇と導波光との相互作
用の観点に立つと、上記に示す如きTiを熱拡散するこ
とにより作製された光導波路の場合には、4波光エネル
ギーは基板表面から比較的離れたところにも分布するの
で弾性表面波もしくは電界と導波光との相互作用が弱く
、弾性表面波による導波光の高効率な回折を実現するた
めには弾性表面波発生用くし型電極に印加するRFパワ
ーを大きくしなければならず、一方、電界と導波光との
相互作用を強くするためにはEO効果実用電極に印加す
る電圧を増大しなければならないという問題点を有して
いた。即ち、たとえばy板LINb03結晶基板表面に
膜厚200XのTi膜を電子ビーム蒸庸で形成し、96
5℃の酸素募囲気中で2.5時間熱拡散した光導波路上
に中心周波数400 M)fzのくし型電極を形成し、
400 MHzのRpAワーを加えた時の導波光の1次
回折光の回折光強度は第1図に示される如くであシ、最
大の回折光強度全傅るのに必要なR1i’ i9ワーは
350 mWと大きい。
Therefore, from the viewpoint of the interaction between surface acoustic waves or waveguides and guided light, in the case of an optical waveguide fabricated by thermally diffusing Ti as shown above, the 4-wave light energy is absorbed by the substrate. Since the wave is distributed relatively far from the surface, the interaction between the surface acoustic wave or the electric field and the guided light is weak.In order to achieve highly efficient diffraction of the guided light by the surface acoustic wave, it is necessary to use a surface acoustic wave generation comb. However, in order to strengthen the interaction between the electric field and the guided light, the voltage applied to the EO effect practical electrode must be increased. Was. That is, for example, a Ti film with a thickness of 200X is formed on the surface of a y-plate LINb03 crystal substrate by electron beam evaporation, and
A comb-shaped electrode with a center frequency of 400 M) fz was formed on the optical waveguide which was thermally diffused for 2.5 hours in an oxygen atmosphere at 5°C.
The diffracted light intensity of the first-order diffracted light of the guided light when a 400 MHz RpA power is applied is as shown in Figure 1, and the R1i' i9 power required to reach the maximum total diffracted light intensity is 350. It is large at mW.

ただし、導波光の波長は6328Xである。However, the wavelength of the guided light is 6328X.

また、上記の如きTi拡散目NbO3光導波路またはT
I拡散L i TaO5光導波路は光学損+IA全受は
易く、非常に小さいノ4ワーの光しか導入できないとい
う欠点をも有していた。ここで、光学損傷とは[光導波
路に入力する光強度を増大していったときに、該光導波
路内を伝播し外部に取シ出される光の強度が散乱によっ
て前記入力光強度に比例して増大しなくなる現象」をい
う。
In addition, Ti diffused NbO3 optical waveguide or T
The I-diffused L i TaO5 optical waveguide has the disadvantage that it is easy to receive optical loss + IA, and only a very small amount of light can be introduced. Here, optical damage is defined as [when the intensity of light input to an optical waveguide is increased, the intensity of the light propagated within the optical waveguide and taken out to the outside is proportional to the input light intensity due to scattering. ``a phenomenon in which the growth of a substance ceases to increase.''

〔本発明の目的〕[Object of the present invention]

本発明は、以上の如き従来技術に義み、音響光学素子と
して用いる場合に弾性表面波と導波光との相互作用が大
きく少ないRFパワーで高い回折助出が得られ、又、電
気光学素子及び熱光学素子として用いる場合に上記効果
を得るための電極に対して少ない印加電圧で高い変調効
率が得られるはかシでなく、光学損傷のしきい値が高い
薄i13γ型光学累子を提供することである。
The present invention is based on the above-mentioned conventional technology, and when used as an acousto-optic device, the interaction between surface acoustic waves and guided light is large, and high diffraction assistance can be obtained with a small RF power, and also as an electro-optic device. To provide a thin i13γ type optical transponder which is not only fragile but also has a high optical damage threshold, which can obtain high modulation efficiency with a small voltage applied to the electrodes to obtain the above effect when used as a thermo-optical element. That's true.

以上の如き目的は、導波路結晶基板表面に金蜘熱拡散層
を形成し、該拡散層に10トンを注入して光導波路層を
形成することによシ達成される。
The above objects are achieved by forming a gold spider thermal diffusion layer on the surface of a waveguide crystal substrate and injecting 10 tons into the diffusion layer to form an optical waveguide layer.

〔本発明の実施例〕[Example of the present invention]

以下、図面を参照しつつ本発明の実施例′f、説明する
Embodiment 'f' of the present invention will be described below with reference to the drawings.

第2図は本発明による薄膜型AO素子の実施例を示す斜
視図である。図において、lはX板もしくはy板■、1
Nb03結晶基板、2はチタン拡散及びプロトン交換層
から成る光導波路層、3,4はグレーティング光結合器
、5はくし型電極である。波長6328XのHe Ne
レーザー光6は、グレーティング光結合器3から光導波
路層2内に導びかれ、くしM電極5にRFパワー金加え
ることにょシ発生した伸性表面波7によシ回折され、回
折光はグレーティング光結合器4によシ外部に取υ出さ
れる。
FIG. 2 is a perspective view showing an embodiment of a thin film type AO element according to the present invention. In the figure, l is X plate or y plate ■, 1
A Nb03 crystal substrate, 2 an optical waveguide layer consisting of a titanium diffusion and proton exchange layer, 3 and 4 a grating optical coupler, and 5 a comb-shaped electrode. He Ne with wavelength 6328X
The laser beam 6 is guided into the optical waveguide layer 2 from the grating optical coupler 3, and is diffracted by the elastic surface wave 7 generated by applying RF power to the comb M electrode 5. The light is taken out to the outside by the optical coupler 4.

第3図は以上の如きンtO膜型AO素子の作製方法の説
明図である。先ず、第3図(、)に示される如く、y板
もしくはX板のLiNbO3結晶基板1のy面もしくは
X面をニー−トンリング数本以内の平面度に研崩した後
、アセトン次いで純水による通常の超祈波洗汐全行ない
、墾素ガスを吹きつけて乾燥させた。次に、上記y面も
しくはX面に電子ビーム蒸着によシ200Xの厚さにT
1薄膜全蒸着し、酸素芽囲気中で965℃、2,5時間
熱拡散させ、第3図(b)に示される如く、Ti熱拡散
胎8を形成した。
FIG. 3 is an explanatory diagram of a method for manufacturing the above-mentioned tO film type AO element. First, as shown in FIG. 3(,), after grinding the y-plane or the X-plane of the LiNbO3 crystal substrate 1 of the y-plate or After carrying out the usual ultra-cleaning process, I sprayed it with chlorine gas and dried it. Next, electron beam evaporation is applied to the above y-plane or
1 thin film was completely deposited and thermally diffused at 965° C. for 2.5 hours in an oxygen atmosphere to form a Ti thermally diffused matrix 8 as shown in FIG. 3(b).

熱拡散される金属としては、V 、 Ni r Au 
t Ag rCo 、 Nb 、 Ge等を用いても良
い。次に、安息香酸(C6H5COOH)94.77 
g及び安息香酸リチウム5.2311を均質になるよう
に混ぜあわせ、アルミナのルッ?にいれた。安息香酸及
び安息香酸リチウムのはいったルツボ中に第3図(b)
のTi拡散層8を有するLiNbO3結晶基板を入れ、
これらを熱炉に入れて250℃の温度で5時間保持して
イオン交換処理を行なった結果、第3(c)図に示され
る如く、Ti拡散層8中にプロトン交換層9が形成され
た。
Metals to be thermally diffused include V, Ni r Au
tAgrCo, Nb, Ge, etc. may also be used. Next, benzoic acid (C6H5COOH) 94.77
g and lithium benzoate 5.2311 are mixed until homogeneous, and the alumina is mixed. I put it in. Figure 3 (b) is placed in a crucible containing benzoic acid and lithium benzoate.
A LiNbO3 crystal substrate having a Ti diffusion layer 8 of
These were placed in a heat furnace and held at a temperature of 250° C. for 5 hours for ion exchange treatment. As a result, a proton exchange layer 9 was formed in the Ti diffusion layer 8, as shown in FIG. 3(c). .

プロトン交換層形成にあたっては、安息香酸と安息香酸
リチウムの混合液以外に、カルビン酸において解離度が
10−6から10−3である相料とこのカルデン酸のカ
ルボキシル基の水素がリチウムに11!lt換されてい
る拐科との混合物たとえは74ルミチン酸(CH,(C
H2)、4COOH)とノやルミチン敵リチウム〔CH
3(CI(2)、4COOLi〕との混合物やステアリ
ン酸[CH,(CH2)、6COOF()とステアリン
酸リチウム〔OH5(CH2)、60OOLi〕との混
合物があげられる。
In forming the proton exchange layer, in addition to the mixed solution of benzoic acid and lithium benzoate, a phase material having a dissociation degree of 10-6 to 10-3 in carbic acid and hydrogen in the carboxyl group of this carbic acid are used to convert lithium into 11! For example, 74 rumitic acid (CH, (C
H2), 4COOH) and lumitin enemy lithium [CH
3 (CI(2), 4COOLi) and a mixture of stearic acid [CH, (CH2), 6COOF() and lithium stearate [OH5(CH2), 60OOLi].

また、リチウムで置換された材料のモル比は1%から1
0%の範囲で行なう。エタノールで超音波洗浄全行ない
、窒素ガスを吹きつけて乾燥させた。
In addition, the molar ratio of the material substituted with lithium is from 1% to 1
Perform within the range of 0%. Ultrasonic cleaning was performed with ethanol, and nitrogen gas was blown to dry.

次に通常のフォトリソグラフィーの手法を用いて、第3
図(d)に示される如く、上記プロトン交換層9上にく
し型市@10を形成した。
Next, using normal photolithography techniques, a third
As shown in Figure (d), a comb-shaped city @10 was formed on the proton exchange layer 9.

尚、上記作製工程において、第3図(blのTi拡散後
の基板に対して赤外吸収スペクトルを測定したところ3
5 (10cm−’近傍のOH基の吸収は0.01であ
っ/ヒが、肌3図(c)のプロトン交換処理後の基板に
対して赤外吸収ス啄りトルを批1定したところ3500
 cm−’近傍のOH基の吸収は0.15’となシ、結
晶内にゾロトンがはいったことが確認された。
In the above manufacturing process, the infrared absorption spectrum was measured for the substrate after Ti diffusion shown in Figure 3 (bl).
5 (The absorption of OH groups in the vicinity of 10 cm-' is 0.01.) When the infrared absorption rate was determined for the substrate after the proton exchange treatment shown in Figure 3 (c), 3500
The absorption of the OH group near cm-' was 0.15', confirming that zoloton had entered the crystal.

次に、第2図の素子を用いて、くし型N、4屯に印加す
るIt F−平ワーと、回v1光の強度との関係全測定
した・くし型゛電極は、第1図の場合と同様、中心Jr
jj i1M数400 MHzのものであり、印加RF
’パワーの周波数も400 MHzとした。その結果を
第4図に示す。ただし、導波光の波長は6328Xであ
る。第4図かられかるように、最大の回折効率を得るた
めのRFパワーは150 mWとなり、T1拡散LiN
b0.光導波路の時の350 mW (10図Ill@
)に比べてかなり小さい。
Next, using the device shown in Fig. 2, we measured the relationship between the It F-power applied to the comb-shaped electrodes N and 4 and the intensity of the V1 light. As in the case, center Jr.
jj i1M number 400 MHz, applied RF
'The power frequency was also set to 400 MHz. The results are shown in FIG. However, the wavelength of the guided light is 6328X. As can be seen from Figure 4, the RF power to obtain the maximum diffraction efficiency is 150 mW, and the T1 diffused LiN
b0. 350 mW when using optical waveguide (Figure 10 Ill@
) is quite small compared to

一方、光学損傷のしきい値測定ケ、Ti拡散L + N
bOs光導波路と本発明のTi拡散後プロトン交換処理
を行なったL I NbO5光導波路との両者に対して
行なった。測定に用いたレーザー光導、波長6328X
のHeNeレーザーである。Ti拡散LtNbo5光導
波路の場合、第2図に示される出射光のi4ワーがQ、
 1 mV四以上になると光学損傷現象が生じた。しか
し、本発明のT1拡散後グロトン交換処理を行なったL
INbO3光尋波路の場合、出射光パワーが0.5 m
W/wまでは光学損現象が生じなかった0次に1本発明
の第2実施例について第5図を用いて説明する。
On the other hand, for optical damage threshold measurement, Ti diffusion L + N
The test was carried out for both the bOs optical waveguide and the L I NbO5 optical waveguide subjected to the proton exchange treatment after Ti diffusion according to the present invention. Laser light guide used for measurement, wavelength 6328X
This is a HeNe laser. In the case of the Ti-diffused LtNbo5 optical waveguide, the i4 power of the output light shown in FIG. 2 is Q,
When the voltage exceeded 1 mV4, an optical damage phenomenon occurred. However, L
In the case of INbO3 optical waveguide, the output light power is 0.5 m
A second embodiment of the present invention will be described with reference to FIG. 5, in which the optical loss phenomenon does not occur up to W/W.

第5図は、本発明による湖0版型EO素子の実h1!i
例を示す斜視図である。図において、1は、X板もしく
は、y& LiNbO3結晶基板、2に、チタン拡散及
びグロトン交侠層から成る光導波路層、3,4はグレー
ティング光結合器、11はW効果剤くし型′1候である
。レーザー光6は、グレーティング光結合器3から光導
波路層2内に導ひかれ、くし型電極11に印加電圧?加
えられることにより形成された回り1格子によシ回折さ
れ、回折光はグレーティング光結合器4により外部に取
シ出される。
FIG. 5 shows the actual EO element h1! i
It is a perspective view showing an example. In the figure, 1 is an X plate or a Y&LiNbO3 crystal substrate, 2 is an optical waveguide layer consisting of a titanium diffusion and Groton cross layer, 3 and 4 are grating optical couplers, and 11 is a W effect agent comb type '1 model. It is. The laser beam 6 is guided from the grating optical coupler 3 into the optical waveguide layer 2, and the voltage applied to the comb-shaped electrode 11 is ? The diffracted light is diffracted by one round grating formed by adding the light, and the diffracted light is taken out to the outside by the grating optical coupler 4.

以上の如き薄肋EO素子の作製方法は、第1実施例の向
1模Ao素子と同様でβる・ 作製されたEO効果実用し型電極は、ライン&スペース
2.20μm1交さ幅3.80調、対数350対とした
。Tl拡散層のみによる光導波路層の場合、上記EO効
果実用し型電極に印加する電圧が5vの時回折効率95
%が侶られた。一方、本発明のTi拡故り甲にプロトン
父侠層が形成された光導波路層の場合、上記EO効果実
用し型電極に印加する電圧が3.6vで95−の回折効
率が得られ、低印加電圧で茜回折効率が得られることが
わかった。
The method for manufacturing the thin-rib EO element as described above is the same as that for the Ao element of the first embodiment. It was set in 80 tones and 350 logarithmic pairs. In the case of an optical waveguide layer consisting only of a Tl diffusion layer, the above-mentioned EO effect is put into practice, and the diffraction efficiency is 95 when the voltage applied to the mold electrode is 5V.
% were killed. On the other hand, in the case of the optical waveguide layer in which a proton-pattern layer is formed on the Ti expansion layer of the present invention, the above-mentioned EO effect is put to practical use, and a diffraction efficiency of 95- is obtained when the voltage applied to the mold electrode is 3.6V. It was found that Akane diffraction efficiency can be obtained with low applied voltage.

又、本党明の光導波路檜造は、以上に示したA0素子、
EO累子ばかシでなく、熱光掌(To )効果を利用し
た光素子に対しても低印加電圧で高い変調効率が得られ
ることがわかった。
In addition, the optical waveguide cypress made by Meiji Honto has the above-mentioned A0 element,
It has been found that high modulation efficiency can be obtained with a low applied voltage even for optical elements that utilize the thermo-optical (To) effect, rather than the EO effect.

〔本発明の効果〕[Effects of the present invention]

以上の如き本発明によれば、靭膜型光学素子において、
導波光のAO、EO、To 等の効果による相互作用を
高めることができ、印加霜、圧もしくはlζFパワーは
小さくてもよく、且つ光導波路における光学損傷のしき
い値を高めることができる。
According to the present invention as described above, in the tough film type optical element,
The interaction due to effects such as AO, EO, and To of guided light can be enhanced, the applied frost, pressure, or lζF power may be small, and the threshold of optical damage in the optical waveguide can be increased.

【図面の簡単な説明】[Brief explanation of drawings]

第1図及び第4図はそれぞれ従来及び本発明のAO素子
のRF A?クワ−回折効率との関係のグラフである。 第2図は本発明AO累子のが)イア図であり、第3図(
a)〜(d)はその作製工程の祝明図である。第5図は
本発明EO累子の斜視図である。 1・・・基板、2・・・光導波路、:(,4・・・グレ
ーティング光結合器、5,10.11・・・くし型電極
、8・・・Ti拡散層、9・・・プロトン交換)曽。 箪・1図 RF八へ>−(mVV) 52図 63 図
FIG. 1 and FIG. 4 show the RF A? of the conventional AO element and the present invention, respectively. It is a graph of the relationship between mulberry and diffraction efficiency. Figure 2 is a diagram of the present invention AO Seiko, and Figure 3 (
a) to (d) are congratulatory drawings of the manufacturing process. FIG. 5 is a perspective view of the EO transponder of the present invention. DESCRIPTION OF SYMBOLS 1... Substrate, 2... Optical waveguide, :(, 4... Grating optical coupler, 5, 10.11... Comb-shaped electrode, 8... Ti diffusion layer, 9... Proton Exchange) Zeng.箪・1Figure RF8>-(mVV) 52Figure 63 Figure

Claims (2)

【特許請求の範囲】[Claims] (1) ニオブ酸リチウム結晶基板又はタンタル酸リチ
ウム結晶基板の表面に金属が熱拡散された光嗜、波路層
を有し、該光導波路層にはプロトンが注入されているこ
とを特徴とする、薄膜型光学素子。
(1) A lithium niobate crystal substrate or a lithium tantalate crystal substrate has an optical waveguide layer in which metal is thermally diffused on the surface thereof, and protons are injected into the optical waveguide layer. Thin film optical element.
(2) ニオブ酸リチウム結晶基板又はタンタル酸リチ
ウム結晶基板の表面に金属を熱拡散させた後に、上記結
晶基板をカルギン酸において解離度が10−6から10
−3である材料上上記カルボン酸のカルボキシル基の水
素がリチウムと置換されている材Iとの混合液中で熱処
胛することにより、基板衣1n1に光導波路層を形成す
ることを特徴とする、薄膜型光学素子の作製方法。
(2) After thermally diffusing metal onto the surface of a lithium niobate crystal substrate or a lithium tantalate crystal substrate, the crystal substrate is heated to a degree of dissociation of 10-6 to 10 in calginic acid.
The optical waveguide layer is formed on the substrate coating 1n1 by heat-treating the material I in which the hydrogen of the carboxyl group of the carboxylic acid is replaced with lithium on the material 3. A method for manufacturing a thin film optical element.
JP59000837A 1984-01-09 1984-01-09 Thin film type optical element and its manufacture Pending JPS60144704A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59000837A JPS60144704A (en) 1984-01-09 1984-01-09 Thin film type optical element and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59000837A JPS60144704A (en) 1984-01-09 1984-01-09 Thin film type optical element and its manufacture

Publications (1)

Publication Number Publication Date
JPS60144704A true JPS60144704A (en) 1985-07-31

Family

ID=11484731

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59000837A Pending JPS60144704A (en) 1984-01-09 1984-01-09 Thin film type optical element and its manufacture

Country Status (1)

Country Link
JP (1) JPS60144704A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5000774A (en) * 1989-05-13 1991-03-19 Selenia Industrie Elettroniche Associate S.P.A. Method of masked two stage lithium niobate proton exchange

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5000774A (en) * 1989-05-13 1991-03-19 Selenia Industrie Elettroniche Associate S.P.A. Method of masked two stage lithium niobate proton exchange

Similar Documents

Publication Publication Date Title
US4705346A (en) Thin film type optical device
US4799750A (en) Optical function element and a method for manufacturing the same
US4778236A (en) Thin film optical element
Mizuuchi et al. Characteristics of periodically domain‐inverted LiTaO3
US5323262A (en) Wavelength conversion device
JPS60119522A (en) Optical waveguide
JPS60144704A (en) Thin film type optical element and its manufacture
EP0484796B1 (en) Device for doubling the frequency of a light wave
JPS6170541A (en) Thin film type optical element and its manufacture
JPS60156015A (en) Thin film type optical element and its preparation
JPS6170540A (en) Thin film type optical element and its manufacture
Webjörn et al. Periodically domain-inverted lithium niobate channel waveguides for second harmonic generation
JP3052693B2 (en) Optical wavelength conversion element, method of manufacturing the same, short wavelength coherent light generator using optical wavelength conversion element, and method of manufacturing optical wavelength conversion element
JPS60156038A (en) Optical function element and its manufacture
JPS6170507A (en) Production for thin film optical element
JPH04172427A (en) Light wave length converting element and short wave length laser light source
JPH0827471B2 (en) Method of manufacturing thin film type optical element
Ito et al. Cerenkov-type second harmonic generation from a LiNbO3 waveguide with a periodic domain grating
JPH0564322B2 (en)
JPH03191332A (en) Production of optical waveguide and optical wavelength converting element
JPS6371809A (en) Optical waveguide and its preparation
JPS6170533A (en) Thin film type optical element and its manufacture
Ruehle et al. High Frequency Wideband IO Bragg Cell
JPS60156039A (en) Manufacture of optical function element
JPS6250707A (en) Thin film type optical element and its manufacture