JPH04172427A - Light wave length converting element and short wave length laser light source - Google Patents

Light wave length converting element and short wave length laser light source

Info

Publication number
JPH04172427A
JPH04172427A JP30197190A JP30197190A JPH04172427A JP H04172427 A JPH04172427 A JP H04172427A JP 30197190 A JP30197190 A JP 30197190A JP 30197190 A JP30197190 A JP 30197190A JP H04172427 A JPH04172427 A JP H04172427A
Authority
JP
Japan
Prior art keywords
inversion layer
optical
poralization
conversion element
wavelength conversion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP30197190A
Other languages
Japanese (ja)
Other versions
JP2718259B2 (en
Inventor
Kazuhisa Yamamoto
和久 山本
Kiminori Mizuuchi
公典 水内
Kunihiko Takeshige
竹重 邦彦
Hiroaki Yamamoto
博昭 山本
Yoichi Sasai
佐々井 洋一
Tetsuo Yanai
哲夫 谷内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2301971A priority Critical patent/JP2718259B2/en
Publication of JPH04172427A publication Critical patent/JPH04172427A/en
Application granted granted Critical
Publication of JP2718259B2 publication Critical patent/JP2718259B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To stably generate higher harmonic waves and greatly enhance stability in the output of the higher harmonic waves by using both a poralization inversion layer which consists of at least more than two portions of different periods and a semiconductor laser light source which is driven at high frequencies. CONSTITUTION:SiO2 6 is patterned on a LiNbO3 base 1 using a normal photographing process and dry etching. The LiNbO3 base on which the SiO2 is formed is then subjected to heat treatment at 1080 deg.C for 90 minutes to form a poralization inversion layer 3 of thickness 1.4 mum just below the SiO2 6. Further, the base 1 is etched with a 1:1 mixed solution of HF and HNF3 for 20 minutes to remove the SiO3 6 and a light wave guide passage 2 is formed in the poralization inversion layer 3 using proton exchange method. Fundamental wave P1 entering the light wave guide passage 2 is converted to higher harmonic waves P2 at the poralization inversion layer and the power of the higher harmonic waves is increased at the next non-poralization inversion layer. The waves P2 the power of which has thus been increased inside the passage 2 are radiated from a radiating portion 12. Even though the degree of allowance of this higher harmonic waves output at a portion corresponding to its period A alone is as small as a half band width DELTAlambda, the waves are added together at portions corresponding to periods A, B, C, D whereby the half band width DELTAlambda is enlarged four times.

Description

【発明の詳細な説明】 産業上の利用分野 本発明it  コヒーレント光を利用する光情報処理分
野、あるいは光応用計測制御分野に使用する光波長変換
素子および短波長レーザ光源に関するものであも 従来の技術 第7図に従来の光波長変換素子の構成図を示も以下1,
06μmの波長の基本波に対する高調波発生(波長0.
53μm)について図を用いて詳しく述べ;5.  (
E、J、Lim、 MlM、Fejer、 R,L、B
yer 、 ’Secondharmonic gen
eration of blue and green
 lightin periodically−pol
ed planar lithium niobate
waveguides’、  I G W 0. 19
88L  参照)、第7図に示されるようにLiNbO
5基板】に光導波路2が形成され さらに光導波路2に
は周期的に分極の反転した層3(分極反転層)が形成さ
れてい4基本波と発生する高調波の伝搬定数の不整合を
分極反転層3の周期構造で補償することにより高効率に
高調波を出すことができも 光導波路2の入射面10に
基本波P1を入射すると、光導波路2から高調波P2が
効率良く発生され 光波長変換素子として動作すも このような従来の光波長変換素子は分極反転構造を基本
構成要素としていた この素子の製造方法について第8
図を用いて説明すも 同F!i!J(a>で非線形光学
結晶であるLiNbO5基板1にTi31のパターンを
リフトオフと蒸着により幅数μmの周期で形成してい九
 次に同図(b)で1100℃程度の温度で熱処理を行
いLiNb0a基板1と分極が反対向きに反転した分極
反転層3を形成した 次に同図(C)で安息香酸(20
0℃)中で30分熱処理を行った後350℃でアニール
を行い光導波路2を形成すも 上記安息香酸処理により
作製される光波長変換素子は波長1.06μmの基本波
P1に対して、光導波路の長さを1mm、基本4piの
パワーを1rn、Wにしたとき高調波P2のパワー0.
5nWが得られてい總 基本波が40mW人射したとす
ると800nWの高調波出力が可能であム この場合1
cmの素子でのIW当りの変換効率は5%/W−cmで
ある。
Detailed Description of the Invention Industrial Field of Application The present invention relates to optical wavelength conversion elements and short wavelength laser light sources used in the field of optical information processing using coherent light or the field of optical measurement and control. Technical Figure 7 shows the configuration diagram of a conventional optical wavelength conversion element.
Harmonic generation for the fundamental wave with a wavelength of 0.6 μm (wavelength 0.06 μm)
53 μm) using figures; 5. (
E., J., Lim, M.I.M., Fejer, R.L., B.
yer, 'Secondharmonic gen
generation of blue and green
lightin periodically-pol
ed planar lithium niobate
waveguides', I G W 0. 19
88L), LiNbO as shown in FIG.
5. An optical waveguide 2 is formed on the substrate 5, and a layer 3 (poling inversion layer) whose polarization is periodically inverted is formed on the optical waveguide 2. By compensating with the periodic structure of the inversion layer 3, it is possible to output harmonics with high efficiency. When the fundamental wave P1 is incident on the incident surface 10 of the optical waveguide 2, the harmonic wave P2 is efficiently generated from the optical waveguide 2. Conventional optical wavelength conversion elements such as this, which operate as wavelength conversion elements, have a polarization inversion structure as their basic component.
Although it is explained using a diagram, the same F! i! In J(a), a pattern of Ti31 is formed on the LiNbO5 substrate 1, which is a nonlinear optical crystal, with a period of several μm in width by lift-off and vapor deposition.9 Next, as shown in FIG. Next, a polarization inversion layer 3 whose polarization was inverted in the opposite direction to that of the substrate 1 was formed.
After performing heat treatment for 30 minutes at 0°C, annealing was performed at 350°C to form the optical waveguide 2. When the length of the optical waveguide is 1 mm and the power of the fundamental 4pi is 1rn, W, the power of harmonic P2 is 0.
If 5nW is obtained, and the fundamental wave is 40mW, a harmonic output of 800nW is possible.In this case, 1
The conversion efficiency per IW in a cm device is 5%/W-cm.

発明が解決しようとする課題 上記のような分極反転層を基本とした光波長変換素子で
は素子長5mmのときレーザの波長に対する許容度が狭
く半値幅で0.8nmLかなu%そのため光波長変換素
子と半導体レーザと組み合わせた場合、半導体レーザが
温度変化のため波長変動を生じ高調波がでなくなゑ ま
たは大きく高調波の出力が変動するといった問題があっ
な 具体的に半導体レーザが1℃温度変化すると、波長
は0.3nm変化するた八 3℃の変化で出力がでなく
なってい九 課題を解決するための手段 本発明(友 上記問題点を解決するため分極反転構造を
基本とした光波長変換素子に新たな工夫を加えることに
より半導体レーザの温度変化に対して高調波を安定に出
力する光波長変換素子を提供するものであム つまり、
本発明は非線形光学結晶中に分極反転層および光導波路
を有しなおかつ分極反転層が少なくとも周期の異なる2
つ以上の部分からなるという手段を有するものであもま
た 本発明の短波長レーザ光源は安定な出力を得るため
に非線形光学結晶中に分極反転層および光導波路を有す
る光波長変換素子と半導体レーザを有し なおかつ前記
半導体レーザが高周波駆動されているという手段を有す
るものであム作用 本発明の光波長変換素子により波長に対する許容度が向
上し 安定な高調波発生が得られも また 本発明の短
波長レーザ光源によれば高周波駆動により半導体レーザ
のスペクトルを広げることにより高調波の出力安定度を
大幅に向上できも実施例 実施例の一つとして本発明の光波長変換素子の構成を図
を用いて説明すも まず、本発明による光波長変換素子
の第1の実施例の構造図を第1図に示す。この実施例で
は分極反転型の光波長変換素子としてLiNbO3基板
1中にプロトン交換を用いて作製した光導波路2を用い
たものであム 第1図で1は+Z板(Z軸と垂直に切り
出された基板の+側)のLiNbO2基板、 2は形成
された光導波広10は基本波P1の入射皿 12は高調
波P2の出射部であム この光導波路2には異なった周
期を持つ分極反転層による周期構造ん B、  C,D
が形成されていa 光導波路2に入った基本波P1は位
相整合長りの長さを持った分極反転層で高調波P2に変
換され 次の同じくLの長さを持った非分極反転層で高
調波パワーは増す事になる。
Problems to be Solved by the Invention In an optical wavelength conversion element based on a polarization inversion layer as described above, when the element length is 5 mm, the tolerance to the laser wavelength is narrow and the half width is 0.8 nm or u%.Therefore, the optical wavelength conversion element When combined with a semiconductor laser, there is a problem that the semiconductor laser will fluctuate in wavelength due to temperature changes, resulting in no harmonics being produced or the harmonic output fluctuating significantly.Specifically, if the semiconductor laser changes in temperature by 1℃ As a result, the wavelength changes by 0.3 nm, and a change of 3 degrees Celsius causes the output to disappear. By adding new ideas to the element, we provide an optical wavelength conversion element that stably outputs harmonics even when the temperature changes in a semiconductor laser.
The present invention has a polarization inversion layer and an optical waveguide in a nonlinear optical crystal, and the polarization inversion layer has at least two different periods.
In order to obtain stable output, the short wavelength laser light source of the present invention includes an optical wavelength conversion element having a polarization inversion layer and an optical waveguide in a nonlinear optical crystal, and a semiconductor laser. In addition, the semiconductor laser is driven at a high frequency.The optical wavelength conversion element of the present invention improves the tolerance to wavelength and provides stable harmonic generation. According to a short wavelength laser light source, the output stability of harmonics can be greatly improved by widening the spectrum of the semiconductor laser by high-frequency driving. First, FIG. 1 shows a structural diagram of a first embodiment of an optical wavelength conversion element according to the present invention. In this example, an optical waveguide 2 fabricated using proton exchange in a LiNbO3 substrate 1 is used as a polarization inversion type optical wavelength conversion element. 2 is the formed optical waveguide wide 10 is the incident plate for the fundamental wave P1, and 12 is the output part for the harmonic P2.This optical waveguide 2 has polarization with different periods. Periodic structure with inversion layer B, C, D
is formed.a The fundamental wave P1 entering the optical waveguide 2 is converted into a harmonic wave P2 by a polarization inversion layer having a length equal to the phase matching length, and is converted into a harmonic wave P2 by the next non-polation inversion layer having a length of L. The harmonic power will increase.

このようにして光導波路2内でパワーを増した高調波P
2は出射部12より放射されも 第2図に高調波(SH
G)出力の波長依存性を示す。周期Aの部分のみの許容
度は半値幅△λと小さいが周期へ B、  C,Dの4
つの部分でたしあわせられるので半値幅△λが4倍に広
がることとなも次にこの光波長変換素子の製造方法につ
いて図を使って説明すも 第3図(a)でまずLiNb
0a基板1に通常のフォトプロセスとドライエツチング
を用いて5iOa 6をパターニングすム 周期構iA
〜Dの周期はそれぞれ3、000μra3.001μ匹
 3.002μm、3.003μmであもこの周期は高
調波出力が半分に落ちるところで重なるようにして決め
九 次に同図(b)でSiO2が形成すt’L タLi
NbO5基板11.:1080t、  90分間熱処理
を行いS i O26直下に厚み1. 4μmの分極反
転層3を形成すム 熱処理の上昇レートは10℃/旅 
冷却レートは50℃/分であも 冷却レートが遅いと不
均一反転が生じるので30℃/分以上が望ましく〜 5
ins 6直下はLiが減少しておりキュリー温度が低
下するため部分的に分極反転ができも 分極反転層3の
長さLは1.5μmであム 次に同図(C)でHF: 
 HNFsの1=1混合液にて20分間エツチングし5
iOa6を除去すム 次に上記分極反転層3中にプロト
ン交換を用いて光導波路2を形成すム 光導波路2用マ
スクとじてTa2Ogをストライプ状にパターニングを
行った後、Ta206マスクに幅6μ瓜 長さ25mm
のスリットが形成されたものに230t。
In this way, the harmonic wave P whose power is increased within the optical waveguide 2
2 is radiated from the emission part 12, and the harmonics (SH
G) Shows the wavelength dependence of the output. The tolerance only for the period A part is small, half-width △λ, but to the period B, C, D 4
The half-width △λ is expanded by four times.The method for manufacturing this optical wavelength conversion element will be explained using diagrams.
Patterning 5iOa 6 on 0a substrate 1 using normal photo process and dry etching Periodic structure iA
The periods of ~D are 3,000 μra, 3.001 μm, 3.002 μm, and 3.003 μm, respectively, and the periods are determined so that they overlap at the point where the harmonic output drops to half.Next, as shown in the same figure (b), SiO2 is formed. st'L taLi
NbO5 substrate 11. : 1080t, heat treated for 90 minutes to form a 1.5mm thick layer directly under the SiO26. The rate of increase in heat treatment to form the polarization inversion layer 3 of 4 μm is 10°C/trip.
Even if the cooling rate is 50℃/min, if the cooling rate is slow, uneven reversal will occur, so a cooling rate of 30℃/min or more is desirable.
Immediately below ins 6, Li decreases and the Curie temperature decreases, so polarization can be partially inverted.The length L of the polarization inversion layer 3 is 1.5 μm.Next, in the same figure (C), HF:
Etch for 20 minutes with a 1=1 mixture of HNFs5.
Next, the optical waveguide 2 is formed in the polarization inversion layer 3 using proton exchange. After patterning Ta2Og in a stripe shape as a mask for the optical waveguide 2, a Ta206 mask with a width of 6 μm is formed. length 25mm
230t with slits formed.

2分間プロトン交換を行った 最後にマスクを除去した
後350℃で1時間アニールを行った アニール処理に
より均一化されロスが減少した上にプロトン交換層に非
線形性が戻る。プロトン交換された保護マスクのスリッ
ト直下の領域は屈折率が0. O3程度上昇した高屈折
率層2となも 光は高屈折率層2を伝搬し これが光導
波路2となム 上記のような工程により光導波路が製造されなこの光導
波路2の厚みdは1.2μmであり分極反転層3の厚み
1.4μmに比べ小さく有効に波長変換されも また 
この光導波路2の非分極反転層4と分極反転層3の屈折
率変化はなく、光が導波する場合の伝搬損失は小さい。
Proton exchange was performed for 2 minutes.Finally, the mask was removed and annealing was performed at 350°C for 1 hour.The annealing treatment made the layer uniform, reduced loss, and returned nonlinearity to the proton exchange layer. The area directly under the slit of the protective mask where protons have been exchanged has a refractive index of 0. The light propagates through the high refractive index layer 2, which has been raised by about O3, and this becomes the optical waveguide 2.The optical waveguide is manufactured by the process described above.The thickness d of the optical waveguide 2 is 1 .2 μm, which is smaller than the 1.4 μm thickness of the polarization inversion layer 3, and the wavelength can be effectively converted.
There is no change in the refractive index of the non-poled layer 4 and the polarized layer 3 of this optical waveguide 2, and the propagation loss when light is guided is small.

光導波路2に垂直な面を光学研磨し入射部10および出
射部12を形成し九 このようにして第1図に示される
光波長変換素子が製造できる。また この素子の長さは
20mmであム 第1図で基本波P1として半導体レー
ザ光(波長0.84μm)を入射部10より導波させた
ところシングルモード伝搬り波長0.42μmの高調波
P2が出射部12より基板外部に取り出され丸 光導波
路2の伝搬損失は1dB/cmと小さく高調波P2が有
効に取り出され九 低損失化の原因の1つとして燐酸に
より均一な光導波路が形成されたことがあも 基本波4
0mWの入力で1mWの高調波(波長0.42μm)を
得へ この場合の変換効率は2.5%であも 波長に対する許
容度は従来の0.8nmに比べて3.2nmと大幅に改
善され実用性が増し九 半導体レーザは10℃程度変化
しても高調波出力は安定に得られた なお基本波に対し
てマルチモード伝搬では高調波の出力が不安定で実用的
ではなt、%  分極反転層の周期が4つ以上の異なっ
た部分よりなっていれば半導体レーザの通常の変動に対
して高調波発生が可能となり特に有効であ4 なk  O,65〜1.6μmの波長の基本波を用いて
本光波長変換素子による高調波発生を確認した 次に本発明の短波長レーザ光源の第2の実施例を説明す
る。第4図の短波長レーザ光源の構成図を示す。短波長
レーザ光源は基本的には半導体レーザ21と光波長変換
素子22および高周波電源23より構成され&  A1
枠20に固定された半導体レーザ2Iから出射された基
本波P1はコリメータレンズ24で平行光にされた後、
フォーカスレンズ25で光波長変換素子22の光導波路
2に導入され高調波P2へと変換されも ここで光波長変換素子の構成は実施例1と同様であ4 
本実施例ではLiNbO5基板に比べて光損傷に強いM
gOドープのLLNbO3を用い1100℃で熱処理し
分極反転層を形成しf−s  LJbOsに比べて処理
温度が高いのはキュリー温度がMgOドープすることに
より80℃程度高いためであム 又光導波路には分極反
転層の形成時の熱処理温度に比べて低温処理が可能であ
るプロトン交換光導波路を用いた この実施例ではこの
光波長変換素子と半導体レーザを組み合わせて短波長レ
ーザ光源を作製した この短波長レーザ光源に高周波電
源23により高周波駆動し半導体レーザ21のスペクト
ルを広げた 周波数1. G Hz、高周波出力2Wで
あも 第5図に半導体レーザのスペクトル広がりを示す
。高周波駆動前は0.1nm以下のシングルスベクトル
であったが駆動後はマルチスペクトルとなり4n、mま
で広がった これによりさらに波長許容度は向上す4 
駆動周波数はIGH2であり繰り返しが早いので連続光
と変わりはな賎 光波長変換素子の許容度が0.8nm
と小さいた厭 この場合高調波出力の低下が問題となる
A surface perpendicular to the optical waveguide 2 is optically polished to form an entrance section 10 and an exit section 12. In this manner, the optical wavelength conversion element shown in FIG. 1 can be manufactured. In addition, the length of this element is 20 mm. In Fig. 1, when semiconductor laser light (wavelength 0.84 μm) is guided from the incident part 10 as the fundamental wave P1, a single mode propagates as a harmonic P2 with a wavelength of 0.42 μm. The propagation loss of the optical waveguide 2 is as small as 1 dB/cm, and the harmonic P2 is effectively extracted.9 One of the reasons for the low loss is that a uniform optical waveguide is formed using phosphoric acid. Itatamo Fundamental Wave 4
Obtaining 1 mW harmonic (wavelength 0.42 μm) with 0 mW input. Even though the conversion efficiency is 2.5% in this case, the wavelength tolerance is significantly improved to 3.2 nm compared to the conventional 0.8 nm. The semiconductor laser can stably obtain harmonic output even when the temperature changes by about 10°C.In contrast to the fundamental wave, the harmonic output is unstable in multimode propagation and is not practical. If the period of the polarization inversion layer is made up of four or more different parts, it is possible to generate harmonics against the normal fluctuations of the semiconductor laser, which is particularly effective. After confirming harmonic generation by the present optical wavelength conversion element using the fundamental wave, a second embodiment of the short wavelength laser light source of the present invention will be described. A block diagram of the short wavelength laser light source of FIG. 4 is shown. A short wavelength laser light source basically consists of a semiconductor laser 21, an optical wavelength conversion element 22, and a high frequency power source 23.
The fundamental wave P1 emitted from the semiconductor laser 2I fixed to the frame 20 is made into parallel light by the collimator lens 24, and then
The focus lens 25 introduces the light into the optical waveguide 2 of the light wavelength conversion element 22 and converts it into a harmonic P2, but the structure of the light wavelength conversion element is the same as that in the first embodiment.
In this example, M
GO-doped LLNbO3 is heat-treated at 1100℃ to form a polarization inversion layer. In this example, a short wavelength laser light source was fabricated by combining this optical wavelength conversion element and a semiconductor laser. Frequency 1. The spectrum of the semiconductor laser 21 is broadened by driving the wavelength laser light source at a high frequency using a high frequency power supply 23. GHz and a high frequency output of 2 W. Figure 5 shows the spectrum spread of a semiconductor laser. Before high-frequency driving, it was a single vector of less than 0.1 nm, but after driving it became a multispectrum and expanded to 4n, m. This further improves wavelength tolerance4
The driving frequency is IGH2 and the repetition is fast, so it is no different from continuous light.The tolerance of the optical wavelength conversion element is 0.8 nm.
In this case, a decrease in harmonic output becomes a problem.

しかしなか状 高周波駆動により半導体レーザのピーク
出力が向上するため問題は生じなL%  第6図に高周
波駆動の場合の半導体レーザの時間波形を示す。平均出
力4.0mWの半導体レーザでピーク出力1w、パルス
幅30psとなっている。
However, this problem does not occur because the peak output of the semiconductor laser is improved by high-frequency driving. Figure 6 shows the time waveform of the semiconductor laser in the case of high-frequency driving. The semiconductor laser has an average output of 4.0 mW, a peak output of 1 W, and a pulse width of 30 ps.

高調波への変換効率は基本波出力に比例して増大するの
で平均の変換効率も向上する。変換効率は40mW人力
で2%であり、 14℃程度の範囲にわたってaカも非
常に安定してい九 次に本発明の光波長変換素子の第3の実施例を説明する
。光波長変換素子の構成は実施例】と同様である。本実
施例ではLiNbO5基板の代わりに1.1Ta、Os
を基板として用いた また 周期は5分割した 具体的
には4μm、4.001μm、  4. 002μrn
、4. 003μrrK 4. 004μmの5つの周
期であ4  LiTaO3はキュリー温度が630℃と
低く低温で分極反転処理が可能であ4 光導波路2の厚
みは1.5μへ 長さは2crnであも【、1Taos
基板1aにプロトン交換により作製される光導波路は非
線形性が大きいためアニール処理を行う必要がない。
Since the conversion efficiency to harmonics increases in proportion to the fundamental wave output, the average conversion efficiency also improves. The conversion efficiency is 2% with 40 mW manual power, and the a-power is very stable over a range of about 14° C. A third embodiment of the optical wavelength conversion element of the present invention will be described below. The configuration of the optical wavelength conversion element is the same as in the embodiment. In this example, 1.1Ta, Os is used instead of the LiNbO5 substrate.
was used as a substrate, and the period was divided into 5. Specifically, 4 μm, 4.001 μm, 4. 002μrn
,4. 003μrrK 4. 4 The Curie temperature of LiTaO3 is as low as 630°C, and polarization inversion processing can be performed at low temperatures.4 The thickness of the optical waveguide 2 is 1.5 μm, and the length is 2 crn [, 1 Taos].
Since the optical waveguide fabricated on the substrate 1a by proton exchange has large nonlinearity, it is not necessary to perform annealing treatment.

この実施例での変換効率は40mW入力で1%であり、
波長許容度は4nmであり、またL i、T a O3
を用いているため光損傷はなく高調波出力は非常に安定
してい連 なお実施例では非線形光学結晶としてLiNb0a、L
iTa0aを用いたがKNbOs、KTP等の強誘電E
MNA等の有機材料にも適用可能である。
The conversion efficiency in this example is 1% at 40mW input,
The wavelength tolerance is 4 nm, and L i, T a O3
Since it uses LiNb0a and L as nonlinear optical crystals, there is no optical damage and the harmonic output is very stable.
Although iTa0a was used, ferroelectric E such as KNbOs and KTP was used.
It is also applicable to organic materials such as MNA.

発明の詳細 な説明したように本発明の光波長変換素子および短波長
1/−ザ光源によれζA 異なった周期を持つ分極反転
層を形成することにより従来の光波長変換素子に比べて
大幅に許容度を向上することができも また 本発明の
短波長レーザ光源によれば半導体レーザを高周波駆動す
ることで半導体レーザの波長スペクトルを広げ大幅に許
容度を広げることができ安定な動作を実現できる。
As described in detail of the invention, the optical wavelength conversion element of the present invention and the short wavelength 1/-the light source form polarization inversion layers with different periods of ζA, thereby significantly increasing the Moreover, according to the short wavelength laser light source of the present invention, by driving the semiconductor laser at high frequency, the wavelength spectrum of the semiconductor laser can be expanded, and the tolerance can be greatly expanded, and stable operation can be realized. .

また 本発明の光波長変換素子により高調波を光導波路
から取り出すことができ簡単に非点収差のないスポット
を得ることができ、その実用的効果は極めて太きb〜
Furthermore, by using the optical wavelength conversion element of the present invention, harmonics can be taken out from the optical waveguide, and a spot without astigmatism can be easily obtained, and its practical effect is extremely large.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の光波長変換素子の第1の実施例の構造
図 第2図は本発明の光波長変換素子の許容度を示すグ
ラフ、第3図は第1の実施例の光波長変換素子の製造工
程は 第4図は本発明の短第7図は従来の光波長変換素
子の構成は 第8図は従来の光波長変換素子の製造工程
図であムト・・LiNbO5基板、 2・・・光導波路
 3・・・分極反転層 pi・・・基本波、P2・・・
高調渡代理人の氏名 弁理士 小鍜治 明 ほか2名1
−−− Li Nb0a基釈 2−m−光1ン波1谷 A−o−に斯講透 第1図 第2図 波  長 第3図 14 図 纂 5 図 ↑ 泥 畏 第6図 ↑ 菊−濁(l″l5) 1−L−山b03暮を 2−、−光S1画− 第 7 図          3−介秘ル1層第8図 cQ )     37 (by)       3
Fig. 1 is a structural diagram of the first embodiment of the optical wavelength conversion element of the present invention. Fig. 2 is a graph showing the tolerance of the optical wavelength conversion element of the present invention. Fig. 3 is the optical wavelength of the first embodiment. Figure 4 shows the manufacturing process of the conversion element of the present invention. Figure 7 shows the structure of the conventional optical wavelength conversion element. Figure 8 shows the manufacturing process of the conventional optical wavelength conversion element. ...Optical waveguide 3...Polarization inversion layer pi...Fundamental wave, P2...
Name of Kocho Watari agent: Patent attorney Akira Kokaji and 2 others 1
--- Li Nb0a basis interpretation 2-m-Light 1 wave 1 trough A-o- turbidity (l″l5) 1-L-mountain b03gure 2-, -light S1 picture- Fig. 7 3-Kai Hiru 1st layer Fig. 8 cQ) 37 (by) 3

Claims (1)

【特許請求の範囲】 (1)非線形光学結晶中に分極反転層および光導波路を
有しなおかつ分極反転層が少なくとも周期の異なる2つ
以上の部分からなることを特徴とする光波長変換素子。 (2)非線形光学結晶中に分極反転層および光導波路を
有する光波長変換素子と半導体レーザを有し、前記半導
体レーザが高周波駆動されることを特徴とする短波長レ
ーザ光源。(3)非線形光学結晶がLiNb_xTa_
1_−_xO_3(0≦X≦1)基板であることを特徴
とする特許請求の範囲第(1)項記載の光波長変換素子
又は同第(2)項記載の短波長レーザ光源。 (4)光導波路がプロトン交換光導波路であることを特
徴とする特許請求の範囲第(1)項記載の光波長変換素
子又は同第(2)項記載の短波長レーザ光源。 (5)4つ以上の異なる周期を持つ分極反転層を有する
ことを特徴とする特許請求の範囲第(1)項記載の光波
長変換素子。 (6)光導波路が半導体レーザ光に対してシングルモー
ド伝搬であることを特徴とする特許請求の範囲第(1)
項記載の光波長変換素子。
Claims: (1) An optical wavelength conversion element having a polarization inversion layer and an optical waveguide in a nonlinear optical crystal, and characterized in that the polarization inversion layer consists of at least two or more parts with different periods. (2) A short wavelength laser light source comprising a semiconductor laser and an optical wavelength conversion element having a polarization inversion layer and an optical waveguide in a nonlinear optical crystal, the semiconductor laser being driven at a high frequency. (3) Nonlinear optical crystal is LiNb_xTa_
1_-_xO_3 (0≦X≦1) The optical wavelength conversion element according to claim (1) or the short wavelength laser light source according to claim (2), characterized in that the substrate is a 1_−_xO_3 (0≦X≦1) substrate. (4) The optical wavelength conversion element according to claim (1) or the short wavelength laser light source according to claim (2), wherein the optical waveguide is a proton exchange optical waveguide. (5) The optical wavelength conversion element according to claim (1), which has a polarization inversion layer having four or more different periods. (6) Claim No. 1, characterized in that the optical waveguide has single mode propagation for semiconductor laser light.
The optical wavelength conversion element described in .
JP2301971A 1990-11-06 1990-11-06 Short wavelength laser light source Expired - Fee Related JP2718259B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2301971A JP2718259B2 (en) 1990-11-06 1990-11-06 Short wavelength laser light source

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2301971A JP2718259B2 (en) 1990-11-06 1990-11-06 Short wavelength laser light source

Publications (2)

Publication Number Publication Date
JPH04172427A true JPH04172427A (en) 1992-06-19
JP2718259B2 JP2718259B2 (en) 1998-02-25

Family

ID=17903337

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2301971A Expired - Fee Related JP2718259B2 (en) 1990-11-06 1990-11-06 Short wavelength laser light source

Country Status (1)

Country Link
JP (1) JP2718259B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0603827A2 (en) * 1992-12-21 1994-06-29 Eastman Kodak Company Monolithic semi-conductor laser producing blue, green and red output wavelengths
US5357533A (en) * 1992-03-27 1994-10-18 Matsushita Electric Industrial Co., Ltd. Frequency doubler and laser source
EP0625811A1 (en) * 1993-05-21 1994-11-23 Matsushita Electric Industrial Co., Ltd. A short wavelength light source apparatus
US6496299B2 (en) 1994-09-14 2002-12-17 Matsushita Electric Industrial Co., Ltd. Method for stabilizing output of higher harmonic waves and short wavelength laser beam source using the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60236273A (en) * 1984-05-09 1985-11-25 Mitsubishi Electric Corp Photosemiconductor device
JPS6482022A (en) * 1987-09-25 1989-03-28 Nec Corp Waveguide type wavelength converting element
JPH02248933A (en) * 1989-03-22 1990-10-04 Matsushita Electric Ind Co Ltd Short-wavelength laser light source and light information processor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60236273A (en) * 1984-05-09 1985-11-25 Mitsubishi Electric Corp Photosemiconductor device
JPS6482022A (en) * 1987-09-25 1989-03-28 Nec Corp Waveguide type wavelength converting element
JPH02248933A (en) * 1989-03-22 1990-10-04 Matsushita Electric Ind Co Ltd Short-wavelength laser light source and light information processor

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5357533A (en) * 1992-03-27 1994-10-18 Matsushita Electric Industrial Co., Ltd. Frequency doubler and laser source
EP0603827A2 (en) * 1992-12-21 1994-06-29 Eastman Kodak Company Monolithic semi-conductor laser producing blue, green and red output wavelengths
EP0603827A3 (en) * 1992-12-21 1994-09-28 Eastman Kodak Co Monolithic semi-conductor laser producing blue, green and red output wavelengths.
EP0625811A1 (en) * 1993-05-21 1994-11-23 Matsushita Electric Industrial Co., Ltd. A short wavelength light source apparatus
US6496299B2 (en) 1994-09-14 2002-12-17 Matsushita Electric Industrial Co., Ltd. Method for stabilizing output of higher harmonic waves and short wavelength laser beam source using the same

Also Published As

Publication number Publication date
JP2718259B2 (en) 1998-02-25

Similar Documents

Publication Publication Date Title
JP2783047B2 (en) Optical wavelength conversion element and laser light source using the same
US5303247A (en) Optical harmonic generating device for generating harmonic wave from fundamental wave and shorter wavelength laser generating apparatus in which fundamental wave of laser is converted to harmonic wave with the device
JPH05273624A (en) Optical wavelength conversion element, short wavelength laser beam source using the same, optical information processor using this short wavelength laser beam source and production of optical wavelength conversion element
US5323262A (en) Wavelength conversion device
JPH04172427A (en) Light wave length converting element and short wave length laser light source
US5205904A (en) Method to fabricate frequency doubler devices
JP3296500B2 (en) Wavelength conversion element and method of manufacturing the same
JP2910370B2 (en) Optical wavelength conversion element and short wavelength laser light source using the same
JPH04254835A (en) Light wavelength conversion element and laser beam source utilizing the element
JPH03191332A (en) Production of optical waveguide and optical wavelength converting element
JPH0566440A (en) Laser light source
JP3049986B2 (en) Optical wavelength conversion element
JP2502818B2 (en) Optical wavelength conversion element
US5744073A (en) Fabrication of ferroelectric domain reversals
JP2921208B2 (en) Wavelength conversion element and short wavelength laser light source
JP3052693B2 (en) Optical wavelength conversion element, method of manufacturing the same, short wavelength coherent light generator using optical wavelength conversion element, and method of manufacturing optical wavelength conversion element
JP2973642B2 (en) Manufacturing method of optical wavelength conversion element
JPH06265951A (en) Optical wavelength converter
JP3006217B2 (en) Optical wavelength conversion element and method of manufacturing the same
JP2921207B2 (en) Optical wavelength conversion element and method of manufacturing the same
JPH04296731A (en) Short-wavelength laser beam source
JPH043128A (en) Formation of partial polarization inversion region
JP2002062556A (en) Higher harmonic output stabilization method and short wavelength laser beam source using the method
JP2921209B2 (en) Manufacturing method of wavelength conversion element
JPH05216082A (en) Production of optical waveguide and production of optical wavelength conversion element

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees