JPH0827471B2 - Method of manufacturing thin film type optical element - Google Patents

Method of manufacturing thin film type optical element

Info

Publication number
JPH0827471B2
JPH0827471B2 JP59192901A JP19290184A JPH0827471B2 JP H0827471 B2 JPH0827471 B2 JP H0827471B2 JP 59192901 A JP59192901 A JP 59192901A JP 19290184 A JP19290184 A JP 19290184A JP H0827471 B2 JPH0827471 B2 JP H0827471B2
Authority
JP
Japan
Prior art keywords
optical
optical waveguide
thin film
substrate
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP59192901A
Other languages
Japanese (ja)
Other versions
JPS6170535A (en
Inventor
守 宮脇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP59192901A priority Critical patent/JPH0827471B2/en
Priority to US06/774,579 priority patent/US4778236A/en
Priority to DE3532811A priority patent/DE3532811C2/en
Priority to GB08522689A priority patent/GB2165956B/en
Priority to FR858513617A priority patent/FR2570516B1/en
Publication of JPS6170535A publication Critical patent/JPS6170535A/en
Priority to US07/202,889 priority patent/US4886587A/en
Publication of JPH0827471B2 publication Critical patent/JPH0827471B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Optical Integrated Circuits (AREA)

Description

【発明の詳細な説明】 〔技術分野〕 本発明は、薄膜型光学素子の作製方法に関するもので
ある。
TECHNICAL FIELD The present invention relates to a method for manufacturing a thin film type optical element.

〔従来技術〕[Prior art]

従来、薄膜型即ち、光導波路を用いた光学素子を光偏
向器、光変調器、スペクトラムアナライザー、相関器、
光スイッチ等に応用する研究が盛んに行なわれている。
このような薄膜型光学素子は、光導波路の屈折率を音響
光学(AO)効果或いは電気光学(EO)効果等の外的作用
により変化せしめ、この光導波路内を伝播する光を変調
又は偏向させるものである。上記光学素子を形成する場
合の基板としては、圧電性、音響光学効果及び電気光学
効果に優れ、かつ光伝搬損失が少ないニオブ酸リチウム
(以下LiNbO3と記す)結晶及びタンタル酸リチウム(以
下LiTaO3と記す)結晶が広く用いられている。この様な
結晶基板を用いて、薄膜光導波路を作製する代表的な方
法として、チタン(以下Tiと記す)を前記結晶基板表面
に、高温で熱拡散することにより、該結晶基板表面に、
基板の屈折率よりわずかに大きな屈折率を有する光導波
路層を形成する方法がある。しかし、この方法により作
製された薄膜光導波路は、光学損傷を受け易く、非常に
小さいパワーの光しか該導波路に導入できないという欠
点がある。ここで光学損傷とは、「光導波路に入力する
光強度を増大していったときに、該光導波路内を伝播し
外部に取り出される光の強度が、散乱によって前記入力
光強度に比例して増大しなくなる現象」を言う。
Conventionally, a thin film type, that is, an optical element using an optical waveguide is used as an optical deflector, an optical modulator, a spectrum analyzer, a correlator,
Researches applied to optical switches and the like are being actively conducted.
Such a thin-film optical element changes the refractive index of the optical waveguide by an external action such as an acousto-optic (AO) effect or an electro-optic (EO) effect, and modulates or deflects the light propagating in the optical waveguide. It is a thing. As a substrate for forming the optical element, lithium niobate (hereinafter referred to as LiNbO 3 ) crystal and lithium tantalate (hereinafter referred to as LiTaO 3 ) having excellent piezoelectricity, acousto-optical effect, and electro-optical effect, and low light propagation loss. Crystal) is widely used. As a typical method for producing a thin film optical waveguide using such a crystal substrate, titanium (hereinafter referred to as Ti) is thermally diffused at a high temperature on the crystal substrate surface, thereby forming a thin film optical waveguide on the crystal substrate surface.
There is a method of forming an optical waveguide layer having a refractive index slightly higher than that of the substrate. However, the thin-film optical waveguide manufactured by this method is susceptible to optical damage, and has a drawback that only light of very low power can be introduced into the waveguide. Here, the term “optical damage” refers to “when the intensity of light input to the optical waveguide is increased, the intensity of light propagating in the optical waveguide and extracted to the outside is proportional to the input light intensity due to scattering. Phenomenon that does not increase. "

また、光学損傷を改善する光導波路の他の作製方法と
して、イオン交換法が知られている。この方法は、硝酸
タリウム(以下TlNO3と記す)、硝酸銀(以下AgNO3と記
す)、硝酸カリウム(以下KNO3と記す)等の溶融塩中又
は、安息香酸(C6H5COOH)等の弱酸中で、LiNbO3又は、
LiTaO3の結晶基板を低温熱処理することにより、該結晶
基板内のリチウムイオン(Li+)が弱酸中のプロトン(H
+)等のイオン種と交換され、大きな屈折率差(Δh〜
0.12)をもつ光導波路層が形成されるものである。上記
イオン交換法により作製された薄膜光導波路の光学損傷
のしきい値は、Ti拡散のものより数10倍程度向上する良
い特性をもっている。
Further, an ion exchange method is known as another method for producing an optical waveguide that improves optical damage. This method is used in molten salts such as thallium nitrate (hereinafter referred to as TlNO 3 ), silver nitrate (hereinafter referred to as AgNO 3 ), potassium nitrate (hereinafter referred to as KNO 3 ), or a weak acid such as benzoic acid (C 6 H 5 COOH). And LiNbO 3 or
By subjecting the LiTaO 3 crystal substrate to a low temperature heat treatment, lithium ions (Li + ) in the crystal substrate are converted into protons (H
+ ) And other ionic species, resulting in a large refractive index difference (Δh ~
An optical waveguide layer having 0.12) is formed. The thin film optical waveguide manufactured by the above ion exchange method has a good characteristic that the optical damage threshold value is improved several tens of times as compared with that of Ti diffusion.

ところで、光偏向器、光変調器を光音響効果や電気光
学効果を利用して実現しようとする場合、前記各効果の
効率を上げることが素子形成において重要になる。光音
響効果を利用する代表例としては、光導波路上にホトリ
ソグラフイーで作製したくし形電極に高周波電界を印加
し、光導波路上に弾性表面波を励起させる方法がある。
この場合、光導波路上に励起された弾性表面波と光導波
路中を伝播する導波光との相互作用は、導波光のエネル
ギー分布が基板表面近傍に閉じ込められるほど増大する
ことが知られている。〔C.S.Tsal,IEEE TRANSACTIONS O
N CIRCUITS AND SYSTEMS,VOL.CAS−26,12,1979〕 一方、前述のような光導波路に導波光を入出力する場
合、半導体レーザ或いは光ファイバ等から光導波路端面
を介して行なっている。この場合に光の結合効率を高め
る為には、導波光のエネルギー分布は光フアイバ等の光
エネルギー分布に合わせて、基板の厚さ方向に広がって
いる必要がある。
By the way, when the optical deflector and the optical modulator are to be realized by utilizing the photoacoustic effect or the electro-optical effect, it is important to increase the efficiency of each of the above effects in the element formation. A typical example of utilizing the photoacoustic effect is a method of exciting a surface acoustic wave on the optical waveguide by applying a high-frequency electric field to a comb-shaped electrode manufactured by photolithography on the optical waveguide.
In this case, it is known that the interaction between the surface acoustic wave excited on the optical waveguide and the guided light propagating in the optical waveguide increases as the energy distribution of the guided light is confined near the substrate surface. (CSTsal, IEEE TRANSACTIONS O
N CIRCUITS AND SYSTEMS, VOL.CAS-26, 12, 1979] On the other hand, when the guided light is input to and output from the optical waveguide as described above, it is performed from a semiconductor laser, an optical fiber or the like via the end face of the optical waveguide. In this case, in order to increase the light coupling efficiency, the energy distribution of the guided light needs to spread in the thickness direction of the substrate in accordance with the light energy distribution of the optical fiber or the like.

このように、導波光を入出力せしめる光結合部と、導
波光を変調,偏向せしめる光機能部とでは求められる導
波光のエネルギー分布が異なる為、従来の薄膜型光学素
子では、高効率の変調、偏向と、高結合効率とを同時に
満足することは難かしかった。また、この問題の解決法
として、光導波路をチタンの拡散によって形成する場合
には、光結合部と光機能部とでチタンの拡散濃度を異な
らしめる方法が提案されている。〔近藤充和,小松啓
郎,太田義徳'84春期応物講演会予稿31a−K−7及び同
著者7th Toptical Meeting on Integrated and Guided
−Wave Optics TuA5−1〕しかしながら、前述のように
イオン注入によって光導波路を形成する場合には、上記
問題を解決する有効な手段が知られていなかった。
As described above, since the required energy distribution of guided light is different between the optical coupling part for inputting / outputting guided light and the optical function part for modulating / deflecting guided light, the conventional thin-film optical element has a high-efficiency modulation. It was difficult to satisfy both the deflection and the high coupling efficiency at the same time. Further, as a solution to this problem, when the optical waveguide is formed by diffusion of titanium, a method of making the diffusion concentration of titanium different between the optical coupling portion and the optical function portion has been proposed. [Mitsukazu Kondo, Keiro Komatsu, Yoshinori Ota '84 Spring Conference Presentation, 31a-K-7 and 7th Toptical Meeting on Integrated and Guided
-Wave Optics TuA5-1] However, when forming an optical waveguide by ion implantation as described above, an effective means for solving the above problems has not been known.

〔発明の概要〕[Outline of Invention]

本発明の目的は、光学損傷のしきい値が十分高く、し
かも、導波光の入出力の際の結合効率が高くかつ効率良
く光の回折を行なう薄膜型光学素子の作製方法を提供す
ることにある。
An object of the present invention is to provide a method for manufacturing a thin film type optical element which has a sufficiently high threshold value for optical damage, has high coupling efficiency at the time of inputting / outputting guided light, and efficiently diffracts light. is there.

本発明の上記目的は、基板と、該基板の表面全体にイ
オンを注入又は熱拡散することによって形成された薄膜
光導波路と、前記基板表面に弾性表面波を発生させるこ
とにより光導波路を伝搬する光を回折せしめる手段とか
ら成り、前記光導波路端面から前記伝搬光を入出力させ
る光結合部と、前記伝搬光を回折せしめる手段が形成さ
れた光機能部とを有する薄膜型光学素子を作製する方法
において、前記基板表面の光機能部以外の部分にのみイ
オンを注入する過程と、基板表面全体にイオンを注入す
る過程と、注入されたイオンを熱拡散させることによっ
て、光結合部の方が光機能部よりもイオンの拡散深さが
深い光導波路を形成する過程と、前記光機能部に伝搬光
を回折せしめる手段を形成する過程とから成ることを特
徴とする薄膜型光学素子の作製方法によって達成され
る。
The above object of the present invention is to propagate a substrate, a thin film optical waveguide formed by implanting or thermally diffusing ions on the entire surface of the substrate, and propagating the optical waveguide by generating a surface acoustic wave on the substrate surface. A thin film type optical element comprising an optical coupling section for diffracting light, for inputting and outputting the propagating light from the end face of the optical waveguide, and an optical functional section having a means for diffracting the propagating light is formed. In the method, a step of injecting ions only into a portion other than the optical functional portion of the substrate surface, a step of injecting ions into the entire substrate surface, and a thermal diffusion of the injected ions are performed so that the optical coupling portion is A thin film type optical device comprising a process of forming an optical waveguide having a deeper diffusion depth of ions than that of the optical function part and a process of forming a means for diffracting propagating light in the optical function part. It is achieved by a method for manufacturing a child.

〔実施例〕〔Example〕

第1図は、音響光学効果を利用した本発明による薄膜
型光学素子の第1の実施例を示す斜視図である。1はx
板もしくはy板LiNbO3結晶基板、2はプロトン交換によ
って形成された光導波路、3,4は研摩された光導波路端
面、5,6はシリンドリカルレンズ、7はくし型電極であ
る。
FIG. 1 is a perspective view showing a first embodiment of a thin film type optical element according to the present invention utilizing the acousto-optic effect. 1 is x
Plate or y-plate LiNbO 3 crystal substrate, 2 is an optical waveguide formed by proton exchange, 3 and 4 are polished optical waveguide end faces, 5 and 6 are cylindrical lenses, and 7 is a comb-shaped electrode.

波長6328ÅのHe−Neレーザーからの平行光8は、研摩
された光導波路端面3上に、シリンドリカルレンズ5に
より光導波路の厚さ方向に集光し、光導波路内に結合さ
れる。光導波路端面から結合された導波光9は、くし型
電極7にRFパワーを加えることにより発生した弾性表面
波10により回折され、回折光は、光導波路端面4から出
射、シリンドリカルレンズ6により平行光になる。この
時の光導波路端面3での集光光束の幅(集光方向)と導
波光の幅はほぼ一致しているため、80%と高い結合効率
が得られた。
The collimated light 8 from the He-Ne laser having a wavelength of 6328Å is condensed on the polished end face 3 of the optical waveguide by the cylindrical lens 5 in the thickness direction of the optical waveguide and is coupled into the optical waveguide. The guided light 9 coupled from the end face of the optical waveguide is diffracted by the surface acoustic wave 10 generated by applying RF power to the comb electrode 7, and the diffracted light is emitted from the end face 4 of the optical waveguide and collimated by the cylindrical lens 6. become. At this time, the width of the converged light beam (converging direction) at the end face 3 of the optical waveguide and the width of the guided light are substantially the same, and thus a high coupling efficiency of 80% was obtained.

また、図のように、光導波路2は光導波路端面3,4近
傍の光結合部から、弾性表面波10と導波光9とが相互作
用する光機能部に進むにつれ、プロトンの注入されてい
る深さが徐々に浅くなり、光機能部では導波光が基板表
面近く閉じ込められて高い回折効率が得られた。
Further, as shown in the figure, the optical waveguide 2 is injected with protons as it progresses from the optical coupling portion near the optical waveguide end faces 3 and 4 to the optical function portion where the surface acoustic wave 10 and the guided light 9 interact. The depth became gradually shallow, and guided light was confined near the substrate surface in the optical function part, and high diffraction efficiency was obtained.

第2図は、第1図の如き薄膜型光学素子の作製方法を
説明する略断面図である。
FIG. 2 is a schematic cross-sectional view illustrating a method for manufacturing the thin film type optical element as shown in FIG.

先ず、第2図(a)に示される如く、y板もしくはx
板のLiNbO3結晶基板1のy面もしくはx面をニユートン
リング数本以内の平面度に研摩した後、アセトン次いで
純水による通常の超音波洗浄を行い、窒素ガスを吹きつ
けて乾燥させた。次に、上記y面もしくはx面に電子ビ
ーム蒸着により200Åの厚さにTi薄膜を蒸着し、酸素雰
囲気中で965℃、2.5時間熱拡散させ、第2図(b)に示
される如く、Ti熱拡散層11を形成した。熱拡散される金
属としては、V,Ni,Au,Ag,Co,Nb,Ge等を用いても良い。
First, as shown in FIG. 2 (a), the y plate or x
The y-plane or x-plane of the LiNbO 3 crystal substrate 1 of the plate was polished to a flatness within a few Newton rings, then subjected to normal ultrasonic cleaning with acetone and then pure water, and dried by blowing nitrogen gas. . Next, a Ti thin film was vapor-deposited on the y-plane or the x-plane by electron beam evaporation to a thickness of 200Å, and was thermally diffused in an oxygen atmosphere at 965 ° C for 2.5 hours. As shown in FIG. The thermal diffusion layer 11 was formed. As the metal to be thermally diffused, V, Ni, Au, Ag, Co, Nb, Ge or the like may be used.

次に、第2図の(c)に示す如く、弾性表面波と導波
光とが相互作用する光機能部にCr薄膜12を蒸着し、プロ
トン交換処理時のマスクとした。次に、安息香酸に安息
香酸リチウムをモル比で2%添加し、アルミナのルツボ
にいれた。安息香酸及び安息香酸リチウムのはいったル
ツボ中に前記マスクを形成したLiNbO3結晶基板を入れ、
これらを熱炉に入れて250℃の温度で5時間保持してイ
オン交換処理を行なった結果、第2図(c)に示される
如く、Ti拡散層11中のマスクを施されていない部分にプ
ロトン交換層13が形成された。プロトン交換層形成にあ
たっては、安息香酸と安息香酸リチウムの混合液以外
に、ガルボン酸において解離度が10-6から10-3である材
料とこのカルボン酸のカルボキシル基の水素が、リチウ
ムに置換されている材料との混合物、たとえばパルミチ
ン酸〔CH3(CH2)14COOH〕とパルミチン酸リチウム〔CH
3(CH2)14COOLi〕との混合物やステアリン酸〔CH3(CH2)
16COOH〕とステアリン酸リチウム〔CH3(CH2)16COOLi〕
との混合物があげられる。また、リチウムで置換された
材料のモル比は、1%から10%の範囲で変化させ種々の
サンプルを作製した。エタノールで超音波洗浄を行な
い、窒素ガスを吹きつけて乾燥させた後、エツチングに
より、マスクを除去した。
Next, as shown in FIG. 2 (c), a Cr thin film 12 was vapor-deposited on the optical function portion where the surface acoustic wave and the guided light interact, and used as a mask for the proton exchange treatment. Next, 2% of lithium benzoate was added to benzoic acid at a molar ratio of 2%, and the mixture was placed in a crucible of alumina. Into a crucible containing benzoic acid and lithium benzoate, put the LiNbO 3 crystal substrate on which the mask is formed,
These were placed in a heating furnace and held at a temperature of 250 ° C. for 5 hours to carry out an ion exchange treatment. As a result, as shown in FIG. 2 (c), the Ti mask layer 11 was not masked. The proton exchange layer 13 was formed. In forming the proton exchange layer, in addition to a mixed solution of benzoic acid and lithium benzoate, a material having a dissociation degree of 10-6 to 10 -3 in galonic acid and hydrogen of the carboxyl group of this carboxylic acid are replaced with lithium. Mixed with other materials such as palmitic acid [CH 3 (CH 2 ) 14 COOH] and lithium palmitate [CH
3 (CH 2 ) 14 COOLi] and stearic acid [CH 3 (CH 2 )
16 COOH] and lithium stearate [CH 3 (CH 2 ) 16 COOLi]
And a mixture with. Further, various samples were prepared by changing the molar ratio of the material substituted with lithium in the range of 1% to 10%. Ultrasonic cleaning was performed with ethanol, nitrogen gas was blown to dry it, and the mask was removed by etching.

さらに、上記プロトン交換後の基板を、安息香酸に安
息香酸リチウムをモル比で1%添加した材料中で、250
℃1時間のプロトン交換処理を行なった。その結果、第
2図の(d)に示される如く、プロトン交換層14が形成
された。このプロトン交換処理にあたっては、最初のプ
ロトン交換処理で用いたパルミチン酸とパルミチン酸リ
チウムとの混合物やステアリン酸とステアリン酸リチウ
ムとの混合物等を用いることができる。上記プロトン交
換後、再びエタノールで超音波洗浄を行ない、窒素ガス
を吹きつけて乾燥させた。
Further, the substrate after the above proton exchange was carried out in a material in which 1% of lithium benzoate was added to benzoic acid in a molar ratio of 250%.
Proton exchange treatment was performed at 1 ° C. for 1 hour. As a result, the proton exchange layer 14 was formed as shown in FIG. In this proton exchange treatment, a mixture of palmitic acid and lithium palmitate used in the first proton exchange treatment, a mixture of stearic acid and lithium stearate, or the like can be used. After the above-mentioned proton exchange, ultrasonic cleaning was performed again with ethanol, and nitrogen gas was blown to dry it.

次に、2回プロトン交換処理を行なった結晶基板を熱
炉にいれ、加熱した水を通して酸素を流量1.0l/分で流
入しながら、この水蒸気を含んだ湿った酸素雰囲気中で
350℃で4時間アニール処理を行なった。その結果、第
2図の(e)に示される如く、光機能部のみプロトンが
注入された部分の深さが浅く、基板端面20および21の方
へ向かうにつれ厚くなった光導波路15が形成された。上
記光機能部と光機能部でない部分との境界18及び19にお
けるプロトン分布はアニール処理を行なっているためな
めらかに変化しており、この部分の伝搬ロスは小さいこ
とが導波実験で確認された。
Next, the crystal substrate that has been subjected to the proton exchange treatment twice is put in a thermal furnace, and oxygen is introduced at a flow rate of 1.0 l / min through heated water in a moist oxygen atmosphere containing water vapor.
Annealing treatment was performed at 350 ° C. for 4 hours. As a result, as shown in FIG. 2 (e), the optical waveguide 15 is formed in which only the optical functional portion is proton-injected and the depth is shallow, and the thickness is increased toward the end faces 20 and 21 of the substrate. It was The proton distributions at the boundaries 18 and 19 between the optical function part and the non-optical function part were changed smoothly because the annealing treatment was performed, and it was confirmed in the waveguide experiment that the propagation loss in this part was small. .

又、アニール処理条件は、前記条件以外のものでも良
いが、光機能部でのOH基の吸収ピークの波数が3480cm-1
から3503cm-1の範囲に存在するように選定することが望
ましい。
The annealing conditions may be other than the above conditions, but the wave number of the absorption peak of the OH group in the optical function part is 3480 cm -1.
It is desirable to select it so that it exists in the range from to 3503 cm -1 .

最後に、通常のフオトリソグラフイーの手法を用い
て、第2図の(f)に示される如く、上記光導波路15上
にくし型電極16を形成した。
Finally, the comb-shaped electrode 16 was formed on the optical waveguide 15 as shown in FIG. 2 (f) by using the usual photolithography method.

上記実施例において、光導波路はTi拡散及びプロトン
の熱拡散により形成されたが、Ti拡散は必ずしも必要で
はなく、プロトンの注入又は熱拡散のみ、或いはプロト
ンを注入又は熱拡散するとともにLiOを外部拡散するこ
とによって光導波路を形成しても良い。
In the above embodiment, the optical waveguide was formed by Ti diffusion and thermal diffusion of protons, but Ti diffusion is not necessarily required, only proton injection or thermal diffusion, or proton injection or thermal diffusion and LiO external diffusion. By doing so, an optical waveguide may be formed.

第3図は、電気光学(EO)効果を利用した光偏向器の
参考例を示す概略図である。第3図において、第1図と
共通の部分には同一の符号を附し、詳細な説明は省略す
る。
FIG. 3 is a schematic diagram showing a reference example of an optical deflector utilizing the electro-optic (EO) effect. In FIG. 3, the same parts as those in FIG. 1 are designated by the same reference numerals, and detailed description thereof will be omitted.

レーザー光8は、研摩された光導波路端面3上に、シ
リンドリカルレンズ5により光導波路の厚さ方向に集光
し、光導波路内に結合される。光導波路端面から結合さ
れた導波光9は、電気光学(EO)効果用のくし型電極17
に電圧を印加することによって生じた位相格子によって
回折され、もう一方の光導波路端面4から出射し、シリ
ンドリカルレンズ6により平行光に変えられる。ここで
作製したくし型電極は、電極巾および電極間の間隔2.2
μm、交さ幅3.8mm、対数350対であった。また、上記し
く型電極に電圧5Vを印加したところ、90%の回折効率が
得られ、高回折効率が得られることがわかった。
The laser light 8 is condensed on the polished end face 3 of the optical waveguide by the cylindrical lens 5 in the thickness direction of the optical waveguide and is coupled into the optical waveguide. The guided light 9 coupled from the end face of the optical waveguide is a comb-shaped electrode 17 for electro-optic (EO) effect.
The light is diffracted by the phase grating generated by applying a voltage to the light, is emitted from the other end face 4 of the optical waveguide, and is converted into parallel light by the cylindrical lens 6. The comb-shaped electrode manufactured here has an electrode width and a gap between electrodes of 2.2.
μm, cross width 3.8 mm, logarithm 350 pairs. It was also found that when a voltage of 5 V was applied to the mold electrode, a diffraction efficiency of 90% was obtained, and a high diffraction efficiency was obtained.

以上の実施例では、基板としてLiNbO3結晶基板を用い
たが、タンタル酸リチウム(LiTaO3)結晶基板を用いて
も、全く同様の作製方法で、本発明の薄膜型光学素子を
形成することが出来る。また、このような誘電体に限ら
ず、基板に半導体を用いても良い。このような薄膜光学
素子を以下に示す。
In the above examples, the LiNbO 3 crystal substrate was used as the substrate, but even if a lithium tantalate (LiTaO 3 ) crystal substrate is used, the thin-film optical element of the present invention can be formed by the same manufacturing method. I can. Further, the substrate is not limited to such a dielectric, and a semiconductor may be used for the substrate. Such a thin film optical element is shown below.

第4図は本発明の薄膜型光学素子の第2実施例を示す
斜視図である。第4図において、第1図と共通の部分に
は同一符号を附し詳細な説明は省略する。ここで、31は
ガリウムヒ素(GaAs)基板、32はアルミニウムガリウム
ヒ素(AlGaAs)バツフア層、33は注入キヤリア分布をも
つガリウムヒ素−アルミニウムヒ素(GaAs−AlGaAs)光
導波路、34は酸化亜鉛(ZnO)薄膜で片側はテーパー構
造となっている。上記ZnO薄膜上に設けられたくし型電
極7にRFパワーが印加されると、上記薄膜上に弾性表面
波10が励起され、上記テーパー構造部を通り、GaAs−Al
GaAs光導波路33上を伝搬し、導波光9は前記弾性表面波
10により回折される。上記光導波路層33上において、光
導波路端面3及び4近傍の光結合部はキヤリア密度が高
くかつ深くまでドーピングされているため、光導波路の
実効屈折率は、弾性表面波と導波光とが相互作用する光
機能部に比べて低い。これにより光結合部において導波
光のエネルギー分布は広がり、高い結合効率を示し、一
方、光機能部においては導波光のエネルギー分布は表面
に集中して高い回折効率が得られる。
FIG. 4 is a perspective view showing a second embodiment of the thin film type optical element of the present invention. 4, the same parts as those in FIG. 1 are designated by the same reference numerals, and detailed description thereof will be omitted. Here, 31 is a gallium arsenide (GaAs) substrate, 32 is an aluminum gallium arsenide (AlGaAs) buffer layer, 33 is a gallium arsenide-aluminum arsenide (GaAs-AlGaAs) optical waveguide having an injection carrier distribution, and 34 is zinc oxide (ZnO). It is a thin film and has a tapered structure on one side. When RF power is applied to the comb-shaped electrode 7 provided on the ZnO thin film, surface acoustic waves 10 are excited on the thin film, pass through the tapered structure portion, and pass through the GaAs-Al.
The guided light 9 propagates on the GaAs optical waveguide 33 and the guided light 9 is the surface acoustic wave.
Diffracted by 10. On the optical waveguide layer 33, the optical coupling portions near the optical waveguide end faces 3 and 4 have a high carrier density and are deeply doped. Therefore, the effective refractive index of the optical waveguide is such that the surface acoustic wave and the guided light are mutually Low compared to the working optical function part. As a result, the energy distribution of the guided light is broadened in the optical coupling portion and exhibits high coupling efficiency, while the energy distribution of the guided light is concentrated on the surface in the optical function portion, and high diffraction efficiency is obtained.

〔発明の効果〕〔The invention's effect〕

以上説明したように、本発明の方法によって作製され
た薄膜型光学素子は、光導波路のイオンの分布の仕方を
光機能部と光結合部とで深さの異なるものにすることに
よって、光学損傷のしきい値を十分高く保ちながら、導
波光の入出力における結合効率を高めると同時に弾性表
面波による回折の効率を向上させる効果を有するもので
ある。
As described above, the thin-film type optical element manufactured by the method of the present invention has the optical damage caused by making the distribution of ions in the optical waveguide different in depth between the optical function section and the optical coupling section. While maintaining a sufficiently high threshold value, the coupling efficiency at the input / output of the guided light is increased and at the same time, the efficiency of diffraction by the surface acoustic wave is improved.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明に基づく薄膜型光学素子を音響光学効果
による光偏向器に用いた実施例を示す概略図、第2図は
本発明の薄膜型光学素子の作製過程の一例を示す略断面
図、第3図は電気光学効果による光偏向器の参考例を示
す概略図、第4図は本発明の他の実施例を示す概略図で
ある。 1…LiNbO3結晶基板、2…光導波路、3,4…研摩された
光導波路端面、5,6…シリンドリカルレンズ、7,17…く
し型電極、8…レーザー光、10…弾性表面波。
FIG. 1 is a schematic view showing an embodiment in which a thin film type optical element according to the present invention is used in an optical deflector based on an acousto-optic effect, and FIG. 2 is a schematic cross section showing an example of a manufacturing process of the thin film type optical element of the present invention. 3 and 4 are schematic views showing a reference example of an optical deflector based on the electro-optical effect, and FIG. 4 is a schematic view showing another embodiment of the present invention. 1 ... LiNbO 3 crystal substrate, 2 ... Optical waveguide, 3, 4 ... Polished optical waveguide end face, 5, 6 ... Cylindrical lens, 7, 17 ... Comb type electrode, 8 ... Laser light, 10 ... Surface acoustic wave.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】基板と、該基板の表面全体にイオンを注入
又は熱拡散することによって形成された薄膜光導波路
と、前記基板表面に弾性表面波を発生させることにより
光導波路を伝搬する光を回折せしめる手段とから成り、
前記光導波路端面から前記伝搬光を入出力させる光結合
部と、前記伝搬光を回折せしめる手段が形成された光機
能部とを有する薄膜型光学素子を作製する方法におい
て、前記基板表面の光機能部以外の部分にのみイオンを
注入する過程と、基板表面全体にイオンを注入する過程
と、注入されたイオンを熱拡散させることによって、光
結合部の方が光機能部よりもイオンの拡散深さが深い光
導波路を形成する過程と、前記光機能部に伝搬光を回折
せしめる手段を形成する過程とから成ることを特徴とす
る薄膜型光学素子の作製方法。
1. A substrate, a thin film optical waveguide formed by implanting or thermally diffusing ions on the entire surface of the substrate, and a light propagating through the optical waveguide by generating a surface acoustic wave on the surface of the substrate. It consists of diffracting means,
In the method for producing a thin film type optical element having an optical coupling part for inputting and outputting the propagating light from the end face of the optical waveguide and an optical functional part formed with a means for diffracting the propagating light, the optical function of the substrate surface is provided. The process of implanting ions only in the area other than the area, the process of implanting ions on the entire surface of the substrate, and the thermal diffusion of the implanted ions make it possible for the optical coupling part to have a greater ion diffusion depth than the optical function part. A method of manufacturing a thin film type optical element, comprising: a step of forming a deep optical waveguide; and a step of forming a means for diffracting propagating light in the optical function part.
JP59192901A 1984-09-14 1984-09-14 Method of manufacturing thin film type optical element Expired - Fee Related JPH0827471B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP59192901A JPH0827471B2 (en) 1984-09-14 1984-09-14 Method of manufacturing thin film type optical element
US06/774,579 US4778236A (en) 1984-09-14 1985-09-10 Thin film optical element
DE3532811A DE3532811C2 (en) 1984-09-14 1985-09-13 Optical thin film element
GB08522689A GB2165956B (en) 1984-09-14 1985-09-13 Thin film optical element and method for producing the same
FR858513617A FR2570516B1 (en) 1984-09-14 1985-09-13 THIN FILM OPTICAL ELEMENT AND MANUFACTURING METHOD THEREOF
US07/202,889 US4886587A (en) 1984-09-14 1988-06-06 Method of producing thin film optical element by ion injection under electric field

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59192901A JPH0827471B2 (en) 1984-09-14 1984-09-14 Method of manufacturing thin film type optical element

Publications (2)

Publication Number Publication Date
JPS6170535A JPS6170535A (en) 1986-04-11
JPH0827471B2 true JPH0827471B2 (en) 1996-03-21

Family

ID=16298859

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59192901A Expired - Fee Related JPH0827471B2 (en) 1984-09-14 1984-09-14 Method of manufacturing thin film type optical element

Country Status (1)

Country Link
JP (1) JPH0827471B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0397895A1 (en) * 1989-05-13 1990-11-22 SELENIA INDUSTRIE ELETTRONICHE ASSOCIATE S.p.A. Method for the fabrication of LiNbO3 single mode planar optical guide lenses
US11409103B2 (en) * 2018-07-16 2022-08-09 Lumus Ltd. Light-guide optical element employing polarized internal reflectors

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59176730A (en) * 1983-03-28 1984-10-06 Fujitsu Ltd Optical switch
JPS60182424A (en) * 1984-02-29 1985-09-18 Nec Corp Optical control circuit

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
’84春期応物講演会予稿3/9−K−7

Also Published As

Publication number Publication date
JPS6170535A (en) 1986-04-11

Similar Documents

Publication Publication Date Title
US5619369A (en) Diffracting device having distributed bragg reflector and wavelength changing device having optical waveguide with periodically inverted-polarization layers
US4705346A (en) Thin film type optical device
US4778236A (en) Thin film optical element
US4799750A (en) Optical function element and a method for manufacturing the same
US5323262A (en) Wavelength conversion device
JPS60119522A (en) Optical waveguide
JPH1172809A (en) Optical wavelength conversion element and its production, optical generator using this element and optical pickup, diffraction element as well as production of plural polarization inversion part
US4886587A (en) Method of producing thin film optical element by ion injection under electric field
US6519077B1 (en) Optical waveguide, optical wavelength conversion device, method for producing the same, short wavelength light generation apparatus using the same, optical information processing apparatus using the same, coherent light generation apparatus using the same, and optical system using the same
JPH0827471B2 (en) Method of manufacturing thin film type optical element
JPS6170541A (en) Thin film type optical element and its manufacture
EP0484796B1 (en) Device for doubling the frequency of a light wave
JPS6170540A (en) Thin film type optical element and its manufacture
JPS6250708A (en) Thin film type optical element and its manufacture
JPH0564322B2 (en)
JPS6170534A (en) Thin film type optical element and its manufacture
JPS6250705A (en) Thin film type optical element and its manufacture
JPH03191332A (en) Production of optical waveguide and optical wavelength converting element
JPS6170507A (en) Production for thin film optical element
JPS6250706A (en) Manufacture of thin film type optical element
JPS6170539A (en) Thin film type optical element and its manufacture
JPS6170538A (en) Thin film type optical element and its manufacture
JPS6170536A (en) Thin film type optical element and its manufacture
JPS6170533A (en) Thin film type optical element and its manufacture
JPS6250707A (en) Thin film type optical element and its manufacture

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees