JPS60144111A - Distance relaying device - Google Patents

Distance relaying device

Info

Publication number
JPS60144111A
JPS60144111A JP24727283A JP24727283A JPS60144111A JP S60144111 A JPS60144111 A JP S60144111A JP 24727283 A JP24727283 A JP 24727283A JP 24727283 A JP24727283 A JP 24727283A JP S60144111 A JPS60144111 A JP S60144111A
Authority
JP
Japan
Prior art keywords
relay
distance
output
fault
relay device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP24727283A
Other languages
Japanese (ja)
Other versions
JPH0522456B2 (en
Inventor
笠原 利夫
宏 佐々木
岩谷 二三夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Tokyo Electric Power Co Holdings Inc
Original Assignee
Tokyo Electric Power Co Inc
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electric Power Co Inc, Hitachi Ltd filed Critical Tokyo Electric Power Co Inc
Priority to JP24727283A priority Critical patent/JPS60144111A/en
Publication of JPS60144111A publication Critical patent/JPS60144111A/en
Publication of JPH0522456B2 publication Critical patent/JPH0522456B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Emergency Protection Circuit Devices (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の利用分野〕 2 本発明は距離継電装置に係り、特に短距離送電線の保護
及び継電装置設置至近端故障の判定に好適な距離継電装
置に関する。
[Detailed Description of the Invention] [Field of Application of the Invention] 2. The present invention relates to a distance relay device, and particularly to a distance relay device suitable for protecting short-distance power transmission lines and determining failures at the nearest end of the relay device installation. .

〔発明の背景〕[Background of the invention]

従来の距離継電方式においては、至近端故障時に距離判
定の基準となる電圧信号が零に近づき、方向判定ができ
なくなるため、電圧信号を記憶するメモリ回路を付加す
ることによって、故障発生直後から、2〜3サイクル程
度の短い時間は故障点の方向を判定できるようにしてい
る。
In the conventional distance relay method, when a near-end fault occurs, the voltage signal that serves as the reference for distance judgment approaches zero, making direction judgment impossible. Therefore, the direction of the failure point can be determined for a short time of about 2 to 3 cycles.

しかし、後備保護継電装置のごとく、故障発生後、数サ
イクル以上も経過したのちに本来の保護機能が必要とな
る距離継電器にあっては、前記メモリ回路の2〜3サイ
クル程度の電圧信号の記憶のみでは対処できないため、
一度動作したのちは、第1図に示すような種々の動作保
持方式がとられている。
However, for distance relays such as back-up protection relays that require their original protective function several cycles or more after a failure occurs, the voltage signal of the memory circuit for about 2 to 3 cycles is Since memory alone cannot be used,
Once the device is in operation, various methods of maintaining the operation as shown in FIG. 1 are used.

第1図(a)は、モー形継電器44Mが動作したのち、
それ自体の動作域がインピーダンス零点を含むように4
4M′に変る特性とすることによって、至近端故障時に
電圧信号が零になっても距離継電器の動作を継続する方
法である。同図のRは抵抗jXはリアクタンスを示す。
FIG. 1(a) shows that after the Moh type relay 44M operates,
4 so that its own operating range includes the zero impedance point.
This method allows the distance relay to continue operating even if the voltage signal becomes zero in the event of a near-end failure by providing a characteristic that changes to 4M'. In the figure, R indicates resistance and jX indicates reactance.

また、同図(b)は、モー形継電器44Mと、リアクタ
ンス継電器44Xを組合せて用いるもので、44Mと4
4Xがともに動作したことによって、以後は44Xの動
作のみによって故障の有無を判定する方式であって、イ
ンピーダンスの原点全動作域にできる。
In addition, the same figure (b) uses a combination of a Moo type relay 44M and a reactance relay 44X, and 44M and 44X are used in combination.
Since both 4X have operated, the presence or absence of a failure can be determined from now on only by the operation of 44X, and the entire operating range of the origin of impedance can be achieved.

また、同図(C)は、基本的に同図(b)と同じ考えの
もので四辺形の距離継電器44Zと方向継電器67Bを
組合せ、これらの同時動作によシ以後は67Bの動作の
みによって至近端故障時の動作条件を継続する方式であ
る。
In addition, Fig. 3(C) basically has the same idea as Fig. 6(b), and combines a rectangular distance relay 44Z and a direction relay 67B. This method continues the operating conditions at the time of a near-end failure.

とのほかにも44Mの動作継続保持条件として、過電流
継電器、あるいは不足電圧継電器などの動作条件を用い
るものもある。
In addition to this, there are also systems that use operating conditions such as an overcurrent relay or an undervoltage relay as conditions for maintaining the continued operation of the 44M.

以上の例に示すように、従来の方式は至近端故障時でも
距離継電器の動作出力を継続できる。しかし、内部至近
端故障が発生したのち外部至近端に引き続き故障が発生
した場合に内部故障主保護動作にもかかわらず外部故障
の継続時に内部方向と誤って判定し、しゃ断する欠点が
ある。
As shown in the above example, the conventional system can continue operating the distance relay even in the event of a near-end failure. However, if a fault occurs at the external near end after an internal near end fault has occurred, there is a drawback that, despite the internal fault main protection operation, if the external fault continues, it will be incorrectly determined to be in the internal direction and shut off. .

つまシ、内部至近端故障が発生すると内部故障検出用の
主保護継電器と第1図に示した後備保護用距離継電器が
ともに動作状態となる。この場合に主保護継電器の出力
はしゃ断器開放用として使用されて直ちにこれを開放し
、一方後備保護用距離継電器の出力はタイマーに入力さ
れそのタイムアツプによりしゃ断器開放に使用される。
When an internal near-end fault occurs, both the main protection relay for internal fault detection and the back-up protection distance relay shown in FIG. 1 become operational. In this case, the output of the main protection relay is used to open the breaker and immediately opens it, while the output of the backup protection distance relay is input to a timer and is used to open the breaker upon time-up.

ただ一般には主保護継電器の動作によりしゃ断器開放し
て内部故障除去するために、第1図の44M。
However, in general, 44M in Figure 1 is used to open the breaker and eliminate internal faults by operating the main protection relay.

44X、44Zが不動作とカリ距離継電器を不動作とし
てしまうので、タイマーがタイムアツプすることはない
。しかし、内部故障に引続き至近端外部故障が発生し、
これが44M’ 、44X。
Since 44X and 44Z are inoperative, the distance relay is inoperative, so the timer will not time up. However, an internal failure is followed by a near-end external failure,
This is 44M', 44X.

44Zの゛動作領域内であるときは内部故障除去にもか
かわらず、後備保護用距離継電器は動作継続し、いずれ
タイムアツプしてしゃ断器に引外し信号を与えることと
なる。ところで、一般に系統の故障発生→故障除去→再
閉路といつlこ順序でいわゆるしゃ断器の再閉路動作を
行なわせるが、前記連続故障の時には再閉路成功の後に
後備保護継電器出力により誤ってしゃ断器の再しゃ断を
行なう可能性が)る。
44Z, the backup protection distance relay continues to operate despite the removal of the internal fault, and will eventually time out and give a trip signal to the circuit breaker. By the way, in general, the breaker is reclosed in the following order: occurrence of a fault in the system → fault removal → re-closing, but in the case of the above-mentioned continuous failures, the breaker may be accidentally shut off by the backup protection relay output after the re-closing is successful. (possibility of re-shutoff).

上記のほかに、距離方向判定のための基準電圧のメモリ
回路の時定数を大きくとり、動作判定ができる時間を引
き延すこともひとつの方法ではあるが、系統故障中に周
波数が変動し続けると、方向判定を誤ることも考えられ
るため実施上の問題がある。
In addition to the above, one method is to increase the time constant of the memory circuit for the reference voltage for determining distance and direction to extend the time for determining operation, but the frequency continues to fluctuate during system failures. This poses a problem in implementation since it is possible that the direction will be incorrectly determined.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、保護区間の故障と保護区間の後方に故
障が発生した場合でも後備保鏝継電器の不正動作を防ぐ
ことにある。 □ 〔発明の概要〕 本発明は、距離継電器に電流反転を検出する電流位相炭
化検出器を付加することにより、保護区間後方故障点に
おける饋まった判定を防ぐことにある。
SUMMARY OF THE INVENTION An object of the present invention is to prevent malfunction of a backup relay even when a failure occurs in a protection zone or a failure occurs behind the protection zone. □ [Summary of the Invention] The present invention is to prevent delayed determination at a fault point at the rear of the protection zone by adding a current phase carbonization detector for detecting current reversal to a distance relay.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の一実施例を第2図、及び第3図によシ説
明する。
An embodiment of the present invention will be described below with reference to FIGS. 2 and 3.

第2図は本発明の全体概念を示すための図である。同図
の記号と動作について説明する。
FIG. 2 is a diagram showing the overall concept of the present invention. The symbols and operations in the figure will be explained.

1は保護対象の送電線、丸Yは本発明にかかる距離継電
装置であり、送電線1に故障が発生したとき、その故障
点が前方方向、すなわち同図F1点の方向のときしゃ断
指令をしゃ断器CBに出力する。CTは送電線1の通過
電流信号を距離継電装置RYに入力するための変流器、
PTは送電線1の印加電圧信号を距離継電装置RYに入
力するための電圧変成器である。この図の距離継電装置
RYはいわゆる後備保護継電装置であり、図示せぬ主保
護継電装置が動作できないときにしゃ断器の引外し制御
を行なう。
1 is the power transmission line to be protected, circle Y is the distance relay device according to the present invention, and when a failure occurs in the power transmission line 1, a cutoff command is issued when the failure point is in the forward direction, that is, in the direction of point F1 in the figure. is output to circuit breaker CB. CT is a current transformer for inputting the passing current signal of the power transmission line 1 to the distance relay device RY;
PT is a voltage transformer for inputting an applied voltage signal of the power transmission line 1 to the distance relay device RY. The distance relay device RY in this figure is a so-called back-up protection relay device, and performs tripping control of the circuit breaker when the main protection relay device (not shown) cannot operate.

いま、−離継電装置BYの動作域をモー形距離継電器を
例にして、第2図(b)に示すように、整定リーチをZ
11!!:するとき、継電器設置点からF1点までのイ
ンピーダンスをzl、故障電流をI+とおく。また、後
方故障点をF2点、インピーダンスをz、、i障電流を
1゜とおく。距離継電装置RYは故障インピーダンスZ
Iと20が零に近い至近端の故障においても確実に前方
か後方か識別することが必要である。このため、前記の
ように方向判定の基準となる電圧信号をメモリ回路に印
加して、一時、距離継電装置R,Yの動作を継続させて
いる。しかし、このメモリ回路はすでに述べたように周
波数変動時の問題、および・・−ドウエアの高精度維持
の点から制約があシ、およそ数サイクル以内の動作メモ
リが現行方式での限界である。ところが、距離継電装置
は後備保護に用いられることが多く、動作継続時間も1
秒近く必要になる。しかし、最近の系統故障をみると、
雷害が広い範囲に発生し、送電線の短絡、地絡故障も多
重発生し、主保護による高速度しゃ断、後方故障の継続
等、複雑な状態が続くととが懸念される5本発明は第3
図に示すように′電流信号の位相変化を検出することに
よって、距離継電装置の動作出力の保持を解くものであ
る。
Now, taking a Moh type distance relay as an example of the operating range of the - separation relay device BY, the settling reach is set to Z as shown in Fig. 2(b).
11! ! : When doing so, let zl be the impedance from the relay installation point to point F1, and let I+ be the fault current. Also, assume that the rear fault point is F2, the impedance is z, and the i fault current is 1°. Distance relay device RY has fault impedance Z
Even in the case of a near-end failure where I and 20 are close to zero, it is necessary to reliably identify whether it is the front or the rear. For this reason, as described above, a voltage signal serving as a reference for direction determination is applied to the memory circuit to temporarily continue the operation of the distance relay devices R and Y. However, as mentioned above, this memory circuit has limitations due to the problem of frequency fluctuations and the maintenance of high precision of the hardware, and the limit of the current system is that the memory can operate within several cycles. However, distance relay devices are often used for backup protection, and their operation duration is only 1.
It will take almost seconds. However, looking at recent system failures,
It is feared that lightning damage will occur over a wide area, power transmission line short circuits and ground faults will occur multiple times, and complex conditions will continue, such as high-speed shutoffs due to main protection and continued rear failures. Third
As shown in the figure, the holding of the operating output of the distance relay device is released by detecting the phase change of the current signal.

第3図の記号と動作内容について説明する。The symbols and operation contents in FIG. 3 will be explained.

■は継電装置設置の系統電圧信号で第21aPTの出力
信号、■は電流信号で第2図CTの出力信号である。4
4Mは至近端故障でも方向判定が可能なメモリ動作付モ
ー形継電器であり、この部分は第1図に示した従来の後
備保護継電装置と同一機能のものである。メモリー動作
付モー形継電器44Mの内容は31が電圧信号Vを記憶
するためのメモリ回路で、たとえば基本波を中心周波数
とするバンドパスフィルタであり、その減衰特性を利用
して入力■を一定時間記憶しV、・を出力する。
(2) is a system voltage signal installed in a relay device, which is the output signal of the 21a PT, and (2) is a current signal, which is the output signal of the CT in FIG. 4
4M is a memory-operated mode type relay that can determine the direction even in the case of a near-end failure, and this part has the same function as the conventional back-up protection relay shown in FIG. The contents of the memory-operated Moh type relay 44M are as follows: 31 is a memory circuit for storing the voltage signal V; for example, it is a bandpass filter whose center frequency is the fundamental wave, and its attenuation characteristic is used to input the input ■ for a certain period of time. It stores and outputs V,.

32は距離整定回路で電圧v1電流IからV+=V −
Z m I なるベクトル合成を行なう、Ziはその距
離整定値である。演算部33は、メモリ回路31の出力
V、を基準電圧信号として、距離整定回路32の出力V
 −Z n I とから(1)式の演算を行なう。
32 is a distance setting circuit and from voltage v1 current I, V+=V −
Vector composition Z m I is performed, and Zi is the distance setting value. The calculation unit 33 uses the output V of the memory circuit 31 as a reference voltage signal, and uses the output V of the distance setting circuit 32 as a reference voltage signal.
−Z n I , the calculation of equation (1) is performed.

IV; l ・ IV ZaIICO8θ>Kt−(1
)ただし、(1)式において、K1はレベル判定整定値
、θは■、とV−ZRIの位相差角である。(1)式を
満足したとき、フリップフロップ34をセットすること
によって、34が出力する。フリップフロップ34の出
力はしゃ断器の引外し信号に用いられる。但し、前記の
ように、この出力は後備保護継電装置の出力として利用
されるために、主保護継電装置との間の時間協調のため
に1秒程度の適当な時間後に最終的にしゃ断器旧姓しに
使用される。
IV; l ・IV ZaIICO8θ>Kt-(1
) However, in equation (1), K1 is the level determination setting value, and θ is the phase difference angle between ■ and V-ZRI. When the equation (1) is satisfied, the flip-flop 34 is set to output an output. The output of flip-flop 34 is used as a breaker trip signal. However, as mentioned above, since this output is used as the output of the backup protection relay device, it will eventually be shut off after an appropriate time of about 1 second due to time coordination with the main protection relay device. It is used as a maiden name.

一方、フリップフロップ34のリセット端子Rにはアン
ド回路37の出力が印加され、クリップフロップ34の
出力を阻止する。
On the other hand, the output of the AND circuit 37 is applied to the reset terminal R of the flip-flop 34, thereby blocking the output of the clip-flop 34.

アンド回路37への入力の1つを与えるFDは故障検出
継電器であり、たとえば不足電圧検出、わるいは過電圧
検出、過電流検出等の継電器を用いる。アンド回路37
への他の入力を与える78Iは電流位相変化検出回路で
ある。78Iにおいて、35は電流信号のメモリ回路で
、前記メモリ回路31と同様にバンドパスフィルタを用
いて実施できる。メモリ回路35の出力は現時点の入力
電流信号りよシも遅延した信号でこれをI、とする。
The FD that provides one of the inputs to the AND circuit 37 is a failure detection relay, and for example, a relay for undervoltage detection, overvoltage detection, overcurrent detection, etc. is used. AND circuit 37
78I, which provides another input to the current phase change detection circuit. In 78I, 35 is a memory circuit for current signals, and like the memory circuit 31, it can be implemented using a bandpass filter. The output of the memory circuit 35 is a signal delayed from the current input current signal, and this is designated as I.

36は位相比較回路であって、たとえば、lIp l 
・lIt 1co3θr > K z −(2)のとき
出力を発生する。ただし、θ1は工、とLの位相差角で
、K2はレベル判定用の整定値である。
36 is a phase comparison circuit, for example, lIp l
- Generates an output when lIt 1co3θr > Kz - (2). However, θ1 is the phase difference angle between H and L, and K2 is a setting value for level determination.

37はアンドゲートであり、故障検出継電器FDと電流
位相変化検出回路78Iのいずれかに出力がないときに
はフリップフロップ34の出力をリセットする。
37 is an AND gate, which resets the output of the flip-flop 34 when there is no output from either the failure detection relay FD or the current phase change detection circuit 78I.

すなわち、メモリー動作付モー形継電器44Mが保護区
間の故障を検出してフリップフロップ34をセットした
のち、少なくとも故障検出継電器FDが不動作になるが
、電流位相変化検出回路78Iが入力電流信号の方向反
転を検出して不動作となったときには、スリップフロッ
プ340セット条件を解除することによって、前方故障
から後方故障′に故障電流の流れる方向が反転したとき
に誤しゃ継指令を与えるのを防ぐことができる。
That is, after the memory-operated Moo-type relay 44M detects a failure in the protection zone and sets the flip-flop 34, at least the failure detection relay FD becomes inoperable, but the current phase change detection circuit 78I detects the direction of the input current signal. When a reversal is detected and the slip-flop 340 becomes inoperable, the slip-flop 340 set condition is canceled to prevent an erroneous disconnection command from being given when the direction of flow of fault current is reversed from the forward fault to the backward fault'. I can do it.

なお、第3図電流位相変化検出回路78Iの動作条件を
(2)式によって示したが、動作域を決めるθtの範囲
については、必ずしも同位相側と逆位相側の±900の
判定にこだわらず、位相角判定角を任意に定めた扇形の
動作域としてもよい。
Although the operating conditions of the current phase change detection circuit 78I in FIG. , the phase angle determination angle may be arbitrarily determined as a fan-shaped operating range.

また、44Mについてモー形継電器を例に示したが、四
辺形、多辺形等の距離継電器、あるいは方向継電器であ
ってもよい。
Moreover, although a Moh type relay is shown as an example for 44M, it may be a distance relay such as a quadrilateral or polygonal type, or a directional relay.

〔発明の効果〕〔Effect of the invention〕

本発明による距離継電装置は多端子系統の遠方後備保護
のごとく、故障電流の反転する機会が多い系統はど、そ
の効果を発揮することができ、系統運転時の無用なしゃ
断を防止することによって、電力系統運用の安定化を図
ることの効果がめる。
The distance relay device according to the present invention can exhibit its effectiveness in systems where there are many chances of fault current reversal, such as remote backup protection of multi-terminal systems, and can prevent unnecessary interruptions during system operation. The effect of stabilizing power system operation can be seen through this.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来方式の説明図、第2図は本発明の全体概念
図であシ、第3図は本発明の具体的実施例をそれぞれ示
す。 44M・・・距離継電器、34・・・フリップフロップ
、FD・・・故障検出継電器、78I・・・電流位相変
化検高 1t21 (C) 第 2 図 (a−2 (b)
FIG. 1 is an explanatory diagram of a conventional system, FIG. 2 is an overall conceptual diagram of the present invention, and FIG. 3 shows a specific embodiment of the present invention. 44M...Distance relay, 34...Flip-flop, FD...Failure detection relay, 78I...Current phase change detection height 1t21 (C) Fig. 2 (a-2 (b)

Claims (1)

【特許請求の範囲】[Claims] 1、電力系統の電圧と電流信号を入力して、故障点の方
向を判定する距離継電装置において、入力電流信号の位
相変化を検出することによって動作判定出力を制御する
ことを特徴とする距離継電装置。
1. In a distance relay device that determines the direction of a fault point by inputting voltage and current signals from a power system, a distance relay device is characterized in that the operation determination output is controlled by detecting a phase change of the input current signal. Relay device.
JP24727283A 1983-12-30 1983-12-30 Distance relaying device Granted JPS60144111A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24727283A JPS60144111A (en) 1983-12-30 1983-12-30 Distance relaying device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24727283A JPS60144111A (en) 1983-12-30 1983-12-30 Distance relaying device

Publications (2)

Publication Number Publication Date
JPS60144111A true JPS60144111A (en) 1985-07-30
JPH0522456B2 JPH0522456B2 (en) 1993-03-29

Family

ID=17160996

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24727283A Granted JPS60144111A (en) 1983-12-30 1983-12-30 Distance relaying device

Country Status (1)

Country Link
JP (1) JPS60144111A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6233639U (en) * 1985-08-08 1987-02-27

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6233639U (en) * 1985-08-08 1987-02-27
JPH0510516Y2 (en) * 1985-08-08 1993-03-15

Also Published As

Publication number Publication date
JPH0522456B2 (en) 1993-03-29

Similar Documents

Publication Publication Date Title
KR100471726B1 (en) Fault detecting method using harmonics and state transition diagram on transmission lines
JPS60144111A (en) Distance relaying device
EP0161403B1 (en) Protective relay for a power system
JPH0112510Y2 (en)
JP2799065B2 (en) Reclosing method of current differential protection relay
JP3425228B2 (en) Direction comparison transport protection relay
JP2757230B2 (en) Bus protection relay
CN113964799A (en) Method and device for preventing differential protection unwanted operation at two ends of T area
JP2898555B2 (en) Current differential protection relay
JPH0510516Y2 (en)
JPH11205996A (en) Breaker control and protective relay device
JPS5872332A (en) Device for protecting power system
JPS61180521A (en) Carrier protective relay
JPS63213409A (en) Protective relay
JPH0121687B2 (en)
JPS58186327A (en) Distance relay unit
JPS59106822A (en) Carrier protecting relaying device
JPS5854819A (en) Transmission line protecting device
JPH0150169B2 (en)
JPS6013435A (en) Control system of resistor for attenuating harmonic current
JPS6255374B2 (en)
JPS605728A (en) Differential protecting relaying device
JPS60189124A (en) Zero mistake suppressing system for ac breaker
JPS6338933B2 (en)
JPS59188325A (en) Protecting relaying unit

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term