JPS60143888A - Circulating type pressure floatation concentration apparatus - Google Patents

Circulating type pressure floatation concentration apparatus

Info

Publication number
JPS60143888A
JPS60143888A JP58247275A JP24727583A JPS60143888A JP S60143888 A JPS60143888 A JP S60143888A JP 58247275 A JP58247275 A JP 58247275A JP 24727583 A JP24727583 A JP 24727583A JP S60143888 A JPS60143888 A JP S60143888A
Authority
JP
Japan
Prior art keywords
pressurized water
amt
water
pressurized
sludge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58247275A
Other languages
Japanese (ja)
Inventor
Tadashi Uehara
上原 規志
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Engineering Co Ltd
Hitachi Ltd
Original Assignee
Hitachi Engineering Co Ltd
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Engineering Co Ltd, Hitachi Ltd filed Critical Hitachi Engineering Co Ltd
Priority to JP58247275A priority Critical patent/JPS60143888A/en
Publication of JPS60143888A publication Critical patent/JPS60143888A/en
Pending legal-status Critical Current

Links

Landscapes

  • Physical Water Treatments (AREA)
  • Treatment Of Sludge (AREA)

Abstract

PURPOSE:To increase concentrating effect and to improve rate of recovery of solid matter by providing a device for operating the amt. of pressurized water, a device for correcting the value operated by said operating device with the amt. of water to be fed back, and a device for controlling a flow control valve by inputting a target amt. of pressurized water. CONSTITUTION:Data for the upper and lower limit values of the air/solid matter ratio (A/S) are obtd. from a practical plant, and the values are added to an operating device 12 for the pressurized water amt. using a setting device 11. The amt. of dissolved air Cs is given in the form corresponding to the concn. of the separated water C's at the moment by means of a correction circuit 14 of the pressurized water amt. for the concn. of the separated water, and the value of A/S is optionally varied within a range between the upper and lower limit by varying the amt. R of the pressurized water. Thus, the amt. R of the pressurized water to be fed back capable of maintaining A/S within the set range is operated basing on the measured value of the flow rate of introduced sludge, concn. of the sludge, and the concn. of separated water. The result is inputted to a flow rate controlling device 13, and the control valve 9 for the pressurized water amt. is controlled so as to obtain the target flow rate.

Description

【発明の詳細な説明】 〔発明の利用分野〕 不発明は循環式加圧浮上濃縮装置に係り、特に、流入汚
泥の流量、濃度の変動が大きいプロセスにおいて娘縮効
率、固形物回収率向上に好適な循環式加圧浮上濃縮装置
に関する。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to a circulation type pressurized flotation concentrator, and particularly to an improvement in decondensation efficiency and solid matter recovery rate in a process where the flow rate and concentration of inflow sludge largely fluctuate. The present invention relates to a suitable circulation type pressurized flotation concentration device.

〔発明の背景〕[Background of the invention]

循環式加圧浮上濃縮装置に関して次の事が知られている
The following is known regarding the circulation type pressurized flotation concentrator.

空気対固形物の比(気固比A/S)は ここに、Cs=空気の溶解量(CC/1)、f−圧力P
における浴解窒気の分率、P=正圧力気圧atm) =
 (p+14.7)/14.7 、 p=計器圧力(p
sig)、 Sm =流入汚泥濃度(mg/l)、a=
加圧された循環水量(mgd)、Q−流人汚泥流量(n
lgd ) 、係数1.3は空気ICC(7)重量をm
gで示している。
The ratio of air to solids (gas-solid ratio A/S) is where: Cs = dissolved amount of air (CC/1), f - pressure P
fraction of bath denitrification at, P = positive pressure atm) =
(p+14.7)/14.7, p=instrument pressure (p
sig), Sm = inflow sludge concentration (mg/l), a =
Pressurized circulating water volume (mgd), Q-flow rate of sludge flow rate (n
lgd), the coefficient 1.3 is the air ICC (7) weight in m
It is indicated by g.

(出典 浅野孝訳 廃水処理工学2 Metcalf&
 Eddy I口C0,西原背英文化事業団)式(1)
において、A/Sは予め実験によって得たテークを基に
決定され、本装置の設計条件として便われている。
(Source: Translated by Takashi Asano, Wastewater Treatment Engineering 2 Metcalf&
Eddy Iguchi C0, Nishiharasei Cultural Foundation) Ceremony (1)
In this case, the A/S is determined based on the take obtained through experiments in advance, and is used as a design condition for this device.

加圧圧力と浮上物x′a度の関係は、第2図に示すよう
に、圧力を上げるほど浮上物質濃度は高くなるが、ある
値以上圧力を上げても、浮上物質藏度はそれほど高くな
らず飽和してしまう。ただ、圧力が高すぎるとフロック
の破壊が生じる事も仰られている。
As shown in Figure 2, the relationship between the applied pressure and the degree of floating matter x'a is that the higher the pressure, the higher the concentration of floating matter. Instead, it becomes saturated. However, it is also said that if the pressure is too high, the flocs may break.

また、第3図に示すように、気固比A/Sがある値以上
になっても、浮上物1tvtがほとんど増加せす、これ
がある値以−トになると分離水浮遊物質量は急激に増加
する事は第4図に示す通りである。
In addition, as shown in Figure 3, even if the gas-solid ratio A/S exceeds a certain value, the amount of floating solids 1 tvt almost increases, and when this exceeds a certain value, the amount of suspended solids in separated water rapidly increases. The increase is shown in Figure 4.

従来の循環式加圧rf−上装置は、このように、加圧圧
力、空気Mi、 +気固比等は現地調整となっていたの
で、運転に入った場合の流入汚泥の性状、流量の変動に
対しては無制御の状態にめった。これは流入固形物in
のx ajbによって処理効率が大きく左右芒れている
現状を物語っている。
In conventional circulation type pressurized RF-top equipment, the pressurization pressure, air Mi, + gas-solid ratio, etc. had to be adjusted on-site, so the properties of the inflowing sludge and the flow rate were adjusted when the equipment started operating. Fluctuations were often left uncontrolled. This is the inflow solids in
This shows that the current situation is that processing efficiency is greatly affected by x ajb.

また、Ot4坂式加圧浮上濃紬装置では、分離水を加圧
水として循環欧州するため、第4図に示すようにAl6
の低下により急激な分離水皿の悪化を呈したと思われる
。すなわち、Al6がある値以下になることにより、分
離水4度が増加するが、これによって、加圧返送水の生
気溶解率が低トし、フローテーションタンクの固形物の
浮上に影響を及はし、分離水が(に悪化するという悲循
壌を引き起していた。Al6を一定値に固定し、流入汚
泥の変動がないものとしても、フロスのレベル。
In addition, in the Ot4 slope type pressurized flotation equipment, the separated water is circulated as pressurized water, so as shown in Figure 4, Al6
It is thought that the separation water tray suddenly deteriorated due to the decrease in water. In other words, when Al6 falls below a certain value, the separation water temperature increases by 4 degrees, but this lowers the live air dissolution rate of the pressurized return water and does not affect the floating of solids in the flotation tank. However, this caused a tragic cycle in which the separated water deteriorated to

厚さ、タンク内沈殿汚泥の状態により、分離水汚泥譲度
の変動が生じる。現状では、フロスのレベル、厚み、タ
ンク内沈殿汚泥に対する調節、 ii制御は検討されて
いるが、固定して一定であると思われているA/S値が
、分離水4度の増加により実除は低下している点に着目
きれていない所に問題がめった。
Separated water sludge yield varies depending on the thickness and condition of the sludge settled in the tank. Currently, the level and thickness of the floss, and the adjustment of the sludge settled in the tank are being considered, but the A/S value, which is thought to be fixed and constant, is not actually realized due to an increase of 4 degrees of separated water. The problem was that we were not paying enough attention to the fact that the reduction rate was decreasing.

〔発明の目的〕[Purpose of the invention]

本発明の1的は、濃縮効率の低F1分離水質の悪化を改
善するため、分離水汚泥一度を考慮した加圧水循環水量
自動制御装置を提供するにめる。
One object of the present invention is to provide an automatic pressurized water circulation water flow rate control device that takes into account separation water sludge, in order to improve the deterioration of F1 separation water quality with low concentration efficiency.

〔開明の概−安〕[Overview of Kaimei-An]

饋縮効来は流入固形物量、全気量、圧力、加圧水量等に
大きく左右され、る。第4図に示すように、A/S値が
ある値(α)以下になると分離水幾度は急激に高くなる
ので、これをAl6の下限値とし、第3図のようにA/
S値が必る値(β)以上になってもr′;ζ上物負哉匪
がほとんど上がらないのでこの点をA/S値の上限値と
設定する。
The compression effect largely depends on the amount of inflowing solids, total air volume, pressure, amount of pressurized water, etc. As shown in Figure 4, when the A/S value falls below a certain value (α), the degree of separation water increases rapidly, so this is taken as the lower limit of Al6, and the A/S value is set as the lower limit of Al6 as shown in Figure 3.
Even if the S value exceeds the necessary value (β), the r';

また、分離水6度の増加による生気溶解率の低下は第5
図の辿りである。空気噴解率の低下に比例してA/S値
もトがるから、これ′f:解決してAl6を一定値内に
保つために生気溶解率の低下分に比例して加圧返送水量
を増やす。
In addition, the decrease in the live air dissolution rate due to an increase in the separation water temperature by 6 degrees is the fifth
Follow the diagram. Since the A/S value also increases in proportion to the decrease in the air injection rate, the amount of pressurized return water should be increased in proportion to the decrease in the live air dissolution rate in order to solve this problem and keep Al6 within a constant value. increase.

〔発明の実施レリ〕[Practice of the invention]

以下に、本発明の一実施圀を第5図により説明fる。1
はフローデージョンタンク、2は加圧ポンプ、3は加圧
タンク、4はl浅−液エジエクタ、5は気−液エジエク
タである。また、6はυ毘人汚v1流量d1.7は流入
汚泥一度計、8は分離水濃度@Y19は加圧水址調頗弁
、10は加圧水流欺計、11はAl6の上限・−ト限設
定器、12は加圧水量演算装置、13は流量嗣御装置、
14は加圧水量補正回路を示す。
An embodiment of the present invention will be explained below with reference to FIG. 1
2 is a flow duration tank, 2 is a pressurizing pump, 3 is a pressurizing tank, 4 is a shallow-liquid ejector, and 5 is a gas-liquid ejector. In addition, 6 is the υbijin sludge v1 flow rate d1.7 is the inflow sludge once meter, 8 is the separated water concentration @Y19 is the pressurized water base control valve, 10 is the pressurized water flow meter, and 11 is the upper limit and limit setting of Al6. 12 is a pressurized water amount calculation device, 13 is a flow rate control device,
14 indicates a pressurized water amount correction circuit.

循環式加圧浮上−掃法は、流入汚泥に空気を飽和状態ま
で溶解した後、加圧タンクに導入して加圧し、大気圧に
戻して空気を析出させ、気泡を発生させて浮上させる。
In the circulation pressurized flotation-sweeping method, air is dissolved in the inflowing sludge to a saturated state, then introduced into a pressurized tank and pressurized, returned to atmospheric pressure to precipitate air, generate air bubbles, and float the sludge.

この浮上操作を良好に行なうためには、良好な気泡を発
生させてS質粒子への何着を十分にし、Pt上に十分な
浮力を与える。
In order to perform this levitation operation well, good air bubbles are generated to ensure sufficient adhesion to the S particles and to provide sufficient buoyancy on the Pt.

以下、具体的実現法を、況明する。The specific implementation method will be explained below.

第2図、第3図に示したように、x/Sの上限。As shown in FIGS. 2 and 3, the upper limit of x/S.

F’ la(+iを実プラントでデータをとり、この上
・下限値を設定器11で加圧水量演算装置12に与える
The data of F' la (+i) is taken in an actual plant, and the upper and lower limit values are given to the pressurized water amount calculation device 12 by the setting device 11.

一方、/A14!7I(一度による加圧水量補正回路1
4でCs” 1 / (K−8o +r)の@評を行な
う。本式で、Soは分離水ml[、i/rは圧力P1分
離水諷紅00時の空気の溶解斌、C,/は分離水濃度S
oの時の空気のR41Q子fIt、には足載でめる。こ
の績■値C11′も加圧水量演算装置12に与えられる
On the other hand, /A14!7I (one time pressurized water amount correction circuit 1
4, evaluate Cs" 1 / (K-8o + r). In this formula, So is the separation water ml [, i/r is the dissolution of air at the pressure P1 separation water 00, C, / is the separated water concentration S
Place your foot on the air R41Q child fIt when it is o. This result (2) value C11' is also given to the pressurized water amount calculation device 12.

加圧水量演算装置12では、A/S= 圧力Pは第1図に示す通り、浮上物質一度に影響を与え
るが、おる値以上を確保すれば、その影響度は小さく通
當一定とされているため、その値を使用する。fは圧力
Pが一足であるので、ある値に決まる。仝気の溶W4景
C8は分離水濃度による加圧水t イ+n正回路14に
よって、その時の分離水濃度に対応したCs2とじて与
えられるので、加圧水量几を鎚化させることでA/Sが
よ・下限値範囲内で任、tLに変えられる。よって、流
入汚泥流量。
In the pressurized water amount calculation device 12, A/S = Pressure P has an effect on floating substances at once, as shown in Fig. 1, but as long as it is above the threshold value, the degree of influence is small and remains constant. Therefore, use that value. Since the pressure P is one foot, f is determined to be a certain value. Air dissolution W4 scene C8 is given as Cs2 corresponding to the concentration of the separated water at that time by the pressurized water t+n positive circuit 14, so A/S can be improved by increasing the pressurized water volume.・Can be changed to tL within the lower limit range. Therefore, the inflow sludge flow rate.

汚泥函数及び分離水濃度の口[測値からA/Sが最適範
囲に保持されるように加圧水返送景几をωi、#。
Sludge function and separated water concentration [From the measured values, pressurized water is returned so that A/S is maintained within the optimum range.

する。この眞封、結果金流′1Lilil制御装置13
に与え目標流量になるよう加圧水量EA如弁9を制御す
る。
do. This seal, the result is money flow'1 Lilil control device 13
The pressurized water amount EA control valve 9 is controlled so that the target flow rate is achieved.

本実1M1+lIによれば、量線効果が大きくなり、浮
上汚泥誤数が向上する一方、分離水濃度が安定し分離水
置数悪化によるタンク内固形物浮上効率の1LjA害1
分P1(シボ質の悪化という悪循狽を断ち切り、全体と
して後続の汚泥処理への負荷軽減、水処理プロセスに与
える影響を更に改善することができる。
According to Honjitsu 1M1+lI, the dose line effect increases and the floating sludge error number improves, while the separated water concentration stabilizes and the solids flotation efficiency in the tank deteriorates due to the deterioration of the number of separated water locations.
Minute P1 (it is possible to break the vicious cycle of deterioration of grain quality, reduce the load on subsequent sludge treatment, and further improve the impact on the water treatment process as a whole.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、譲縮効果が向上し、分離水濃度のフィ
ードバック制御により適正な固形物の浮上が促進される
ので、−縮による減量効果とめいまって、固ル物の回収
率が同上し、後続の汚泥処理プロセス及び分離水が返送
さ1しる水処理プローセスに対し負荷が低減する。
According to the present invention, the yielding effect is improved, and appropriate floating of solids is promoted by feedback control of the concentration of separated water, so that the recovery rate of solids is improved due to the weight loss effect due to shrinkage. This reduces the load on the subsequent sludge treatment process and the water treatment process in which the separated water is returned.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、〃■圧正圧力ー4上物質濃度の特注図、rA
z図は、分離水濃度と気固比の特性図、第3図Vよ浮上
物負磯)組と生気浴廚盆の%注図、第4図は汚泥踊匿に
対する空虱の浴屏率特性図、第5図は、本発明の一実施
例の/1i8統図である。 7・・・流入汚泥磯匿計”、8・・・分離水−数計、9
・・・加圧水量調節弁、10・・・加圧水流電計、12
・・・加圧水量演算装置、13・・・流量・制御装置、
14・・・加工業1図 第2m 箒3閉 箒4凶 第5閉 6 7 4
Figure 1 is a custom-made diagram of positive pressure-4 material concentration, rA
The Z diagram is a characteristic diagram of the concentration of separated water and the gas-solid ratio. Figure 3 is a graph showing the percentage of floating objects (iso) group and live air bathing basin. Figure 4 is the bathing ratio of air lice to sludge retention. The characteristic diagram, FIG. 5, is a /1i8 standard diagram of an embodiment of the present invention. 7... Inflow sludge rock solidity count, 8... Separated water - number count, 9
... Pressurized water flow control valve, 10... Pressurized water current meter, 12
... pressurized water amount calculation device, 13... flow rate/control device,
14...Processing Industry Figure 1 2nd m Broom 3 Closed Broom 4 Kyo 5th Closed 6 7 4

Claims (1)

【特許請求の範囲】[Claims] 1、 フローテーションタンク、加圧水ポンプ、空気圧
給機、液−液エジエクタ、気−液エジエクタよシ成る4
JIim式加圧浮上磯紬装置において、流入汚泥の流重
計、R,人汚泥のml口1により気固比を適正バンド内
に入るように加圧水量演算装置と、分離水槽に設けられ
た分離水の濃度計により前記加圧水量演算装置に返送量
の剖正をかける装置と、前記加圧水量鼠算装置より加圧
水量の目 ′標値を人力し、流量調節弁を制御する流址
制御装置とからなる事を%位とする循環式加圧浮上濃縮
装置。
1. Consists of a flotation tank, pressurized water pump, air pressure feeder, liquid-liquid ejector, and gas-liquid ejector4.
In the JIim type pressurized flotation Isopongi device, a pressurized water amount calculation device is installed to keep the air-solid ratio within the appropriate band using a flow meter for inflow sludge, R, and ml port 1 for human sludge, and a separation water volume installed in a separation water tank. a device that uses a concentration meter to calculate the return amount to the pressurized water amount calculation device; and a flow control device that manually inputs a target value of the pressurized water amount from the pressurized water amount calculation device and controls the flow rate adjustment valve. Circulation type pressurized flotation concentration device that achieves %.
JP58247275A 1983-12-30 1983-12-30 Circulating type pressure floatation concentration apparatus Pending JPS60143888A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58247275A JPS60143888A (en) 1983-12-30 1983-12-30 Circulating type pressure floatation concentration apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58247275A JPS60143888A (en) 1983-12-30 1983-12-30 Circulating type pressure floatation concentration apparatus

Publications (1)

Publication Number Publication Date
JPS60143888A true JPS60143888A (en) 1985-07-30

Family

ID=17161039

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58247275A Pending JPS60143888A (en) 1983-12-30 1983-12-30 Circulating type pressure floatation concentration apparatus

Country Status (1)

Country Link
JP (1) JPS60143888A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09327601A (en) * 1996-06-12 1997-12-22 Maezawa Ind Inc Method and apparatus for solid-liquid separation
JP2017039103A (en) * 2015-08-21 2017-02-23 株式会社日立製作所 Control method for water treatment process using fine bubble and water treatment system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09327601A (en) * 1996-06-12 1997-12-22 Maezawa Ind Inc Method and apparatus for solid-liquid separation
JP2017039103A (en) * 2015-08-21 2017-02-23 株式会社日立製作所 Control method for water treatment process using fine bubble and water treatment system

Similar Documents

Publication Publication Date Title
JPS60143888A (en) Circulating type pressure floatation concentration apparatus
JPS54147650A (en) Sludge pressurizing floating enriching device
US3979293A (en) Apparatus for the purification of effluent
CN205313247U (en) Sewage treatment system is arranged in blast furnace gas washing
JPH06328078A (en) Alkaline water producing process
JPS5843290A (en) Automatic controlling method for sewage treating device by activated sludge method
JPS57144089A (en) Automatic control method for batch-wise activated sludge method
JPS56115687A (en) Optimum operating method for sewage treatment system by activated sludge process
SU810271A1 (en) Method of automatic control of discharging magnetite from deslimer
JP2004113853A (en) Regulation and control apparatus for ph value of inflow raw water in water purifying treatment process
JPS5442853A (en) Device of treating activated sludge
JPS58186405A (en) Control device of gravity settling type concentrating tank
JPS5599387A (en) Control process for inflow sewage water load of sewage disposal plant
JPS57127401A (en) Method for controlling concentrating vessel
HIRAOKA et al. THE CONTROL OF WASTE WATER FLOW OF NEW TOWN INTO THE TREATMENT PLANT(DANCHI GESUISHORIJO NO RYUNYUSUI NO SEIGYO NI KANSURU KENKYU)
JPS5753295A (en) Biological purification of waste water
JPS60125214A (en) Control of final precipitaion basin
JPS5613085A (en) Control unit of excess sludge flow rate
JPS58159895A (en) Method for controlling sewage treatment plant
JPS63256189A (en) Device for automatic adjustment of sludge concentration in sewage treating chamber
JP2018138289A (en) Water treatment apparatus for water treatment process and treatment method thereof
JPS6438186A (en) Controlling method for ultrapure water producing device
JPH07121400B2 (en) Return sludge amount control device
JPS59389A (en) Apparatus for treating sewage
JPS6043166B2 (en) Sedimentation tank control method