JPS60142563A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPS60142563A
JPS60142563A JP24776483A JP24776483A JPS60142563A JP S60142563 A JPS60142563 A JP S60142563A JP 24776483 A JP24776483 A JP 24776483A JP 24776483 A JP24776483 A JP 24776483A JP S60142563 A JPS60142563 A JP S60142563A
Authority
JP
Japan
Prior art keywords
region
breakdown voltage
junction
epitaxial growth
growth layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24776483A
Other languages
Japanese (ja)
Inventor
Tetsukazu Hayano
早野 哲一
Koji Hiraki
平木 幸治
Masayoshi Kitamura
北村 昌良
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
New Japan Radio Co Ltd
Japan Radio Co Ltd
Original Assignee
New Japan Radio Co Ltd
Japan Radio Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by New Japan Radio Co Ltd, Japan Radio Co Ltd filed Critical New Japan Radio Co Ltd
Priority to JP24776483A priority Critical patent/JPS60142563A/en
Publication of JPS60142563A publication Critical patent/JPS60142563A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals

Abstract

PURPOSE:To realize a lower breakdown voltage and improved surge-withstanding capability by a method wherein a p-n junction with a low breakdown voltage is parallelly connected to a p-n junction with a high breakdown voltage positioned between an epitaxially grown layer and isolating region. CONSTITUTION:A buried region 10 of high n type density is positioned, partially in contact with an isolating region 3, along the interface between a base layer 2, which is an epitaxially grown region of low n type densty positioned below a base take-out region 5 of high n type density, and a substrate 1 of high p type density. With the region 10 being of high density, the p-n junction between the region 10 and the isolating region 3 has a lower breakdown voltage, which results in the lowering of the breakdown voltage across the base layer 2 and isolating region 3 and in an augmented surge withstanding capability.

Description

【発明の詳細な説明】 本発明は、サージ耐量を増加させるために降伏電圧を下
げたバイポーラ型の半導体装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a bipolar semiconductor device having a lower breakdown voltage to increase surge resistance.

バイポーラ型の集積回路(以下、ICと呼ぶ。)では、
エピタキシャル成長1Mとアイソレーション領域との間
の耐圧が高い(破壊し易い降伏電圧が100〜150v
と高いものが多い。)ため、この部分にサージが加わる
と、容易に破壊する。しかし、設計上はこの耐圧となる
ようにエピタキシャル成長層の抵抗が選ばれるので改良
が困難である。
In bipolar integrated circuits (hereinafter referred to as ICs),
The breakdown voltage between the epitaxial growth 1M and the isolation region is high (breakdown voltage that is easy to break down is 100 to 150V)
Many of them are expensive. ), so if a surge is applied to this part, it will be easily destroyed. However, in terms of design, the resistance of the epitaxial growth layer is selected to achieve this breakdown voltage, so improvement is difficult.

例えば、ラテラル・バーチカル型のpnpトランジスタ
でコレクタ接地型のものは、そのラテラル・トランジス
タのベース領域にエピタキシャル成長層を使用し、コレ
クタをアイソレーション領域と同電位としているために
、サージ電圧によって、そのベース・コレクタ間(即ち
、エビタギシャル層とアイソレーション領域との界面)
のpn接合部分が焼損することが多い。
For example, a lateral/vertical pnp transistor with a common collector uses an epitaxial growth layer in the base region of the lateral transistor, and the collector is at the same potential as the isolation region, so a surge voltage can damage the base.・Between the collectors (i.e., the interface between the evitagital layer and the isolation region)
The pn junction portion of the device often burns out.

ところで、ここでICにおけるダイオード(pn接合部
)のサージ耐量について考えてみる。第1図Talばそ
の試験回路を示すもので、電圧■の電源によりコンデン
サC(200PI? )をその電圧■まで充電し、この
後スイッチSWを破線側に切り換え、て、このコンデン
サCの電圧Vを試験用のダイオードDに印加すると、第
1図(blに示す等j曲回路となり、電流Iが流れる。
Now, let's consider the surge resistance of the diode (pn junction) in the IC. Figure 1 Tal shows the test circuit. A capacitor C (200PI?) is charged to the voltage ■ by a power source of voltage ■, and then the switch SW is switched to the dotted line side, and the voltage of this capacitor C is V. When is applied to the test diode D, an equal j-curve circuit shown in FIG. 1 (bl) is formed, and a current I flows.

VRはダイオードの降伏電圧、rは内部抵抗である。ダ
イオードDに加わるパワーWは(W=I−VRであるか
ら)、w= ((1/r) (V−VR)(1−e−詐
))VR・・・ill となるが、簡単のため電流波形をデルタ関数的に近似し
て、 W−(1/ r) (V VR) VR・A −(21
としてみる。
VR is the breakdown voltage of the diode, and r is the internal resistance. The power W applied to the diode D is (since W=I-VR), w= ((1/r) (V-VR) (1-e-fraud)) VR...ill, but in a simple way Therefore, by approximating the current waveform as a delta function, W-(1/r) (V VR) VR・A-(21
Try it as follows.

パワーWが、ある形状のダイオードがサージ破壊するエ
ネルギーであるとすると、このパワーWを固定して、電
圧■とVRとの関係を調べてみる。
Assuming that the power W is the energy that destroys a diode of a certain shape due to a surge, let's fix this power W and examine the relationship between the voltage ■ and VR.

(2)式から、 (’/ VR) VR= r−W/ A=−=B ・・
・(3) としてBを見掛は上のパワーとすると、V=V、+B/
V、 ・・・(4) である。そこで、この(4)式をグラフで表すと、第2
図に示すようtこなる。そして、(4)式の両辺をvR
で微分すると、 dV/clvR−1−B/VR” ・+53となる。よ
って、 V、=屈 ・・・(6) のときが電圧■が最小値となる。そして、この(6)式
を(4)式に代入すれば、この最小値の時の電圧■が判
明する。この電圧■は、 ■−2A ・・・(7) であり、また、 V=2VR・・・(8) である。
From formula (2), ('/VR) VR= r-W/ A=-=B...
・(3) Assuming that B has the apparent power above, V=V, +B/
V, ...(4). Therefore, if we represent this equation (4) graphically, we can obtain the second
As shown in the figure. Then, both sides of equation (4) are vR
Differentiating with dV/clvR-1-B/VR" ・+53. Therefore, when V, = flex...(6), the voltage ■ becomes the minimum value. Then, by converting this equation (6), By substituting into equation (4), the voltage ■ at this minimum value can be found.This voltage ■ is ■-2A...(7), and V=2VR...(8). be.

即ち、コンデンサCの容量、内部抵抗r、及びダイオー
ドDに印加するパワーWを一定とすると、つまり見掛は
上のパワーBを一定とすると、電圧V(サージ耐圧)は
、降伏電圧■Rの2倍のときが最小ということになり、
このときの降伏電圧■R=Aである。この降伏電圧■、
Rが4よりも小さくても或いは大きくてもサージ耐圧は
大きくなる。
That is, if the capacitance of the capacitor C, the internal resistance r, and the power W applied to the diode D are constant, that is, if the apparent power B is constant, the voltage V (surge withstand voltage) is equal to the breakdown voltage ■R. When it is twice, it is the minimum,
The breakdown voltage at this time is R=A. This breakdown voltage ■,
Even if R is smaller or larger than 4, the surge withstand voltage increases.

これば、降伏電圧Va’l)’大きくなれば、ダイオー
ドに流れる電流が減少し、一方その降伏電圧V。
This means that as the breakdown voltage Va'l)' increases, the current flowing through the diode decreases, while its breakdown voltage V.

が小さくなれば、ダイオードにかかる電圧が小さくなる
のでダイオードに消費されるパワーが小さくなるからと
解釈できる(第3図)。
This can be interpreted as the fact that as the voltage becomes smaller, the voltage applied to the diode becomes smaller, so the power consumed by the diode becomes smaller (Figure 3).

以上から明らかなように、形状が一定ならば、可能な範
囲でpn接合部の降伏電圧vRを小さくすることがサー
ジ耐量を上げることになる。
As is clear from the above, if the shape is constant, reducing the breakdown voltage vR of the pn junction to the extent possible increases the surge resistance.

本発明は、以上のような点に鑑みてなされたもので、そ
の目的は、上記理論に沿って降伏電圧を小さくし、これ
によりサージ耐量を向上させた半導体装置を提供するこ
とである。
The present invention has been made in view of the above points, and an object of the present invention is to provide a semiconductor device with a reduced breakdown voltage in accordance with the above theory and thereby improved surge resistance.

以下、本発明の実施例について説明する。第4図はその
一実施例を示すコレクタ接地型のラテラル・トランジス
タの構造を示すものである。lばp型の低濃度のサブス
トレート、2ばそのサブストレート1の上面に形成した
n型の低濃度のエピタキシャル成長層で成るベース領域
、3はp型の高濃度のアイソレーション領域であり、コ
レクタ領域の場合であるのでコレクタ領域として働く。
Examples of the present invention will be described below. FIG. 4 shows the structure of a common collector type lateral transistor showing one embodiment thereof. l is a p-type low-concentration substrate, 2 is a base region made of an n-type low-concentration epitaxial growth layer formed on the upper surface of the substrate 1, 3 is a p-type high-concentration isolation region; Since it is an area, it works as a collector area.

4ばp型の高濃度のエミッタ領域、5ばn型の高濃度の
ベース取出領域である。また、6は絶縁保護被膜、7ば
エミッタ電極、8はベース電極、9はアイソレーション
領域を接地電位にするための接地電極である。
They are a 4B p-type high concentration emitter region and a 5B n-type high concentration base extraction region. Further, 6 is an insulating protective coating, 7 is an emitter electrode, 8 is a base electrode, and 9 is a ground electrode for setting the isolation region to a ground potential.

以上は通常のコレクタ接地型のラテラル・トランジスタ
の構造であり、この構造では前記したように、ベース領
域2とアイソレーション領域3との間のpn接合部の降
伏電圧が高いので、サージに対して弱いという問題があ
った。
The above is the structure of a normal collector-grounded lateral transistor, and as mentioned above, in this structure, the breakdown voltage of the pn junction between the base region 2 and the isolation region 3 is high, so it is resistant to surges. The problem was that it was weak.

本実施例では、上記構造に加えて、更にベース取出領域
5の下方におけるベース領域2とサブストレート1との
界面に、n型の高濃度の埋込領域IOを形成し、その埋
込領域10の一部がアイソレーション領域3に接するよ
うに配置し、これによりpn接合部を構成している。
In this embodiment, in addition to the above structure, an n-type high concentration buried region IO is formed at the interface between the base region 2 and the substrate 1 below the base extraction region 5, and the buried region 10 is arranged so that a part thereof is in contact with the isolation region 3, thereby forming a pn junction.

従って、この構造によれば、埋込領域lOが高濃度であ
るので、そこにおける同様に高濃度のアイソレーション
領域3との間のpn接合の降伏電圧は低くなる。
Therefore, according to this structure, since the buried region 1O is highly doped, the breakdown voltage of the pn junction there between it and the isolation region 3, which is also highly doped, becomes low.

なお、上記埋込領域10の形成方法は、サブストレート
1の上面からn型の高濃度の不純物の拡散或いはイオン
打込により形成する。エピタキシャル成長層2はこの後
にエピタキシャル成長により形成する。他の領域は不純
物拡+l&或いはイオン打込により従来と同様に形成す
る。
The buried region 10 is formed by diffusion or ion implantation of n-type impurities at a high concentration from the upper surface of the substrate 1. Epitaxial growth layer 2 is then formed by epitaxial growth. Other regions are formed by impurity expansion +l& or ion implantation in the same manner as in the prior art.

第5図は別の実施例を示すもので、アイソレーション領
域3の下部に接して同様の高濃度のp型の埋込領域3a
を形成して、これをアイツレジョン領域3の一部とし、
この埋込領域3aに埋込領域10を接するように形成し
たものである。
FIG. 5 shows another embodiment, in which a similarly high-concentration p-type buried region 3a is in contact with the lower part of the isolation region 3.
, and make it part of Aitsuregion area 3,
A buried region 10 is formed so as to be in contact with this buried region 3a.

この例でも、上記実施例と同様に高濃度のpn接合部が
形成され、その部分の降伏電圧が低くなる。
In this example as well, a high concentration pn junction is formed as in the above embodiment, and the breakdown voltage at that portion is low.

以上のように、エピタキシャル成長層2とアイソレーシ
ョン領域3との間の高い降伏電圧のpn接合部分に並列
に、低い降伏電圧のpn接合部が接続されるようになる
ので、そのエピタキシャル成長層2とアイソレーション
領域3との間の降伏電圧を下げることができるようにな
り、よってその部分のサージ耐量を増加することができ
る。
As described above, the pn junction with a low breakdown voltage is connected in parallel to the pn junction with a high breakdown voltage between the epitaxial growth layer 2 and the isolation region 3, so that the pn junction with a low breakdown voltage is connected between the epitaxial growth layer 2 and the isolation region 3. It becomes possible to lower the breakdown voltage with respect to the ration region 3, thereby increasing the surge resistance of that portion.

以上から本発明によれば、サージ耐量が増加し、コレク
タ接地のpnpラテラル・トランジスタを具備するIC
に好適である。
As described above, according to the present invention, the surge resistance is increased and the IC is equipped with a pnp lateral transistor with a common collector.
suitable for

【図面の簡単な説明】[Brief explanation of the drawing]

第1図+alはダイオードのサージ耐量の試験回路図、
(b)は電圧印加時の等価回路図、第2図は降伏電圧と
サージ耐圧との関係を示す特性図、第3図は降伏電圧と
パワーの関係を示す特性図、第4図は本発明の一実施例
の半導体装置の断面図、第5図は別の実施例の半導体装
置の断面図である。 1・・・サブストレート、2・・・ベースff4域(エ
ピタキシャル成長層)、3・・・アイソレーション領域
(コレクタ領域)、3a・・・埋込領域、4・・・エミ
ッタ領域、5・・・ベース取出領域、6・・・絶縁保護
被膜、7・・・エミッタ電極、8・・・ベース電極、9
・・・接地電極、10・・・埋込領域。 特許出願人 新日本無線株式会社 代 理 人 弁理士 長尾當明 第1 図 (a) (b) 第4図 第5図
Figure 1 +al is a diode surge withstand test circuit diagram,
(b) is an equivalent circuit diagram when voltage is applied, Figure 2 is a characteristic diagram showing the relationship between breakdown voltage and surge withstand voltage, Figure 3 is a characteristic diagram showing the relationship between breakdown voltage and power, and Figure 4 is a characteristic diagram showing the relationship between breakdown voltage and surge voltage. FIG. 5 is a sectional view of a semiconductor device according to another embodiment. DESCRIPTION OF SYMBOLS 1... Substrate, 2... Base ff4 region (epitaxial growth layer), 3... Isolation region (collector region), 3a... Buried region, 4... Emitter region, 5... Base extraction area, 6... Insulating protective coating, 7... Emitter electrode, 8... Base electrode, 9
...Ground electrode, 10...Embedded region. Patent Applicant: New Japan Radio Co., Ltd. Agent: Patent Attorney: Toakiaki Nagao Figure 1 (a) (b) Figure 4 Figure 5

Claims (1)

【特許請求の範囲】[Claims] (1)、第一導電型の低濃度のザブストレートの上面に
該第−導電型と反対の第二導電型の低濃度のエピタキシ
ャル成長層を形成し、該エピタキシャル成長層の上面か
ら一ト方に向けて第二導電型の高濃度の取出領域を形成
し、且つ上記エピタキシャル成長層の上面から上記ザブ
ストレートにかげて第一導電型の高濃度のアイソレーシ
ョン領域を形成した半導体装置において、 上記取出領域の下方における上記エピタキシャル成長層
と上記サブストレートとの界面に第二導電型の高濃度の
埋込領域を上記アイソレーション領域に接して形成し、
上記埋込領域と上記アイソレーション領域とにより降伏
電圧の低いpn接合部を形成したことを特徴とする半導
体装置。
(1) A low concentration epitaxial growth layer of a second conductivity type opposite to the second conductivity type is formed on the top surface of the first conductivity type low concentration substrate, and the epitaxial growth layer is directed in one direction from the top surface of the epitaxial growth layer. In a semiconductor device, a highly doped extraction region of a second conductivity type is formed in the semiconductor device, and a highly doped isolation region of a first conductivity type is formed from the upper surface of the epitaxial growth layer to the substratum. forming a second conductivity type high concentration buried region in contact with the isolation region at a lower interface between the epitaxial growth layer and the substrate;
A semiconductor device characterized in that the buried region and the isolation region form a pn junction having a low breakdown voltage.
JP24776483A 1983-12-29 1983-12-29 Semiconductor device Pending JPS60142563A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24776483A JPS60142563A (en) 1983-12-29 1983-12-29 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24776483A JPS60142563A (en) 1983-12-29 1983-12-29 Semiconductor device

Publications (1)

Publication Number Publication Date
JPS60142563A true JPS60142563A (en) 1985-07-27

Family

ID=17168304

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24776483A Pending JPS60142563A (en) 1983-12-29 1983-12-29 Semiconductor device

Country Status (1)

Country Link
JP (1) JPS60142563A (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5152286A (en) * 1974-11-01 1976-05-08 Iwatsu Electric Co Ltd Handotaisochino sakuseihoho
JPS52180A (en) * 1975-06-20 1977-01-05 Nec Corp Transistor
JPS5596675A (en) * 1979-01-19 1980-07-23 Nec Corp Semiconductor device
JPS56155545A (en) * 1980-05-02 1981-12-01 Nec Corp Semiconductor device
JPS5743460A (en) * 1980-08-29 1982-03-11 Fujitsu Ltd Semiconductor device
JPS5878452A (en) * 1981-11-04 1983-05-12 Toshiba Corp Semiconductor device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5152286A (en) * 1974-11-01 1976-05-08 Iwatsu Electric Co Ltd Handotaisochino sakuseihoho
JPS52180A (en) * 1975-06-20 1977-01-05 Nec Corp Transistor
JPS5596675A (en) * 1979-01-19 1980-07-23 Nec Corp Semiconductor device
JPS56155545A (en) * 1980-05-02 1981-12-01 Nec Corp Semiconductor device
JPS5743460A (en) * 1980-08-29 1982-03-11 Fujitsu Ltd Semiconductor device
JPS5878452A (en) * 1981-11-04 1983-05-12 Toshiba Corp Semiconductor device

Similar Documents

Publication Publication Date Title
CN100431153C (en) Semi-conductor integrated circuit apparatus and its producing method
US5477078A (en) Integrated circuit (IC) with a two-terminal diode device to protect metal-oxide-metal capacitors from ESD damage
GB2144267A (en) Improvements in or relating to semiconductor overvoltage suppressors
JP2680788B2 (en) Integrated structure active clamp device
EP0632502A1 (en) Bipolar power transistor with high collector breakdown voltage and related manufacturing process
WO1992022927A2 (en) A semiconductor component for transient voltage limiting
US10199368B2 (en) Stucture for protecting an integrated circuit against electrostatic discharges
US6248639B1 (en) Electrostatic discharge protection circuit and transistor
JP3493681B2 (en) Buried avalanche diode
JPH06104459A (en) Semiconductor device
JPS60142563A (en) Semiconductor device
JPS60263461A (en) Manufacture of high withstand voltage longitudinal transistor
JPS60142562A (en) Semiconductor device
JPH1117198A (en) Protection of logic well of component including integrated mos power transistor
JPH0478162A (en) Protecting device for integrated circuit
JPH08274311A (en) Insulated-gate type semiconductor device
JPS6211787B2 (en)
EP4340044A1 (en) Unidirectional tvs device with improved surge current performance
JPS60198859A (en) Semiconductor device
JP2907693B2 (en) Soft recovery diode
JPH09502573A (en) Lateral semiconductor structure for forming temperature-compensated voltage limiter
JP2001223223A (en) Clippinig device with negative resistance
RU2024995C1 (en) Integrated transistor resistant to back secondary puncture
GB2128022A (en) Integrated transistors protected against overvoltages
JPS60123070A (en) Semiconductor device